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ABSTRACT 
This paper presents an architecture for the creation of emotionally congruent music using machine learning aided 

sound synthesis. Our system can generate a small corpus of music using Hidden Markov Models; we can label 

the pieces with emotional tags using data elicited from questionnaires. This produces a corpus of labelled music 

underpinned by perceptual evaluations. We then analyse participant’s galvanic skin response (GSR) while 

listening to our generated music pieces and the emotions they describe in a questionnaire conducted after 

listening. These analyses reveal that there is a direct correlation between the calmness/scariness of a musical 

piece, the users’ GSR reading and the emotions they describe feeling. From these, we will be able to estimate an 

emotional state using biofeedback as a control signal for a machine-learning algorithm, which generates new 

musical structures according to a perceptually informed musical feature similarity model. Our case study 

suggests various applications including in gaming, automated soundtrack generation, and mindfulness.  

1 Introduction 

We employ a generative music system designed to 

create bio-signal synchronous music in real-time 

according to an individual’s galvanic skin response 
(GSR), using /machine learning (ML) techniques to 

determine similarity between an emotion index 

determined by perceptual experiment, and musical 

features extracted from a larger corpus of source 

files. This work has implications for the future 

design and implementation of novel portable music 

systems and in music-assisted mindfulness training 

and coaching. 

1.1 Background 

Mindfulness increases awareness of thoughts, 

feelings, and sensations, while keeping an open 

mind, free from distraction and judgment [1]. It can 

benefit mental health and general well-being [1]. 

The process involves the practitioner or patient 

concentrating their attention and awareness in a 

deliberate manner. Chambers [2] showed that this is 

correlated to galvanic skin response, heart rate 

variability, and the ratio of alpha and beta waves in 

brain imaging techniques, amongst other 

physiological metrics. Bondolfi [3] and Economides 

[1] proposed mindfulness as a therapeutic treatment 

and suggest there is evidence to link physiological 

changes with mindfulness training. Mindfulness may 

be considered a consolidated emotion - or more 

accurately, an affective state. The distinction 

between affective state, emotion, and mood, is 

complex, but in the context of sound and music, 

cognitive scientists have suggested that the temporal 

nature of the response can be a useful method of 

delineating between such descriptors [4]. 

Existing work has shown that there is a neurological 

and physiological connection to music [5]. When 

 

http://www.aes.org/e-lib)
mailto:duncan.williams@york.ac.uk


Williams, (Hodge, Gega, Murphy, Cowling and Drachen) AI Automated Music Generation for Mindfulness 

 

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019  

Page 2 of 10 

listening to our favourite music, our bodies respond 

physically, inducing reactions such as pupil dilation, 

increased heart rate, blood pressure, and skin 

conductivity [6]. Thus, there is a potential crossover 

between mindful action, physiological reaction, and 

musical stimulation. We are attempting to fruitfully 

exploit this crossover to gamify mindful interactions 

and create a music-based training system for the 

end-user using machine learning to automate the 

process. For example, mood-based regulation may 

be a target for the user. This might be adapted in the 

creative industries to the designs that use 

physiological metrics as control systems: for 

example in video games [7], [8] in which case, the 

player might be subjected to targeted mood 

disruption (i.e., being deliberately excited or even 

scared).  

Machine learning (ML) is a field of computer 

science covering systems that learn "when they 

change their behaviour in a way that makes them 

perform better in the future" [9]. These systems 

learn from data without being specifically 

programmed. Many ML algorithms use supervised 

learning. In supervised learning, an algorithm learns 

a set of labelled example inputs, generates a model 

associating the inputs with their respective labels or 

scores, and then classifies (or predicts) the label or 

score of unseen examples using the learned model. 

This can emotionally label music pieces for our 

system. 

Kim et al. [10] and Laurier & Herrera [11] give a 

literature overview of detecting emotion in music 

and focus on the music representations. Laurier & 

Herrera [11] also analyse the ML algorithms used. 

Classification algorithms used in the literature 

include C4.5, Gaussian mixture models, k-nearest 

neighbour, random forest, support vector machines, 

[10]–[12]. Regression techniques include Gaussian 

mixture model regression, multiple linear regression, 

partial least-squares regression and support vector 

regression. ML has been used to retrieve music by 

mood and found the personalized approach more 

consistent than a general approach [12]. A 

significant area for further work is the need to better 

understand the whole process and be more 

intelligent with respect to music, users and emotions. 

Thus, we underpin our system with results from 

human experiments. These are only feasible on a 

small amount of music due to the required 

participant sample sizes, so we augment our human-

labelled data using ML. We build on these findings 

to deliver a personalized AI approach to target 

mindfulness.  

1.2 Emotional responses to music 

There are a number of approaches for modelling 

emotional responses to musical stimuli [13]. Often, 

these borrow from conventional models used to 

quantify and qualify emotion, such as the 

circumplex (two-dimensional) model of affect [14]. 

This model places valence (as a measure of 

positivity) and arousal (as a measure of activation 

strength) on the horizontal and vertical axes 

respectively. Emotional descriptors (e.g., happy, sad, 

angry) can be mapped on to this space, though some 

descriptors can be problematic in terms of a duality 

of placement on the model. For example, angry and 

afraid are different emotions, but would be 

considered negative valence and high arousal and 

thus difficult to differentiate on this type of emotion 

space. 

Another problem in evaluating emotional responses 

to music exists in the distinction between perceived 

and induced emotions [15] - this is also relevant in 

multimodal stimulus such as film [16]. This might 

be broadly summarised as the listener or viewer 

understanding what type of feeling the stimulus is 

supposed to express (perceived), versus describing 

how it makes them feel (induced). For example, a 

sad piece of music may be enjoyable to an individual 

listener in the right context, despite being 

constructed to convey sadness.  

2 System Overview 

Recent advances in portability, wearability, and 

affordability of biosensors now allow us to explore 

evaluations considering the above distinction. 

Biophysiological regulation may circumnavigate 

some of the problems of self-reported emotion (e.g., 

users being unwilling to report particular felt 

responses, or confusing perceived responses with 

felt responses). Real-world testing of systems using 

bio-signal mappings in music generation contexts 

has become an emerging field of research. For 

example, [17] generate simple music for specific 

emotional states using Markov chains. The Markov 

chains are used to generate music while the user 



Williams, (Hodge, Gega, Murphy, Cowling and Drachen) AI Automated Music Generation for Mindfulness 

 

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019  

Page 3 of 10 

wears a heart-rate sensor to monitor their bio-

physiological response to the created music. The 

system was able to generate emotionally responsive 

music in a limited trial considering basic emotional 

descriptors.  

We have developed another such system, which 

assumes lower skin conduction variability as a 

correlate for mindfulness. It attempts to generate 

emotionally congruent music as a training tool to 

promote positive affective states in the context of 

mindfulness. In the future, this system could also 

work in reverse by using skin conductance 

variability as a control signal to inform musical 

feature mapping for non-linear music generation.  

 

 

 

Fig. 1. Listeners rank musical excerpts, which are 

analysed for features to train a ML model for 

construction of new excerpts. 

The system detects the user’s current emotional level 
and the ML algorithm picks musical pieces to 

influence their future emotional level to achieve 

their desired mood. This whole process requires 

musical pieces that have an associated emotional 

label (score) to allow the selection of appropriate 

pieces. We use two tasks to achieve this. The first 

task in Fig. 1 and section 2.1 is to generate and 

expand a human-labelled corpus to provide 

sufficient labelled pieces for the system to operate. 

The music generation process is described in detail 

in section 2.1.1. The second task in Fig. 2 and 

section 2.2 is to analyse the user’s galvanic skin 
conductivity and to select the most appropriate 

music from the corpus according to the user’s 
emotional requirement. There is also a feedback 

loop to adapt the corpus scores according to the 

user’s actual experience. 
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Fig. 2. We determine the change required for the 

user to attain their goal. The ML model selects a 

new piece that is musically consistent but at the 

required new calmness. Finally, the system has a 

feedback loop to remove pieces that do not influence 

the user’s emotional level. 

2.1   Task 1 

To generate a database of labelled musical pieces, 

we elicited scores using user data accumulated 

through an anonymous online survey. This is an 

initial feasibility evaluation to assess whether human 

labelling is possible. Hence, we used an anonymous 

voluntary survey. We ran small pilot evaluations on 

the best survey questions and determined that binary 

comparison of two pieces elicited the most 

consistent results. We surveyed 53 participants using 

a Qualtrics on-line survey (www.qulatrics.com). We 

distributed the URL link to the survey via email lists 

to colleagues who responded anonymously but are 

English speakers, which is important for 

understanding the emotional labels. For this 

development system, we selected music that is 

unknown to the participants. As discussed in [11], 

emotions induced in the listener are influenced by 

many different contextual elements, such as personal 

experiences, cultural background, music they have 

only recently heard or other personal preferences, so 

using generated music as a stimulus may help to 

eliminate some of these confounds as 

preconceptions are removed. There is much debate 

regarding adjectives as emotional descriptors, and 

how they might be best interpreted particularly 

considering ambiguities across various languages. In 

this work we use mindful (calm/ not scary) and 

(tense/ scary) as these can be considered 
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diametrically opposite on the circumplex model of 

affect [14]. We therefore consider “not scary vs 
scary” as analogous to “high vs low mindfulness” 
respectively, and designed the online survey asking 

listeners to evaluate a generated pool of training 

material accordingly.  

Each participant evaluated four musical excerpts, 2 

not scary (N1 & N2) and 2 scary excerpts (S1 & S2), 

in a bipolar ranking across six pairs choosing the 

scariest in each pair {N1vsS1, S2vsN2, S1vsN2, 

N1vsS2, S1vsS2 and N1vsN2}. The survey 

presented an initial question to allow the user to 

familiarize themselves with the format and then 

presented the six questions. The Qualtrics 

questionnaire allowed us to specify that each track 

played in full to each participant to ensure that the 

participant adapted fully to the track. We 

randomized the order of presentation of the 

questions (pairs of tracks) to each of the participants 

to reduce contextual effects. Participants were not 

required to answer every question in order to 

complete the evaluation.  

2.1.1 Material 

Source material was generated by training a Hidden 

Markov Model (HMM) and creating new 

permutations of the HMM with deliberate feature 

constraints following the procedure described in [4]. 

We use a transformative algorithm based on a 

second order Markov-model with a musical feature 

matrix. It allows discrete control over five 

parameters in a 2-dimensional model. The model is 

generative and can be used to create new state 

sequences according to the likelihood of a particular 

state occurring after the current and preceding states.  

Fig. 3 and 4 show two example scores from the 

stimulus set.  

 

 

Fig. 3. Generated scary/angry source material. 

 

Fig. 4. Generated calm/mindful source material. 

Note pitch range and three # in bass clef which 

imply A-Maj. 

2.1.2 Apparatus 

Musical stimuli were rendered using a range of 

synthesizer timbres intended to convey the intended 

emotional range across an assumed emotional space.  

 

 

Fig..5. Chart of a rotated Valence-Arousal space 

after [12] bisected with a mindfulness scale 

assuming high mindfulness is a combination of high 

valence and low arousal, and vice versa for low 

mindfulness (with some suggested adjective labels at 

each end of the scale) 

In this space, low mindfulness might be equated 

dimensionally to high arousal and low valence, or 

descriptively to adjectives such as scary, tense, 

afraid, angry, etc., whilst high mindfulness might be 

equated to low arousal and high valence, or 

adjectives like calm, content, relaxed etc. This 

‘mindfulness’ scale can be plotted via a rotation of 

the traditional circumplex model of affect, as shown 

in Fig. 5. We generate the source MIDI files in near 

real-time and render them to audio with minimal 

latency using a DAW. Previous studies showed that 

the length of each music excerpt needs to be 

between 30 seconds to 60 seconds long to 

successfully induce emotions [18].All tracks were 

>30 seconds long, including a fade out to ensure 
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they did not have an abrupt ending (which might 

otherwise also influence emotional response in the 

participants). 

2.1.3  Results 

Data from 53 participants was collected for analysis. 

Table 1 provides an overview of the composition of 

the six bipolar questions and table 2 details the 

participants’ responses. 

 

Table 1. Listing the pair of tracks in each question 

(Q1-Q6) with one question per column. Scary tracks 

are labelled Sn and marked with shading 

Q1 Q2 Q3 Q4 Q5 Q6 

N1 S2 S1 N1 S1 N1 

S1 N2 N2 S2 S2 N2 

 

Table 2. Listing the number of participants that 

picked each track as the scariest of the pair of tracks 

in each question. Each question (Q1-Q6) is one 

column in the table 

Q1 Q2 Q3 Q4 Q5 Q6 

2 37 41 5 18 24 

42 5 3 41 25 20 

 

2.1.4 Analysis 

Responses to the musical stimuli in table 2 suggest 

that listeners found it relatively easy to discriminate 

the affective states between stimuli rendered using 

different synthesized timbres. As expected (see 

figures 3 and 4), shorter durations and larger pitch 

ranges were considered lower in mindfulness 

(“scarier/more tense”) than longer durations with a 
more restricted pitch range, regardless of the timbre 

being used. The tracks we expected to be labelled 

“scary” were labelled “scary” by the participants and 
the tracks we expected to be labelled “not scary” 
were labelled “not scary”. Questions 5 and 6 
compare the two “scary” tracks and the two “not 

scary” tracks respectively. Here the results are closer 

as we may expect. 58.1% of participants thought S2 

scarier than S1 while 54.6% felt N1 was scarier than 

N2.  

For S1, 94.5% and 93.2% of participants rated it 

scarier than N1 and N2 respectively. For S2, 88.1% 

and 89.1% of participants rated it scarier than N1 

and N2 respectively. Yet, 58.1% of the participants 

rated S2 scarier than S1 despite S2 having lower 

scariness than S1 when compared to the non-scary 

tracks. Similarly, for N1, 4.6% and 10.9% rated it 

scarier than S1 and S2 respectively while for N2, 

6.8% and 11.9% rated it scarier than S1 and S2 

respectively. This presents a similar contradiction as 

for the scary tracks as N1 has lowest scariness rating 

yet was rated scarier than N2 by 54.6% of 

participants. We cannot explain this. 

Although we randomized the order of presentation 

of the questions to the individual participants, we did 

not alter the order of presentation within the 

questions. This may have contextual effects on the 

participants and needs to be considered. However, 

we note that the participants rated the second track 

as scariest in Q5 and the first track as scariest in Q6 

indicating that the intra-question ordering is unlikely 

to be significant. 

From these comparisons, we were able to attain 

sufficient data that we can calculate a ranked order 

(score) for the pieces from these pairwise 

comparisons [19]. From above, 58.1% of 

participants thought S2 scarier than S1 while 54.6% 

felt N1 was scarier than N2. Hence, the ranking is 

that S2 is scarier than S1 and N2 is calmer than N1. 

We produce a scored label in contrast to Laurier & 

Herrera [10] who used a Boolean label, for instance 

a song is “happy” or “not happy”. However, this 
Boolean label does not provide the fine-grained 

differentiation we require to select emotionally 

relevant pieces so we produce a score from [0-10] 

for each musical piece where 0 is completely calm, 

10 is completely scary and 5 is the midpoint: neither 

calm nor scary. 

2.1.5 Enhancing the corpus 

Human experiments are only feasible on a small set 

of music pieces as n pieces of music require n! 

comparisons and enough human survey participants 

to provide enough responses for each of the n! 

comparisons. Using human participants to generate a 

sufficiently large database of labelled pieces for our 

work is very time consuming and complex. To 

augment our small labelled database, we need to use 

ML to label new music and to provide a corpus 

sufficiently large for task 2 to be feasible. 
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2.2   Task 2 

The second task is to analyse the user’s galvanic 
skin conductance and then to select the most 

appropriate music. This process is similar to Huang 

and Cai [17] who analysed heart rate to reflect 

emotions and to select appropriate music pieces. 

Huang demonstrated varying heart rates (beats per 

minute (bpm)) of participants according to the 

emotional label of the piece played. Happy music 

induced the highest bpm and sad music the lowest. 

However, the music they labelled angry induced a 

very similar bpm to the music labelled joyful. We 

analyse skin conductivity, or galvanic skin response 

(GSR). When the skin’s sweat glands secrete sweat, 
it changes the balance of positive and negative ions 

in the secretion, thus increasing the skin’s 
conductivity. Measurement of GSR has been shown 

to be a robust metric for analysis of emotional 

responses to music [6], [22], [23].  

The first step of task 2 requires us to compare the 

user’s GSR signal, the emotional tag they describe 

after listening and the calmness level of the piece the 

participant is listening to. To analyze GSR, we used 

the Shimmer3 wireless GSR+ Unit1 which has been 

validated for use in biomedical-oriented research 

applications1, can detect very small changes of 

GSR, and can stream data in real time [24]. It can 

also connect to recording software and export the 

data for extended analysis. Shimmer3 needs to be 

calibrated on each use through the user wearing the 

device for one minute to establish a baseline skin 

conductance signal. The baseline of each person 

varies due to many factors including skin dryness, 

nervousness (due to unfamiliarity with the 

experimental procedure) and ambient temperature. 

The captured reading for each user under analysis is 

their skin conductance response whilst undertaking 

the listening exercise, minus their individual skin 

conductance response baseline. After listening to 

each piece, the users completed a questionnaire 

describing the emotion they felt while listening 

which we compared to the GSR data [24]. 

                                                           
1 http://www.shimmersensing.com/products/shimmer3-wireless-

GSRsensor 

 

2.2.1 Evaluation 

In Williams et al. [24], 30 participants evaluated two 

automatically generated pieces against two well-

known pieces of scary music (the themes from the 

Psycho and Jaws films which were composed to be 

scary). The two generated pieces induced emotional 

responses where the response described by the 

participant in a questionnaire tallied with their bio-

physiological responses as measured by GSR 

sensors. Our analyses [24] revealed that there is a 

direct correlation between the scariness of a musical 

piece, the users’ GSR reading and the emotions they 

describe feeling in a questionnaire survey conducted 

after listening. Users display elevated GSR for scary 

pieces which they also labelled as scary in the 

questionnaire and lower GSR and appropriate labels 

for calmer pieces. Our preliminary experiments also 

highlighted that familiarity influences people’s 
responses. For this reason, we focus on generating 

novel music to ensure that the user responds 

emotionally rather than responding to memories 

evoked by the music. We also keep to two labels: 

“not scary/calm” and “scary/tense” to limit 

confusion by reducing complexity. 

This indicates that we are able to compose 

emotionally relevant music using HMMs. For the 

two film pieces, where participants were familiar 

with the music then the emotional responses they 

described in the questionnaire tallied with the 

expected response for a scary film but did not 

necessarily tally with their bio-physiological 

responses. For this reason, we have focussed on 

auto-generating music to generate our own corpus 

and using these to induce mindfulness and relaxation 

rather than selecting music from a known corpus 

(e.g., using streaming platforms like Spotify) which 

will contain pieces of music with varying degrees of 

familiarity for the listeners. 

3 Future Work 

For task 1, we will use our human-labelled data to 

analyse a number of ML methods to identify the best 

ML method with respect to accuracy foremost, but 

also flexibility, scalability, and adaptability.  

Classification and regression algorithms need a rich 

data description of each piece for learning. We have 

developed a multi-feature music representation to 

enable this. We couple the symbolic musical feature 
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data from a MIDI file, which represents the structure 

of the melody, chords, rhythm and other musical 

dimensions, with Mel-Frequency Cepstral 

Coefficients features [20] obtained from the entire 

piece to represent the piece's quality (character). 

This dual representation is more flexible and richer 

than simply using MIDI or signal-based audio 

content features. We only use numerical data 

features to describe each piece and perform feature 

selection to identify the most significant set of 

features as described in [21]. Using this reduced set 

of significant features, the ML model will predict the 

“calmness” score of new music pieces by 
determining the similarity between pieces using their 

respective sets of features.  

In task 2, from the GSR analysis, we can calculate 

the new calmness level required to achieve a 

mindfulness goal (e.g., make the listener calmer if 

they are over-stimulated). This new calmness value 

allows us to retrieve all pieces of music in the scored 

song corpus at this new calmness level. To select the 

most appropriate piece from this matching set, we 

will match the input piece against each matching 

piece using the selected set of features. We will use 

the same music data representation as task 1 and the 

identical ML model to ensure consistency and to 

stop the system introducing contextual biasing and 

irregularities. We summarize task 2 in Fig. 1. The 

features we have selected are input to the ML model, 

we will calculate the musical similarity score for 

each piece using the ML model and then recommend 

the music piece that is at the correct calmness level 

and is most similar (musically contiguous) with the 

user's current state. 

As we continue monitoring the participant’s GSR we 
will assess whether the new piece has achieved the 

desired level of calmness. This difference (error 

between actual and required GSR) will feed back 

into the corpus of scored pieces to adjust the 

stimulus calmness score (essentially a calmness 

index). We will adjust both the global score to 

ensure the system correctly rates each piece and the 

person’s own scoring mechanism to provide 

personalized music for their mindfulness 

requirements. 

We can enhance the monitoring further by using 

additional sensors. We have proven GSR sensors for 

this task but other sensors such as heart-rate sensors 

will provide additional data. Combining data from 

multiple sensors will be richer. Analysing this richer 

data using suitable machine learning algorithms will 

be more accurate, more reliable and reveal finer-

grained fluctuations and changes in the participant’s 
emotional responses than would be revealed by 

analysing only a single sensor. 

Further evaluation of our automatically generated 

music is not trivial. Although the influence of music 

on emotional state is widely acknowledged [13], 

[25], [26] perceptual audio evaluation strategies 

often consider issues of audio quality [27] rather 

than the influence of generative strategy on the 

resulting affective state in the listener. Moreover, 

methods which do consider the influence of 

generative music on affective state tend to be 

focused on creativity [28], and issues regarding the 

authorship of the material [29]. Thus, methods for 

perceptual evaluation of affectively-charged music 

generation remain a significant area for further 

work: for example in the design and development of 

a multi-purpose evaluation toolkit. Many such kits 

exist in audio quality evaluation, for example [30]. 

4 Conclusion  

We have shown through an experiment with 53 

participants and four music pieces that we can 

generate emotionally communicative music. We 

generated two scary pieces and two calm pieces and 

the users ranked these as we expected, thus 

supporting our hypotheses regarding how to 

generate calm and scary music in a more robust 

fashion in future. 

To support this we intend to generate a larger corpus 

of pieces and recruit further listeners to bootstrap the 

generation of a larger corpus. A rich data description 

of human labelled pieces will allow machine-

learning algorithms to label new pieces 

independently, which would mean we can expand 

the corpus to any size required for a task. 

Once we have a sufficiently large labelled corpus of 

our auto-generated music, we will use these to select 

pieces to play to users according to their galvanic 

skin response. Our previous work [24] showed that 

we can combine auto-generated music and GSR 

monitoring to induce emotions and that these 

emotions correspond with those felt by the listener 

(as self-reported via questionnaires). The ultimate 
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goal of the system would be to generate a calmer 

piece in direct response to a listener’s physiological 

reaction and promote the necessary emotional state 

for enhanced mindfulness. Physiologically informed 

feedback is vital for this process: Any error (error 

between actual and required GSR) feeds back into 

the corpus of scored pieces to adjust that particular 

piece’s calmness score by a small error factor. This 

requires a large dataset as the corpus will be adjusted 

gradually and incrementally to maximize the 

available emotion space. By using our own 

automatically-generated pieces, we can minimize 

confounds of familiarity, and the need to actively 

rank music whilst listening (in itself a process which 

might break mindfulness or relaxation). Thus the use 

of biophysiological sensors is critical in the 

development of suitable systems for audio 

generation in the context of mindfulness or 

relaxation. 

Generative music technology has the potential to 

produce infinite soundtracks in sympathy with a 

listener’s bio-signals, and in a biofeedback loop. 

There are promising applications for linking music 

with emotions, especially in the creative industries 

art and therapy, and particularly for relaxation. 

Enhancement of well-being using music and the 

emotions music induces is becoming an emerging 

topic for further work. The potential of cheaper 

wearable biosensors to collect large amounts of data 

for training machine learning algorithms suggests 

that gamifying emotions through musical sound 

synthesis might be possible in the near future. For 

example, this type of audio stimulus generation need 

not be restricted to a given extracted bio-signal value 

- in future, trials with target emotional values could 

be conducted, i.e., encouraging the listener to move 

towards a specific emotional correlate or Cartesian 

co-ordinate in a dimensional emotion model, such as 

a gamified approach to mindfulness, or a biosensor 

driven thriller or horror game. We note that the 

music generation software using HMMs allows us to 

generate this music rapidly so we can generate on-

the-fly and on-demand in the future rather than 

selecting pre-generated tracks from a corpus. This 

auto-generation is much richer, more varied, more 

adaptive and more personalized than selecting from 

a play list. 

However, such work also needs to heed the potential 

drawbacks of emotional manipulation using AI and 

related systems. There is potential for emotional 

manipulation for marketing purposes or social 

control issues. However, the promising every day 

applications for mindfulness, and the potential 

therapeutic applications of this provides a strong 

argument to continue investigating this area. 
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