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ABSTRACT: Rival spin-coupled generalized valence bond (SCGVB) solutions are investigated for 

the π-electron systems of the S2N2 and S4N4
2+ rings near equilibrium geometry. The preferred 

compact SCGVB description is provided in each case by the variational optimization of two 

configurations that turn out to be symmetry related to one another. Optimization instead of symmetry-

pure single-configuration SCGVB wave functions leads to the involvement of three-center SNS or 

NSN orbitals, which seems to be an unnecessary complication. In neither case is very much achieved 

from the mixing of competing solutions. Breathing orbital VB (BOVB) calculations for S2N2 confirm 

a structure with NN singlet diradical character to be more important than one with SS singlet diradical 

character, but the largest contribution (ca. 60%) turns out to be due to the symmetry-determined linear 

combination of four symmetry-equivalent structures that lack any obvious diradical character. Much 

the same pattern was consistently found when we used a simple but robust projection of our various 

SCGVB wave functions for S2N2 onto the basis of BOVB structures (plus an orthogonal 

complement). 

KEYWORDS: S2N2 and S4N4
2+; SCGVB; π-electron rings; BOVB; GMCSC. 
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1. INTRODUCTION 

Although various (SN)x systems continue to attract considerable experimental and theoretical 

attention for a wide range of reasons, we should admit from the outset that our own particular interest 

in the planar S2N2 ring is somewhat more prosaic. A spin-coupled generalized valence bond (SCGVB) 

description of S2N2, reported by Gerratt et al.,1 was interpreted at the time as being dominated by SS 

singlet diradical character. Some other studies,2,3,4,5 and especially the very careful breathing orbital 

valence bond (BOVB) work of Braïda et al.,2 have seriously questioned the validity of that 

interpretation. Indeed, Braïda et al.2 were able to show by partly qualitative arguments that the 

SCGVB wave function, when stripped to some extent of the delocalization tails on the fully-

optimized active orbitals, did in fact appear to be consistent with the BOVB viewpoint, in which a 

structure with NN singlet diradical character was the largest single contributor. We re-examine this 

issue in the present work, using a robust projection of the SCGVB wave function onto the basis of 

the BOVB structures. While confirming the main gist of the conclusions of Braïda et al.,2 namely that 

Gerratt et al.1 may have misinterpreted the results of their SCGVB calculations, we also show that 

the interpretation of the BOVB description could be slightly more nuanced than had been supposed. 

Additionally, as was shown by Thorsteinsson et al.,6 there can exist rival SCGVB-like solutions that 

are fairly close in energy to the one described by Gerratt et al..1 We explore this issue further and then 

require different combinations of SCGVB solutions to fight it out without any prejudice in a 

variational boxing ring, thereby obtaining further insight into the bonding in the π-electron system of 

S2N2. We then examine briefly certain analogous rival SCGVB descriptions of the corresponding π-

electron system in the S4N4
2+ ring. 

2. THEORETICAL AND COMPUTATIONAL DETAILS 

The single-configuration SCGVB wave function for the valence π-space of S2N2 is based on a single 
product of six singly-occupied nonorthogonal active orbitals 𝜋𝜇 that are expanded in the full basis 

set and it can be written in the following form:7 

𝛹SCGVB = 𝒜 [(∏ 𝜑𝑖𝛼𝜑𝑖𝛽18
𝑖=1 ) (∏ 𝜋𝜇6

𝜇=1 ) Θ06] (1) 

in which the φi are doubly-occupied inactive orbitals that accommodate the ‘core’ S(2pπ) electrons 

and all of the σ system. The active-space total spin function Θ06 is expanded in the full spin space of 
five linearly-independent modes of coupling together the spins of six electrons so as to achieve an 

overall singlet state, with the expansion coefficients known as spin-coupling coefficients. 

Traditionally, wave functions of this type, as introduced by Gerratt,8 have mostly been termed spin-
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coupled (SC or even SCVB), with an acknowledgement that the construction is in fact entirely 

equivalent to that of full generalized valence bond (full-GVB), as introduced by Goddard,9 or they 

have been called (full-)GVB, with a mention of the equivalence to SC (or SCVB). It seems to the 

present authors to be undesirable to persist with different names for essentially identical calculations 

that might even have been carried out with the same codes. Accordingly, we use here instead the 

compound term spin-coupled generalized valence bond (SCGVB) that aims to encompass both sets 

of names, and we recommend that others consider doing the same. 

Following fairly closely the construction used by Braïda et al.,2 our BOVB calculations for S2N2 

were carried out using six VB structures (see Figure 1), with each of the symmetry-unique active π 

orbitals in each structure optimized as an entirely separate linear combination of the basis functions 

centered on the relevant nucleus. Where there are two electrons associated with the same center, they 

are accommodated with opposing spins in the same orbital. As can be seen from Figure 1, BOVB 

structure 1 clearly corresponds to NN singlet diradical character and BOVB structure 2 to SS singlet 

diradical character. The four symmetry-equivalent BOVB structures 3 to 6 each feature instead one 

S−N π bond. (We subsequently also carried out S-BOVB calculations in which each of the doubly 

occupied active orbitals was allowed to ‘split’ into two singly occupied orbitals, but maintaining 

singlet coupling for the two orbitals.) 
«Figure 1 near here» 

All of our electronic structure calculations for S2N2 were carried out for the nuclear geometry 

and orientation shown in Figure 2 and using the standard cc-pVQZ basis set. We have intentionally 

chosen the same idealized square geometry, close to experiment, that was used by Gerratt et al.,1 but 

we are confident that all of our key findings will be relatively insensitive to small changes to this 

geometry. Instead of optimizing each time the various inactive orbitals in our various VB descriptions 

of S2N2, we have chosen to take those orbitals without any further reoptimization from an appropriate 

CASSCF description that should not introduce any significant bias for or against the various 

competing VB descriptions of the valence π systems. Following various numerical tests of different 

choices of CASSCF inactive spaces (see Table S1 in the Supporting Information) we selected a six 

electrons in eight orbitals expansion spanning 3B1u+2B2g+2B3g+Au, which we abbreviate to 
[3,2,2,1]. Note that we were unable in our BOVB and S-BOVB calculations to orthogonalize the 

active π orbitals to the two fixed ‘core’ π MOs (B1u+B2g) taken from the CASSCF, because of the 

strict localization constraints on the active orbitals. In order to avoid numerical problems, we 

identified in the S atomic basis set the 2pπ contraction which contributes most to the inactive π orbitals 

and then constrained to zero its coefficients in the expansions of the active orbitals. Such constraints 
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were not necessary in any of the SCGVB calculations for S2N2. We did, however, check that changes 

to SCGVB energies upon the application of such constraints are negligible. 
«Figure 2 near here» 

Our subsequent SCGVB calculations for the valence π-space of the planar S4N4
2+ ring were 

carried out for the geometry and orientation shown in Figure 2 and again using the standard cc-pVQZ 

basis set. The SN nuclear separation, the bond angles and the molecular point group (D4h) were based 

on the crystallographic studies of Gillespie et al.10 but, as in the case of S2N2, we do not expect any 

of our key findings to be sensitive to small changes to this geometry. Our single-configuration 

SCGVB wave function for the valence π-space of S4N4
2+ is based on a single product of ten singly-

occupied nonorthogonal active orbitals 𝜋𝜇 that are expanded in the full basis set and it can be written 

in the following form:7 

𝛹SCGVB = 𝒜 [(∏ 𝜑𝑖𝛼𝜑𝑖𝛽40
𝑖=1 ) (∏ 𝜋𝜇10

𝜇=1 ) Θ010] (2) 

in which the active-space total spin function Θ010 is expanded in the full spin space, consisting of 42 
linearly-independent modes of coupling together the spins of ten electrons so as to achieve an overall 

singlet state. For all of our frozen-core VB calculations on S4N4
2+ we took the doubly-occupied 

inactive orbitals 𝜑𝑖 that accommodate the ‘core’ S(2pπ) electrons and all of the σ system from a full-

valence π-space CASSCF(10,8) wave function, without further optimization. 

For a normalized wave function 𝛹 that is expressed as a linear combination of nonorthogonal 

VB structures or configurations 𝛷𝑘 with expansion coefficients 𝑐𝑘, it is most usual to assess the 

relative importance of the various 𝛷𝑘 according to their Chirgwin-Coulson weights, 𝑊𝑘, which may 

be defined according to:11 𝑊𝑘 = 𝑐𝑘 ∑ 𝑐𝑙⟨𝛷𝑘|𝛷𝑙⟩𝑙  (3) 

in which the 𝑊𝑘 sum to unity, so as to satisfy the normalization condition for 𝛹. This widely-used 

definition of weights has a number of useful properties except that, especially in the case of high 

values of the overlaps 𝑆𝑘𝑙 = ⟨𝛷𝑘|𝛷𝑙⟩ , individual values of 𝑊𝑘  can occasionally fall outside the 

physically-meaningful range of 0 to 1. In addition to the Chirgwin-Coulson scheme, we also make 

some use in the present work of the inverse-overlap definition of Gallup and Norbeck:12 𝑤𝑘 = |𝑐𝑘|2/(𝑺−1)𝑘𝑘 (4) 

where the values of 𝑤𝑘 are usually renormalized so as to add to unity. Such values then necessarily 

lie in the physically-meaningful range (0 to 1). 

The workhorse for all of the VB calculations reported here was the generalized 

multiconfiguration spin-coupled (GMCSC) program developed by Penotti,13 with CASSCF inactive 
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orbitals and the required integrals over basis functions generated using the GAMESS-US package.14 

Pictorial depictions of SCGVB active orbitals were produced using Virtual Reality Markup Language 

(VRML) files generated with Molden.15 Quantum theory of atoms in molecules (QTAIM) analysis16 

was performed using AIMAll17 and with our own codes. Additional π-space CASSCF calculations 

were carried out in D2h symmetry using MOLPRO.18 

3. RESULTS AND DISCUSSION 

3.1. S2N2. It is useful to consider first a single-configuration SCGVB wave function for S2N2 

that is based on active orbitals which span the space denoted a by Thorsteinsson et al.6 (vide infra) 

and which corresponds directly to the solution described by Gerratt et al..1 We found in the present 

work that certain symmetry relations amongst the active orbitals appeared spontaneously during the 

optimization of our frozen-core SCGVB(a) wave function for S2N2, such that orbitals 𝜋3 and 𝜋4 

can be generated from 𝜋1 and 𝜋2, respectively, by reflection in the 𝜎𝑥𝑧 mirror plane, whereas 𝜋6 

can be generated from 𝜋5 by reflection in the 𝜎𝑦𝑧 mirror plane. Spontaneity of this type is usually 

a good indication of wave function stability with respect to breaking spatial symmetry. Other 

symmetry properties of the active orbitals, such as the invariance of 𝜋1 and 𝜋2 to reflection in the 𝜎𝑦𝑧 mirror plane and of 𝜋5 to reflection in the 𝜎𝑥𝑧 mirror plane, also arose spontaneously. The 

symmetry-unique active orbitals 𝜋1, 𝜋2 and 𝜋5 , as depicted in the top row of Figure 3, clearly 

include a three-center SNS function that potentially makes it relatively difficult to interpret this wave 

function directly and unambiguously in terms of the sorts of VB structures that are shown in Figure 

1. Nonetheless, Gerratt et al.1 used the forms of such SCGVB orbitals, together with the pattern of 

active-space spin coupling, to assert the dominance of SS singlet diradical character. As was 

mentioned in the Introduction, such an interpretation is clearly at odds with the BOVB work of Braïda 

et al..2 Indeed, those authors were able to use mostly qualitative arguments, stripping away 

‘delocalization tails’, in order to suggest that the SCGVB wave function of Gerratt et al.1 could in 

fact be more consistent with the NN singlet diradical character that was observed in BOVB 

calculations than with the original claim of SS singlet diradical character. 
«Figure 3 near here» 

We use here a robust numerical approach to establish the links between various SCGVB wave 

functions and BOVB descriptions. For this purpose, we turn now to our BOVB results, carried out 

with the same basis set and with the same choice of frozen core as our SCGVB calculations, so that 

we may compare like with like. Examining our frozen-core BOVB results, it can clearly be seen from 

Table 1 that the single BOVB structure with the lowest energy is structure 1 (see Figure 1), whether 

we take the active orbitals directly from the BOVB wave function or perform further separate 
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optimizations for each structure. On the other hand, the Chirgwin-Coulson weight of structure 1 in 

the BOVB wave function turns out to be just 30.1% (see top row of values in Table 2), so that it 

corresponds to a minority of the total wave function. A somewhat lower energy is given by the 

symmetry-determined linear combination of the four symmetry-equivalent structures 3-6, with a 

Chirgwin-Coulson weight of 59.0%. These various findings are on the whole rather similar to those 

reported by Braïda et al.2 and the general conclusions also turn out to be much the same from our 

corresponding frozen-core S-BOVB calculations (see Tables S4 and S6 in the Supporting 

Information). Additionally, the patterns of weights obtained with the Gallup-Norbeck scheme (see 

Tables S3 and S6 in the Supporting Information) are much the same as those from the Chirgwin-

Coulson definition. 

Whereas it is certainly true that structure 1 is indeed the most important one in our BOVB or 

S-BOVB wave functions, the majority of each of those wave functions is instead associated with the 

symmetry-determined linear combination (𝛷3-6 ) of the four symmetry-equivalent structures 3-6. 

Clearly, though, the interpretation put forward by Gerratt et al.,1 based on claims of dominant SS 

singlet diradical character in their SCGVB wave function, remains distinctly anomalous. With this in 

mind, it proves to be very informative to use a fairly simple but robust numerical approach, that we 

now outline, to project the compact SCGVB(a) solution (based on just a single product of active 

orbitals) onto the corresponding BOVB representation. 

In general terms, we wish to consider the expansion of a normalized wave function 𝛹 in the 

following form: 𝛹 = 𝑑1𝛷1 + 𝑑2𝛷2 + 𝑑3-6𝛷3-6 + 𝑑𝑋𝛷𝑋 (5) 

in which 𝛷𝑋 is envisaged as a 𝛹-dependent normalized entity which is orthogonal to each of the 

normalized BOVB structures 𝛷1, 𝛷2 and 𝛷3-6. It follows that: 

( ⟨𝛷1|𝛹⟩⟨𝛷2|𝛹⟩⟨𝛷3-6|𝛹⟩) = ( 1 ⟨𝛷1|𝛷2⟩ ⟨𝛷1|𝛷3-6⟩⟨𝛷1|𝛷2⟩ 1 ⟨𝛷2|𝛷3-6⟩⟨𝛷1|𝛷3-6⟩ ⟨𝛷2|𝛷3-6⟩ 1 ) ( 𝑑1𝑑2𝑑3-6) (6) 

and so, given that we can calculate all of the overlap integrals that appear in eq 6 (see Tables S2 and 

S5 in the Supporting Information), it is very straightforward to solve for 𝑑1, 𝑑2 and 𝑑3-6, and then 

to compute the Chirgwin-Coulson weights 𝑊𝑘. The corresponding weight in 𝛹 of the normalized 

orthogonal complement 𝛷𝑋, i.e. 𝑊𝑋 = 𝑑𝑋2, is most simply obtained from the requirement that the 
Chirgwin-Coulson weights must sum to unity. (This does of course correspond exactly to determining 𝑑𝑋  using the normalization condition for 𝛹 .) Our overall scheme is entirely equivalent to the 

application of a projection operator 𝒫, defined according to: 
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𝒫 = ∑|𝛷𝑘〉(∆−1)𝑘𝑙〈𝛷𝑙|         (𝑘, 𝑙 = 1, 2, 3-6)𝑘,𝑙  (7) 

in which ∆ is the 33 overlap matrix shown in eq 6. The 𝛹-dependent orthogonal complement, 
which we have chosen here to denote as 𝑑𝑋𝛷𝑋, is then simply (1 − 𝒫)𝛹. 

Using the scheme that we have just described, the projection of the SCGVB(a) solution onto the 
basis of BOVB structures leads to the Chirgwin-Coulson weights that are reported in the second row 

of values in Table 2. The interpretation put forward by Gerratt et al.1 does indeed turn out to be 

erroneous given that the single most important BOVB structure in SCGVB(a) is clearly 1, albeit with 

a weight that is slightly lower than in our total BOVB wave function, with BOVB structure 2 

(corresponding to SS singlet diradical character) being far less important. Just as we observed for the 

total BOVB wave function, it is the symmetry-determined linear combination of the four symmetry-

equivalent BOVB structures 3-6, with a Chirgwin-Coulson weight of 56.7%, which accounts for more 

than a half of the SCGVB(a) wave function. We find that the normalized orthogonal complement 

(𝛷𝑋), i.e. the part of the SCGVB(a) solution that is not described by this set of BOVB structures, has 
a weight of just 5.0%. (All of our key observations are much the same when using Gallup-Norbeck 

weights and/or if we project instead onto S-BOVB structures – see Tables S3, S4 and S6 in the 

Supporting Information.) 

We now return to the observation of Thorsteinsson et al.6 that there can exist rival SCGVB-like 

solutions that are fairly close in energy to SCGVB(a). Whereas the SCGVB(a) active orbitals span 

3B1u+1B2g+2B3g+0Au, which we may abbreviate to a=[3,1,2,0], Thorsteinsson et al.6 suggested 
that there are various energetically nearby solutions which span various alternative distributions, 

including b=[3,2,1,0] and c=[2,1,2,1]. We find that the corresponding CASSCF(6,6) energies for 

active spaces a and c (see Table S1 in the Supporting Information) are particularly close to one another 

(differing by less than 0.35 millihartree), with the CASSCF(6,6) energy for active space b being 

inferior by 8.4 millihartree. In order to optimize the corresponding SCGVB(b) wave function, without 

it returning to the SCGVB(a) solution, we imposed the following constraints on the active orbitals: 𝜋3 = 𝜎̂𝑦𝑧𝜋1, 𝜋4 = 𝜎̂𝑦𝑧𝜋2 and 𝜋6 = 𝜎̂𝑥𝑧𝜋5. Other symmetry properties of the active orbitals, such 

as the invariance of 𝜋1 and 𝜋2 to reflection in the 𝜎𝑥𝑧 mirror plane and of 𝜋5 to reflection in the 𝜎𝑦𝑧  mirror plane, arose spontaneously during the optimization. To a large extent, the resulting 

symmetry-unique active orbitals 𝜋1, 𝜋2 and 𝜋5 for the SCGVB(b) solution (shown in the middle 

row of Figure 3) are somewhat reminiscent of those for SCGVB(a), except that the symmetry-unique 

three-center active orbital is now over NSN rather than SNS and it exhibits a larger contribution from 

the central atom of the triad. Just as we might have anticipated from the corresponding CASSCF(6,6) 
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energies, the SCGVB(b) solution is indeed energetically inferior to SCGVB(a), with the difference 

being 8.8 millihartree (see Table 3). 

It proves to be especially informative to consider the projection of this SCGVB(b) solution onto 

the BOVB basis because the resulting Chirgwin-Coulson weights, as reported in Table 2, turn out to 

be fairly similar to those that we have described above for SCGVB(a). In spite of the differences in 
the forms and, particularly, the locations of the three-center active orbitals, these two wave functions 

do in fact turn out to be rather similar in terms of their BOVB character. Furthermore the overlap 

between the total SCGVB(a) and SCGVB(b) wave functions is 99.3% (see Table S8 in the Supporting 

Information) even though the overlap between the two normalized orthogonal complements (𝛷𝑋) is 

a little lower (86.1%, see Table S8 in the Supporting Information). All of this apparent numerical 

similarity between the SCGVB(a) and SCGVB(b) solutions (except for their different energies) 

reinforces our suspicion that one can easily be misled about the degree of (say) SS or NN singlet 

diradical character when relying mostly on the visual inspection of SCGVB active orbitals that are 

not sufficiently well localized. It does now appear that Gerratt et al.1 were misdirected in this way 

when (mis)interpreting their SCGVB(a) wave function in terms of dominant SS singlet diradical 
character. (As before, all of our key observations are much the same when using Gallup-Norbeck 

weights and/or if we project instead onto S-BOVB structures.) 

When restricting SCGVB active orbitals to span particular active spaces, Thorsteinsson et al.6 

found in some cases, such as c=[2,1,2,1], that the resulting SCGVB solution was symmetry broken. 

The proper full symmetry could be restored by using a two-configuration description in which the 

two sets of active orbitals were related by a particular D2h symmetry operation, such as a reflection 

or a rotation. With this in mind, we chose here to carry out two-configuration SCGVB calculations 

using the GMCSC program. Even without specifying any symmetry constraints between the two 

orbital strings, we observed convergence to a symmetry-pure solution in which the two sets of active 
orbitals are related to one another by reflection in the 𝜎𝑦𝑧  mirror plane. Additional symmetry 

relations emerged spontaneously within the two orbital strings, so that 𝜋3, 𝜋4  and 𝜋6  can be 

generated from 𝜋1, 𝜋2 and 𝜋5, respectively, by a 𝐶̂2(𝑧) rotation. (Specific details of these orbitals 
are slightly different from some of those envisaged by Thorsteinsson et al.6 for their ‘projected’ c 

solution, prompting us to use a slightly different label.) The resulting energy for our variationally-

optimized solution, which we label SCGVB(C1  C2), or SCGVB(C) for short, is somewhat better 
than that of SCGVB(a) (see Table 3), but the two sets of Chirgwin-Coulson weights (see Table 2) are 

fairly similar. Furthermore, the overlap between the total SCGVB(a) and SCGVB(C) wave functions 

is 99.4% (see Table S8 in the Supporting Information), with the overlap between the two normalized 
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orthogonal complements ( 𝛷𝑋 ) being a little lower (88.2%, see Table S8 in the Supporting 

Information). The symmetry-unique active orbitals 𝜋1, 𝜋2 and 𝜋5 for the SCGVB(C) solution, 

shown in the bottom row of Figure 3, clearly all exhibit a significant degree of (at least) two-center 

character, rendering it somewhat difficult to interpret them directly and unambiguously in terms of 

relative contributions from the sorts of VB structures shown in Figure 1. Relying instead on the 

projection onto BOVB structures, we can say that the largest net contributor (57.3%) is the symmetry-

determined linear combination (𝛷3-6) of the four symmetry-equivalent BOVB structures 3-6. 

Just as there are CASSCF(6,6) solutions based on active spaces e=[3,1,1,1] and f=[2,2,2,0] which 

lie lower than that for b=[3,2,1,0] by ca. 3.0 and 1.6 millihartree, respectively (see Table S1 in the 

Supporting Information), it also proved possible to locate another single-configuration SCGVB 

solution which lies lower than SCGVB(b) by ca. 2.3 millihartree. However, given the dominance of 

SCGVB(a) and SCGVB(C) we decided not to pursue this solution, or any of the higher lying ones, 

in any detail. 

The close proximity in energy of different SCGVB solutions, especially a and C, prompted us to 

wonder which of them would dominate variationally-optimized combinations of them. Accordingly, 

we also considered a VBCI(a  b  C) description, in which we combined the SCGVB(a), 
SCGVB(b) and SCGVB(C) wave functions via a nonorthogonal CI calculation, without relaxing any 

of the active-space spin-coupling coefficients. As can be seen from Table 3, this multicomponent 

wave function gives only a very modest energy improvement over SCGVB(C), with the C component 

remaining overwhelmingly dominant (94.2%). Projection of VBCI(a  b  C) onto the basis of 
BOVB structures gives weights that are very similar to those for SCGVB(C). Analogous outcomes 

are observed for the overlap between the VBCI(a  b  C) and SCGVB(C) wave functions, as well 
as for the overlap between the two orthogonal components, 𝛷𝑋  (see Tables S8 and S9 in the 

Supporting Information). Relaxing the various spin-coupling coefficients (without reoptimizing the 

active orbitals) produced only a very small energy lowering. All in all, other than making the resulting 

description more difficult to interpret directly, rather little is achieved by this mixing of the 

SCGVB(a), SCGVB(b) and SCGVB(C) wave functions. 

The outcome is somewhat better, at least in terms of the total energy, if all of the active orbitals 

and active-space spin-coupling coefficients are simultaneously reoptimized (albeit with a limited 

number of suitable constraints so as to retain some distinction between the a, b and C components). 

We use the label GMCSC(a  b  C) for the resulting description. We observe from Table 3 that the 

reoptimized C component remains the largest contributor, but nearly 45% of the total is now due to 

the reoptimized a and b components. These changes to the weights of the different components of 
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GMCSC(a  b  C) relative to those of VBCI(a  b  C), as well as the lowering of the total 

energy, are accompanied by relatively small changes to the forms of the various symmetry-unique 

SCGVB active orbitals (see Figure S1 in the Supporting Information). 

Projection of GMCSC(a  b  C) onto the basis of BOVB structures produces weights that are 

not so different from those for our various other SCGVB descriptions (see Table 2). As before, BOVB 

structure 1 (corresponding to NN singlet diradical character) is found to be more important than 

BOVB structure 2 (SS singlet diradical character), but the largest contribution (58.5%) comes from 

the symmetry-determined linear combination of the four symmetry-equivalent BOVB structures 3-6, 

with no obvious diradical character. A further 4.9% is due to the normalized orthogonal complement 

(𝛷𝑋). (We find again that all of our key observations are much the same when using Gallup-Norbeck 

weights instead of those from the Chirgwin-Coulson scheme and/or if we project instead onto 

S-BOVB structures.) 

There are substantial differences between existing estimates of the degree of diradical character 

in the singlet ground state of S2N2, but it is important to note in this context, as was emphasized by 

Braïda et al.,2 that significant singlet diradical character can co-exist with aromaticity in this molecule. 

At one extreme, Jung et al.5 argued that S2N2 should be regarded as a 2π-electron aromatic system, 

without any significant diradical character. Tuononen et al.4 used a simple scheme this is based on 

the ratio of two CI coefficients in their CASSCF(22,16) description to estimate just 6% diradical 

character for this molecule. On the other hand, for the same CASSCF(22,16) wave function, they also 

considered a different form of analysis, based on idealized pπ orbitals, which assigned a weight of 34% 

for 1 and of 14% for 2.4 The BOVB calculations of Braïda et al.,2 as well as our own BOVB and 

S-BOVB calculations, also suggest significant weights for these two diradical structures, with 1 being 

somewhat more important than 2, just as was found by Harcourt3 when using a somewhat different 

VB approach. 

Whereas Gerratt et al.1 (mis)interpreted their S2N2 wave function in terms of dominant SS singlet 

diradical character, our projection of the SCGVB(a) description onto BOVB structures reveals a 

higher weight for 1 than for 2. Indeed, all of our projections of SCGVB-like wave functions for S2N2 

onto the basis of BOVB or S-BOVB structures (and an orthogonal complement) show 1 to be more 

important than 2, but they also indicate that nearly 60% of the wave function is instead associated 
with the symmetry-determined linear combination of the four symmetry-equivalent BOVB structures 

3-6. This relatively high combined weight for structures 3-6 is of course consistent with the well-

established pattern for the atomic charges in which nitrogen is negative and sulfur is positive.5 We 

find that the net QTAIM charges for the SCGVB(a) total electron density are numerically much the 
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same as those just for the valence π space. This suggests that inferences about the bonding in the 

valence π system from considerations of the overall charge distribution, such as those discussed by 

Jung et al.,5 are not skewed by any significant charge separation in the σ-bonded framework. (Our 

QTAIM charges for SCGVB(a) do of course have the correct NS polarity. We also find that the 

QTAIM charges for the GMCSC(a  b  C) total electron density are very similar to those for 
SCGVB(a).) 

3.2. S4N42+. We find that free optimization of a single-configuration SCGVB wave function for 

S4N4
2+ results in a solution that corresponds to one of the D2h subgroups of the full molecular point 

group (D4h). Amongst many other deviations from full D4h symmetry, such that the desired 1A1g wave 

function has a small but not negligible 1B2g contaminant, we observed that active orbitals 𝜋1 and 𝜋2 

were each relatively close to being invariant under reflection in the 𝜎𝑦𝑧 mirror plane, but they were 

not exactly so. The various findings described above for S2N2 are suggestive that a suitable way 

forward would be to optimize a two-configuration SCGVB description in which the two sets of active 

orbitals are related to one another by an appropriate reflection or rotation. We label the resulting wave 

function as SCGVB(A1  A2), or SCGVB(A) for short. Nonetheless we also consider a single-
configuration SCGVB description in which the active orbitals are suitably constrained so as to ensure 

that the resulting wave function, which we denote SCGVB(B), still respects the full D4h symmetry. 

We found at convergence of our symmetry-pure SCGVB(A) solution that the two sets of active 

orbitals (i.e. those for A1 and A2) are related to one another by reflection in the 𝜎𝑥𝑧 mirror plane. 

Additionally, we observed symmetry relations within each orbital string, such that reflection of 𝜋1 

and 𝜋2  in the plane 𝑥 = 𝑦 yields 𝜋3  and 𝜋4, respectively, and 𝐶̂2(𝑧) rotation of 𝜋1  and 𝜋2 

gives 𝜋5  and 𝜋6,  respectively. Similarly, reflection of 𝜋1,  𝜋2  and 𝜋9  in the plane 𝑥 = −𝑦 

yields 𝜋7,  𝜋8  and 𝜋10 , respectively. For the optimization of the SCGVB(B) solution, we 

constrained active orbitals 𝜋1 and 𝜋2 to be exactly 𝜎̂𝑦𝑧 invariant and it also proved necessary to 

add as constraints symmetry relations for 𝜋3-𝜋8  which emerged spontaneously for SCGVB(A). 

Additionally, after some experimentation in which we sought the lowest possible energy, we found 

that we had to constrain 𝜋9 for SCGVB(B) to be invariant under reflection in the plane 𝑥 = 𝑦 as 

well as under 𝐶̂2(𝑧) rotation, with 𝜋10 generated from 𝜋9 by a 𝐶̂4(𝑧) rotation. 

«Figure 4 near here» 

The resulting symmetry-unique active orbitals 𝜋1,  𝜋2  and 𝜋9  from the SCGVB(A) and 

SCGVB(B) calculations are displayed in the top and bottom rows, respectively, of Figure 4. Except 

for being more localized, the SCGVB(A) active orbitals are fairly reminiscent of those for the S2N2 

SCGVB(C) solution (bottom row of Figure 3). On the other hand, the symmetry-unique SCGVB(B) 
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active orbitals include a three-center SNS function, just as was the case for the S2N2 SCGVB(a) 

solution (top row of Figure 3). As can be seen from Table 4, solution SCGVB(A) lies somewhat lower 

than SCGVB(B), as we should have expected. Computing the energy of the A1 (or A2) component 

using the same active orbitals and spin-coupling coefficients as in the SCGVB(A) solution, we find 

that the energy lowering associated with mixing together these A1 and A2 components is 160 kJ/mol 

(38 kcal/mol). The corresponding energy change from C1 to SCGVB(C) in the case of S2N2 is 

124 kJ/mol (30 kcal/mol). In both cases, the optimization of the active orbitals allows the two 

configurations to become more different from one another, at the expense of the energy of each of 

them separately, with the consequence that the mixing of the two components corresponds to a 

significant energy lowering. (Additional data are available in Table S10 in the Supporting 

Information.) 

In keeping with our experience for S2N2, combining the SCGVB(A) and SCGVB(B) descriptions 

of S4N4
2+ via a nonorthogonal CI calculation, thereby generating the VBCI(A  B) wave function 

(without relaxing any of the active-space spin-coupling coefficients), results in relatively little energy 

improvement, with SCGVB(A) remaining dominant (see Table 4). Just as was the case for the 

VBCI(a  b  C) description of S2N2, relaxation of the various spin-coupling coefficients, without 
reoptimizing the active orbitals, produced only a very small energy lowering. Larger changes are 

achieved for GMCSC(A  B), in which all of the active orbitals and active-space spin-coupling 

coefficients are simultaneously reoptimized (subject to a limited number of suitable constraints so as 

to retain some distinction between the A and B components). The reoptimized A component remains 

the largest contributor and there are only relatively small changes to the forms of the various 

symmetry-unique SCGVB active orbitals (see Figure S2 in the Supporting Information). Amongst 

other changes from VBCI(A  B) to GMCSC(A  B), the A1|A2 overlap is reduced from 0.675 to 

0.571 whereas A|B goes down from 0.951 to 0.847 (see Table S11 in the Supporting Information). 

4. SUMMARY AND CONCLUSIONS 

As has been shown before,6 S2N2 at its idealized square geometry, close to experiment, offers multiple 

energetically close π-space ‘6 electrons in 6 orbitals’ CASSCF solutions and thus also various 

competing SCGVB descriptions. Although the active space 2B1u+1B2g+2B3g+1Au, or c=[2,1,2,1] 
for short, gives the lowest CASSCF(6,6) energy for the calculations carried out here, the 

corresponding a=[3,1,2,0] solution lies less than 0.35 millihartree higher. (The ordering of these two 

solutions was reversed in the calculations of Thorsteinsson et al.,6 who used a somewhat smaller basis 

set) We find that the energetically preferred single-configuration SCGVB wave function is related to 

active space a. This SCGVB(a) solution, which corresponds to the one described by Gerratt at al.,1 
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appears at first sight of the orbitals and active-space total spin function to correspond to dominant SS 

singlet diradical character. Somewhat higher in energy is a single-configuration SCGVB(b) solution, 

which appears at first sight to be dominated by NN singlet diradical character. As was pointed out by 

Thorsteinsson et al.,6 the occurrence of negative overlaps for the SS and NN singlet diradical orbital 

pairs, with nodal planes between the two participating centers, means that there can be no question 

of any cross-ring bonding in either of the SCGVB(a) or SCGVB(b) descriptions. Given the 

occurrence of three-center orbitals in both descriptions, as well as delocalization tails, it is of course 

easy to be misdirected by an examination of the shapes and locations of such active orbitals. In reality, 

in spite of featuring active orbitals that are visually somewhat different, these two SCGVB solutions 

turn out to be rather similar to one another (except in terms of their total energies). 

The corresponding single-configuration SCGVB wave function for S2N2 active space c is 

symmetry broken and so we optimized instead a two-configuration SCGVB wave function, which 

we label SCGVB(C). (Specific details of the two orbital strings are slightly different from some of 

those envisaged by Thorsteinsson et al.6 for their ‘projected’ c solution, prompting us to use a slightly 

different label.) Although our variationally-optimized SCGVB(C) solution turns out to be 

energetically preferred over SCGVB(a) by more than 12 millihartree, it is still reasonable to wonder 

whether C would dominate a variationally-optimized combination. A nonorthogonal CI with fixed 

active orbitals and fixed spin-coupling coefficients, VBCI(a  b  C), produced rather little energy 
improvement over SCGVB(C), with C being by far the dominant component. Subsequent relaxation 

of the spin-coupling coefficients achieved relatively little for the energy whereas simultaneous 

reoptimization also of the active orbitals, in the GMCSC(a  b  C) description, yielded a modest 
energy improvement of ca. 9.5 millihartree. Nonetheless, although the reoptimized a and b 

components collectively account for nearly 45% of the total GMCSC(a  b  C) wave function, the 
largest contribution is due to the reoptimized C component. 

Subsequent calculations for the 10-electron π space of the D4h S4N4
2+ ring produced a symmetry-

broken single-configuration SCGVB solution, unless suitable constraints were placed on the orbitals, 

as was done for our SCGVB(B) description. Our optimal two-configuration solution, which we label 

SCGVB(A), turns out to be energetically preferred over SCGVB(B) by nearly 51 millihartree. 

Whereas the symmetry-unique SCGVB(B) active orbitals are found to include a three-center SNS 

function, just as was the case for the S2N2 SCGVB(a) solution, the SCGVB(A) active orbitals are 

more reminiscent of those for the S2N2 SCGVB(C) solution, except for being more localized. We 

found that the mixing of SCGVB(A) and SCGVB(B) generates hardly any energy improvement 

unless the active orbitals and the spin-coupling are simultaneously reoptimized. The resulting 
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GMCSC(A  B) solutions lies lower than SCGVB(A) by ca. 7 millihartree, with the reoptimized A 
component remaining the largest contributor. 

For both of the S2N2 and S4N4
2+ rings at their idealized geometries, close to experiment, our 

preferred compact SCGVB description of the π-electron system is provided by the variational 

optimization of two configurations which turn out to be symmetry related to one another. The 

optimization instead of symmetry-pure single-configuration SCGVB wave functions leads to the 

involvement of three-center SNS or NSN orbitals, which now seems to be an unnecessary 

complication. In neither ring system is very much achieved from the mixing of such competing 

solutions. 

As is to be expected, our BOVB and S-BOVB calculations for S2N2 confirm that structure 1 

(corresponding to NN singlet diradical character) is more important than structure 2 (corresponding 

to SS singlet diradical character),2,3,4 but the largest contribution (ca. 60%) turns out to be due to the 

symmetry-determined linear combination of the four symmetry-equivalent structures 3-6, with no 

obvious diradical character. Much the same pattern was consistently found when we used a simple 

but robust projection of our various SCGVB wave functions for S2N2 onto the basis of BOVB or 

S-BOVB structures (plus an orthogonal complement). In particular, it does indeed now appear that 

Gerratt et al.1 were misdirected by active orbitals that are not sufficiently localized when 

(mis)interpreting their SCGVB(a) wave function in terms of dominant SS singlet diradical character. 
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Figure 1. Structures used in the BOVB calculations for S2N2. 

 

Figure 2. Geometries and orientation used for S2N2 and S4N4
2+. 
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Figure 3. Symmetry-unique active orbitals 𝜋1, 𝜋2 and 𝜋5 (left to right) for frozen-core S2N2 wave 

functions: SCGVB(a) (top row); SCGVB(b) (middle row); SCGVB(C) (bottom row). 
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Figure 4. Symmetry-unique active orbitals 𝜋1 , 𝜋2  and 𝜋9  (left to right) for frozen-core S4N4
2+ 

wave functions: SCGVB(A) (top row); SCGVB(B) (bottom row). 
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Table 1. Energies (in hartree) from frozen-core six-structure BOVB calculations for S2N2. 
‘Fixed’ signifies the use of active orbitals taken directly from the six-structure BOVB 
calculation, whereas ‘Relaxed’ signifies further optimization. 

Structures Fixed Relaxed 

1 -903.79363 -903.81387 

2 -903.65901 -903.69344 

3 -903.70564 -903.71732 

3-6 -903.88008 -903.88919 

1-6 -903.94635 -903.94635 

 

Table 2. Chirgwin-Coulson weights, with structures 1 to 6 taken directly from the frozen-core 
six-structure BOVB calculations for S2N2 and where X signifies a normalized 
orthogonal complement. 

Wave function 1 2 3-6 X 

BOVB (1-6) 30.1% 10.9% 59.0% – 

SCGVB(a) 25.1% 13.2% 56.7% 5.0% 

SCGVB(b) 27.1% 13.0% 54.7% 5.2% 

SCGVB(C) 24.6% 13.3% 57.3% 4.7% 

VBCI(a  b  C) 24.9% 13.3% 57.2% 4.6% 

GMCSC(a  b  C) 24.6% 12.0% 58.5% 4.9% 
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Table 3. Energies and Chirgwin-Coulson weights for (combinations of) frozen-core SCGVB 
wave functions for S2N2. 

Wave function 
Energy 

(hartree) 

Weights 

a b C 

SCGVB(a) -903.98083 100% – – 

SCGVB(b) -903.97206 – 100% – 

SCGVB(C) -903.99314 – – 100% 

VBCI(a  b  C) -903.99326 -2.1% 7.9% 94.2% 

GMCSC(a  b  C) -904.00270 25.9% 19.0% 55.1% 

 

Table 4. Energies and Chirgwin-Coulson weights for (combinations of) frozen-core SCGVB 
wave functions for S4N42+. 

Wave function 
Energy 

(hartree) 

Weights 

A B 

SCGVB(A) -1807.29841 100% – 

SCGVB(B) -1807.24746 – 100% 

VBCI(A  B) -1807.29856 95.1% 4.9% 

GMCSC(A  B) -1807.30558 73.0% 27.0% 
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Table S1. Tests of different sets of CASSCF inactive orbitals for S2N2. 

(a) Spaces spanned 

 B1u B2g B3g Au  

π full-valence (fv) 2 1 1 0 [2,1,1,0] 

a 3 1 2 0 [3,1,2,0] 

b 3 2 1 0 [3,2,1,0] 

c 2 1 2 1 [2,1,2,1] 

d 2 2 1 1 [2,2,1,1] 

e 3 1 1 1 [3,1,1,1] 

f 2 2 2 0 [2,2,2,0] 

max(a,b,c,d,e,f) 3 2 2 1 [3,2,2,1] 

 

(b) CASSCF energies (in hartree) and selected differences (in millihartree) for different choices of 
inactive orbitals. (ERHF = -903.91753 hartree) 

Inactive orbitals 
Energy   

fv=[2,1,1,0] a=[3,1,2,0] b=[3,2,1,0] c=[2,1,2,1] max=[3,2,2,1] a − c b − c 

Variational -903.96018 -903.98159 -903.97320 -903.98194 -903.99550 0.35 8.73 

fv=[2,1,1,0] -903.96018 -903.98140 -903.97315 -903.98190 -903.99536 0.51 8.76 

a=[3,1,2,0] -903.95998 -903.98159 -903.97314 -903.98183 -903.99548 0.24 8.69 

b=[3,2,1,0] -903.96013 -903.98152 -903.97320 -903.98192 -903.99547 0.40 8.71 

c=[2,1,2,1] -903.96015 -903.98148 -903.97319 -903.98194 -903.99545 0.46 8.75 

max=[3,2,2,1] -903.96005 -903.98157 -903.97318 -903.98189 -903.99550 0.31 8.71 

 

(c) Energies (in hartree) for additional CASSCF descriptions. 

Inactive orbitals 
Energy 

d=[2,2,1,1] e=[3,1,1,1] f=[2,2,2,0] 

variational -903.97044 -903.97614 -903.97487 

max=[3,2,2,1] -903.97032 -903.97613 -903.97483 
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Figure S1. Symmetry-unique active orbitals in the frozen-core GMCSC(a  b  C) wave function 

for S2N2. Orbitals shown in the same order as in Figure 3. 

 

Table S2. Overlap integrals for frozen-core six-structure BOVB wave functions for S2N2 
(where X signifies a normalized orthogonal complement). 

      1 2 3-6 1-6 X 

 1 2 3-6  SCGVB(a) 0.689 0.575 0.906 0.973 0.230 

1 1.000 0.130 0.472  SCGVB(b) 0.703 0.568 0.899 0.973 0.230 

2 0.130 1.000 0.475  SCGVB(C) 0.686 0.577 0.909 0.975 0.224 

3-6 0.472 0.475 1.000  VBCI(a  b  C) 0.688 0.577 0.909 0.975 0.221 

     GMCSC(a  b  C) 0.688 0.564 0.912 0.974 0.288 

 



S4 

 

Table S3. Inverse-overlap (Gallup-Norbeck) weights, with 1 to 6 taken directly from the 
frozen-core six-structure BOVB calculations for S2N2 and where X signifies a 
normalized orthogonal complement. 

Wave function 1 2 3-6 X 

BOVB (1-6) 31.8% 7.4% 60.8% – 

SCGVB(a) 25.5% 10.2% 59.3% 5.0% 

SCGVB(b) 28.7% 10.1% 56.0% 5.2% 

SCGVB(C) 24.8% 10.2% 60.2% 4.7% 

VBCI(a  b  C) 25.1% 10.3% 60.0% 4.6% 

GMCSC(a  b  C) 24.5% 8.6% 62.0% 4.9% 

 

Table S4. Energies (in hartree) from frozen-core six-structure S-BOVB calculations for S2N2. 
‘Fixed’ signifies the use of active orbitals taken directly from the six-structure 
S-BOVB calculation, whereas ‘Relaxed’ signifies further optimization. 

Structures Fixed Relaxed 

1 -903.79978 -903.85801 

2 -903.66658 -903.71685 

3 -903.71852 -903.73523 

3-6 -903.89354 -903.90623 

1-6 -903.96054 -903.96054 

 

Table S5. Overlap integrals for frozen-core six-structure S-BOVB wave functions for S2N2 
(where X signifies a normalized orthogonal complement). 

      1 2 3-6 1-6 X 

 1 2 3-6  SCGVB(a) 0.685 0.575 0.905 0.972 0.235 

1 1.000 0.136 0.471  SCGVB(b) 0.701 0.566 0.895 0.970 0.241 

2 0.136 1.000 0.469  SCGVB(C) 0.683 0.577 0.910 0.975 0.223 

3-6 0.471 0.469 1.000  VBCI(a  b  C) 0.685 0.577 0.909 0.975 0.221 

     GMCSC(a  b  C) 0.689 0.563 0.914 0.977 0.212 
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Table S6. Chirgwin-Coulson and inverse-overlap weights, with 1 to 6 taken directly from the 
frozen-core six-structure S-BOVB calculations for S2N2 and where X signifies a 
normalized orthogonal complement. 

(a) Chirgwin-Coulson weights 

Wave function 1 2 3-6 X 

S-BOVB (1-6) 28.9% 11.3% 59.8% – 

SCGVB(a) 24.5% 13.4% 56.8% 5.4% 

SCGVB(b) 26.9% 13.0% 54.4% 5.7% 

SCGVB(C) 24.1% 13.3% 57.8% 4.8% 

VBCI(a  b  C) 24.4% 13.3% 57.6% 4.7% 

GMCSC(a  b  C) 24.5% 11.9% 59.2% 4.4% 

 

(b) Inverse-overlap (Gallup-Norbeck) weights 

Wave function 1 2 3-6 X 

S-BOVB (1-6) 29.7% 7.8% 62.5% – 

SCGVB(a) 24.5% 10.3% 59.8% 5.4% 

SCGVB(b) 28.2% 10.0% 56.1% 5.7% 

SCGVB(C) 23.8% 10.2% 61.3% 4.8% 

VBCI(a  b  C) 24.1% 10.2% 61.0% 4.7% 

GMCSC(a  b  C) 24.0% 8.4% 63.2% 4.4% 

 

Table S7. Overlap integrals and Gallup-Norbeck weights for combinations of frozen-core 
SCGVB wave functions for S2N2. 

Wave function 
Overlaps  Weights 

a|b a|C b|C C1|C2  a b C 

VBCI(a  b  C) 0.993 0.994 0.989 0.810  0.0% 0.9% 99.1% 

GMCSC(a  b  C) 0.861 0.911 0.886 0.744  19.0% 13.6% 67.3% 
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Table S8. Overlaps between various frozen-core SCGVB wave functions for S2N2. 

 SCGVB(a) SCGVB(b) SCGVB(C) VBCI(a  b  C) GMCSC(a  b  C) 

SCGVB(a) 1 0.99271 0.99422 0.99467 0.99205 

SCGVB(b) 0.99271 1 0.98897 0.99047 0.98797 

SCGVB(C) 0.99422 0.98897 1 0.99994 0.99670 

VBCI(a  b  C) 0.99467 0.99047 0.99994 1 0.99680 

GMCSC(a  b  C) 0.99205 0.98797 0.99670 0.99680 1 

 

Table S9. Overlaps between the normalized orthogonal complements arising from projections 
of various frozen-core SCGVB wave functions for S2N2. 

(a) BOVB 

 SCGVB(a) SCGVB(b) SCGVB(C) VBCI(a  b  C) GMCSC(a  b  C) 

SCGVB(a) 1 0.86145 0.88248 0.89080 0.84333 

SCGVB(b) 0.86145 1 0.78478 0.81253 0.77044 

SCGVB(C) 0.88248 0.78478 1 0.99890 0.93459 

VBCI(a  b  C) 0.89080 0.81253 0.99890 1 0.93626 

GMCSC(a  b  C) 0.84333 0.77044 0.93459 0.93626 1 

 

(b) S-BOVB 

 SCGVB(a) SCGVB(b) SCGVB(C) VBCI(a  b  C) GMCSC(a  b  C) 

SCGVB(a) 1 0.87484 0.88768 0.89617 0.84577 

SCGVB(b) 0.87484 1 0.80272 0.82952 0.78086 

SCGVB(C) 0.88768 0.80272 1 0.99888 0.93255 

VBCI(a  b  C) 0.89617 0.82952 0.99888 1 0.93395 

GMCSC(a  b  C) 0.84577 0.78086 0.93255 0.93395 1 
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Figure S2. Symmetry-unique active orbitals in the frozen-core GMCSC(A  B) wave function for 

S4N4
2+. Orbitals shown in the same order as in Figure 4. 

 

Table S10. Component energies (in hartree) and inter-component overlaps for two-
configuration wave functions. 

System 

Source of 

orbitals and 

spin-coupling 

coefficients 

Energy of 

single 

component 

Inter-component 

overlap 

S2N2 SCGVB(C) -903.94607 0.810 

S4N4
2+ SCGVB(A) -1807.23764 0.675 

 

Table S11. Overlap integrals and Gallup-Norbeck weights for combinations of frozen-core 
SCGVB wave functions for S4N42+. 

Wave function 
Overlaps  Weights 

A|B A1|A2 A1|B  A B 

VBCI(A  B) 0.951 0.675 0.870  99.7% 0.3% 

GMCSC(A  B) 0.847 0.571 0.751  86.4% 13.6% 

 


