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Abstract 
Confounding influences, such as operational and environmental variations, represent a limitation to the 

implementation of Structural Health Monitoring (SHM) systems in real structures, potentially leading to 

damage misclassifications. In this framework, this study considers cointegration as a state of the art method 

for data normalisation in fatigue crack propagation scenarios, where monitoring is performed by a 

distributed network of strain sensors. Specifically, the work is aimed at demonstrating the effectiveness of 

cointegration on real engineering data in a new context, where the damage is continuously growing. 

Cointegration is applied at first in a controlled scenario consisting of a numerical strain simulation by means 
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experimental programmes on realistic aeronautical structures subjected to fatigue crack growth, including a 

full-scale fatigue test on a helicopter tail boom. Strain measurements are taken from a network of Fibre Bragg 

Grating (FBG) sensors, known to be extremely sensitive to temperature variations, hence delivering 

challenging scenarios for cointegration testing. Results are shown to be in good agreement with the 

experimental evidence, with the cointegration algorithm capable of detecting the onset of damage 

propagation within a 4 mm increment from a baseline condition.  
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Main text 

1. Introduction 
Structural Health Monitoring (SHM) is the engineering discipline concerned with inferring the health and 

performance of structures on a possibly real-time basis, using networks of permanently installed sensors [1]. 

There are two main approaches to SHM: model-based and data-based. In the former approach, the analysis 

is usually founded on a physics-based model e.g. a Finite-Element (FE) model, and then the model is updated 

periodically in order to track changes in the system parameters that could imply damage; the update 

algorithm is usually formulated in terms of an inverse problem. In the data-based approach, damage-

sensitive features are extracted and machine learning methods are used in order to learn a statistical model 
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of the data [1]. A problem arises with the data-based approach if one wishes to go beyond damage detection; 

if it is required to locate or quantify damage, it is necessary to have training data (pre-existing measurements) 

covering all the damage states of interest. In the case of very expensive or unique structures, it is not usually 

possible to obtain damage state data, and one relies on novelty detection. Novelty detection is a form of 

unsupervised learning, which requires only data from the undamaged (normal) condition of the structure; a 

statistical model of the undamaged state feature distributions is obtained, and data is subsequently checked 

for conformity to the normal condition model. Thus, the problem of damage detection is reduced to the 

problem of change detection. Unfortunately, another problem arises then ʹ the problem of confounding 

influences. The features of a structure may change over time for benign reasons, unrelated to damage, and 

this will commonly occur when structures are operating in situ, outside of a controlled environment. The 

simplest example of this is a bridge; if one were to use natural frequencies as damage-sensitive features for 

bridge SHM, one would quickly find that the features are also very sensitive to operational and environmental 

variations, which act as confounding influences. For example, the natural frequencies of a bridge will change 

with temperature, wind conditions and patterns of traffic loading (see [2] for a careful case study). 

Fortunately, it is possible to remove the effects of confounding influences in various ways; the techniques 

are collectively known as data normalisation methods (a fairly recent survey can be found in [3]). 

There are essentially two approaches to data normalisation, depending on whether or not measurements of 

the confounding variable (e.g. temperature) are available. If measurements of the variable are available, one 

can use a regression approach to fit the temperature variations and subtract them off; in the contrary 

situation one can identify a subspace of the feature space that traps the variations and then project features 

onto an insensitive orthogonal subspace [4]. A recent development in projection methods for data 

normalisation, and arguably the current state of the art, is cointegration [5-8]. The cointegration 

methodology originated in the field of econometrics, where it was used in order to categorise and analyse 

the long-term trending behaviour of multivariate time series; it was introduced for, and adapted, to the 

problem of data normalisation for SHM in [5,6]. The basic idea is: if a group of time series share a set of 

common time-varying trends (satisfying certain conditions), there will exist a linear combination of the series 

purged of the trends; in the context of SHM where long-term trends are usually caused by confounding 

influences, cointegration removes the influences. Cointegration was also compared to outlier analysis and 

minor component analysis in [6]. The main limitation of cointegration is that it is a linear theory, restricted 

to linear combinations of time series, although there have been attempts to develop nonlinear variants for 

SHM, starting with [9,10]. In an attempt to enhance the sensitivity of damage detection at specific timescales, 

a multiscale variant of the cointegration algorithm was proposed in [11]. Applications of cointegration in the 

field of condition monitoring [12,13] and fatigue crack monitoring [14] have recently appeared; in fact, the 

reference [14] presents a precursor to the current study. 

The present study considers the cointegration between signals and the use of the algorithm residuals as an 

anomaly detector in two test programmes on real aeronautical structures subjected to fatigue degradation 

and naturally induced temperature variations. The structures involved in the fatigue tests were equipped 

with Fibre Bragg Grating (FBG) sensor networks for strain recording. Since the type of sensors employed is 

largely affected by temperature variations, feature extraction from the raw signals cannot be directly 

performed for the identification of structural anomalies. Although temperature compensation for strain 

measurements is well established [15], the determination of the set of parameters, needed to establish the 

compensation, is not straightforward and not always possible, due to temperature gradients along the 

structure and different structural compliance depending on sensor position. While this can be solved by 

adopting temperature compensated gauges or by using multiple sensors at each location of interest [16], this 

becomes impractical when a dense sensor network is required. Hence, the authors aim to demonstrate the 

effectiveness of cointegration as a promising technique to remove undesirable trends from real engineering 

FBG strain data, with a view to structural health monitoring. Two studies trying to address anomaly detection 

insensitive to environmental conditions were published by Yan, Kerschen, De Boe and Golinval [17, 18]. Yan 



3 

and co-authors introduced a linear [17] and piecewise linear [18] PCA method to filter out the effect of 

temperature and perform damage detection on large structures. A major difference between the PCA-based 

methods and cointegration proposed here is the selection of the number of factors affecting the monitored 

features required by the former. That may be relatively simple as claimed in [17, 18] when the number of 

environmental factors is known a-priori. If several unknown factors affect the feature extracted from the 

signal, the selection of the number of principal components may not be obvious. 

Moreover, ƚŽ ƚŚĞ ĂƵƚŚŽƌƐ͛ ŬŶŽǁůĞĚŐĞ͕ ƚŚĞ ĐƵƌƌĞŶƚ ůŝƚĞƌĂƚƵƌĞ ŽŶ ĐŽŝŶƚĞŐƌĂƚŝŽŶ, and specifically cointegration-

based diagnostic approaches, comprises, almost exclusively, situations where an intact structure experiences 

a sudden and circumscribed damaging event [3,5-12,19-22]. With such a precondition, the damage onset 

introduces a change of the system properties, and often results in a clear discontinuity in the recorded sensor 

data or in the features extracted from such sensor data. Conversely, in the present study a continuous 

evolution of the damage is taken into account, with the novelty detection algorithm tested in the realistic 

case of crack growth. In this context, it could happen that training data include the effect of undetected 

fatigue damages, whose continuous evolution manifests as another long-term trend that could be 

misinterpreted and removed by cointegration, especially at lower crack lengths. Therefore, the consistency 

of the detection results is assessed against the inclusion of the phenomenon effects in the training data. In 

particular, the technique performance is firstly evaluated in a controlled scenario with the aid of an FE model, 

analysing simulated strain signals. Subsequently the potential of the implemented algorithm is verified on 

three different experimental cases including metallic stiffened panels representative of a helicopter rear 

fuselage and a full-scale helicopter tail boom. 

The layout of the present article is organised as follows. First, an introduction to the mathematical 

formulation of the method is presented in Section 2. After this, the details of the experimental tests are given 

and the effect of environmental variations is explained and shown in Section 3. In Section 4, the numerical 

activity is presented, and an assessment on the performances of the cointegration algorithm on simulated 

data is provided in Section 5. Finally, in Section 0, the algorithm is tested on the experimental data, recorded 

by the FBG sensors positioned on the structures, ĂŶĚ ƉĞƌĨŽƌŵĂŶĐĞƐ ŽŶ Ă ͚ƌĞĂů-ƐĐĞŶĂƌŝŽ͛ ĂƌĞ ĞǀĂůƵĂƚĞĚ͘ 

2. On the application of cointegration to engineering data  
In order to make the paper more self-contained, a brief introduction to the cointegration methods will be 

given, closely modelled on [4]. 

Cointegration is a property of multiple nonstationary time series [5,23,24]. Two or more nonstationary time 

series are said to be cointegrated if some linear combination of them is stationary. Mathematically, a 

multivariate nonstationary time series ݕ௜  is cointegrated if a vector ߚ exists such that ݖ௜  is stationary, where, 

௜ݖ  ൌ  ௜                                                                                                                            (1)ݕ்ߚ

 

If this condition holds, ߚ is termed a cointegrating vector. In general, there may be multiple cointegrating 

vectors; in fact, if ݕ௜  is n-dimensional, there may be up to n-1 linearly independent cointegrating vectors. A 

more precise definition of cointegration requires one to introduce the concept of an order of integration; this 

is the number of times one must difference a nonstationary time series before it becomes stationary. For 

engineering applications, most variables of interest can be considered to be integrated of order 1 (denoted ܫሺͳሻ), which implies that their first differences will be stationary [19]. In general, a set of time series are 

cointegrated if they share a common order of integration and a linear combination of the variables exists 

with a lower order of integration. The first step in cointegration analysis is usually to ascertain the order of 

integration of each of the variables to be included in the analysis. This assessment is commonly achieved in 

econometrics by testing each variable for a unit root; if a unit root is present in the characteristic equation 

that defines some time series, then that time series will be inherently nonstationary. The unit root test 
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discussed briefly and used here is called the Augmented Dickey Fuller (ADF) test; readers should refer to 

[25,26] or [3] for more details and background theory. The ADF test involves fitting each variable to a model 

of the following form, 

 οݕ௜ ൌ ௜ିଵݕߩ ൅ σ ௝ܾο௣ିଵ௝ୀଵ ௜ି௝ݕ ൅ ߳௜                                                                                                (2) 

 

where the difference operator ο is defined by οݕ௜ି௝ ൌ ௜ି௝ݕ െ  need to ݌ ௜ି௝ିଵ. A suitable number of lagsݕ

be included to ensure that the residual sequence ߳௜ becomes a white noise process [23]. This equation is an 

example of an error correction model (ECM). In this form, the stability (and therefore stationarity) of the 

model in equation (2) is determined by the value of ߩ; if it is statistically close to zero the process will be 

nonstationary and integrated of order one, ܫሺͳሻ. The idea of the ADF statistic is therefore to test the null 

hypothesis of ߩ ൌ Ͳ, by comparing the test statistic, 

ఘݐ  ൌ ఘෝఙഐ                                                                                                                         (3) 

 

where ߩො is the least-squares estimate of ߩ and ߪఘ is the variance of the estimate, against critical values that 

can be found in [27], in much the same way that one would when conducting a Student's t-test. The 

hypothesis is rejected at level ߙ if ݐఘ ൏  ఈ . If the hypothesis is accepted, the time series has a unit root andݐ

is ܫሺͳሻ. If the hypothesis is rejected, the test should be repeated for οݕ௜  ; if the hypothesis is then accepted ݕ௜  is an ܫሺʹሻ nonstationary sequence. This is continued until the integrated order of the time series is found. 

Additional hypotheses tests are needed if the model form is extended to include shifts or deterministic trends 

(or both) [25,26]. Once the order of integration of each of the variables of interest has been determined, 

those that are integrated of the same order can then be included in a cointegration analysis. 

 

One of the most common approaches to finding cointegrating vectors is the Johansen procedure [28]; this is 

based on finding the ͚most stationary͛ linear combination possible for a set of nonstationary variables. This 

procedure is most often used with ܫሺͳሻ variables and is based on a maximum likelihood argument. The theory 

is complex and will not be included here (the interested reader can consult [23,28]); however, as before, the 

necessary steps to implement the Johansen procedure will be provided without justification. The first step 

of the Johansen procedure is to fit the variables in question to a Vector AutoRegressive (VAR) model of order ݌ (where the order is determined in some principled manner), which is then converted into a Vector Error 

Correction (VECM) model of the form, 

଴௜ݖ  ൌ ଵ௜ݖ்ܤܣ ൅ Ȳݖଶ௜ ൅ ߳௜                                                                                                    (4) 

 

where ݖ଴௜ ൌ ȟݕ௜, ݖଵ௜ ൌ ଶ௜ݖ ௜ିଵ andݕ ൌ ሺȟݕ௜ିଵǡ ȟݕ௜ିଶǡ ڮ ǡ οݕ௜ି௣ሻ்.  The most stationary linear combinations 

of the variables, or cointegrating vectors, are to be found in the matrix ܤ in the VECM. However, the VECM 

cannot directly be found via standard least-squares methods as it represents a rank-deficient system; instead, 

one proceeds to estimate ܤ via the residuals of two other regressions, 

଴௜ݖ  ൌ ଶ௜ݖ଴ܥ ൅ ܴ଴௜ ݖଵ௜ ൌ ଶ௜ݖଵܥ ൅ ܴଵ௜                                                                                (5) 

 

From these residuals, the following product moment matrices can be defined, 

 ܵ௠௡ ൌ ଵே σ ܴ௠௜ܴ௡௜்ே௜ୀଵ           ݉ǡ ݊ ൌ Ͳǡͳ                                                                                               (6) 

 

Finally, using the moment matrices, the cointegrating vectors are found as the eigenvectors of the 

generalised eigenvalue problem, 

 ሺߣ௜ܵଵଵ െ ܵଵ଴ ଵܵଵିଵ ଵܵ଴ሻݒ௜ ൌ Ͳ                                                                                                        (7) 
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The cointegrating vector that will result in the most stationary combination of the original variables will be 

the eigenvector ݒ௜ corresponding to the largest eigenvalue ߣ௜. If the eigenvectors are assembled columnwise 

into a matrix, the result is the matrix ܤ for the VECM of equation (4). Again, readers are referred to [5,23,24] 

for more details of the theory. 

 

From a practical SHM point of view, the cointegrating vectors of a set of variables should be established using 

data from some training period from the undamaged structure that encompasses the full range of the 

anticipated environmental and operational variations, manifesting as linear long-term trends. Upon 

projecting new data onto a cointegrating vector, the combination will remain stationary all the time the 

structure continues to act in its normal condition, but should become nonstationary on the introduction of 

damage, which also manifests as long-term trends, but different from those associated with temperature 

and often non-linearly. Cointegration projects out components of data that correspond to the linear long-

term trends seen during training, i.e. which create nonstationarity. This makes cointegration a promising 

solution for anomaly detection in the presence of unexpected trends among engineering time series, such as 

those related to temperature-induced strains on FBG sensor readings. 

As anticipated, in this paper the inclusion of data from a damage scenario in the cointegration training set is 

also considered. Of particular interest is the behaviour of the cointegrated residual when some crack growth 

has occurred in the training duration. It is anticipated that the cointegrating vector will capture and repress 

a linear component of the relationship between strains induced by crack growth, but that damage sensitivity 

will remain owing to nonlinear effects. In the following sections, simulated and experimental data will be 

used to explore this. 

3. Experimental activities and acquired data 
As described in the introduction, two main experimental activities are considered in this study. Specifically, 

the first comprises fatigue crack growth (FCG) tests on aeronautical aluminium panels; the second is a full-

scale FCG on a helicopter tail-boom. In both cases, optical FBG sensors are used for strain measurement, 

leveraging on their exceptional advantages like low power consumption, light weight, immunity to 

electromagnetic interference, long lifetime and high sensitivity, however recognising that they are very 

sensitive to temperature fluctuations.  

FBGs make use of a periodic modulation of the refractive index that can be photo-written in an optical fibre 

core. When the light passes through the optical fibre, the Bragg grating reflects a specific wavelength ߣ back, 

which changes if a local deformation is present due to mechanical loads or temperature. The relationship 

between mechanical strain, temperature and central wavelength of the reflected light spectrum can be 

expressed as, 

 
ȟߣߣ଴ ൌ ߣ െ ଴ߣ଴ߣ ൌ ݇൫ߝ௠ ൅ ௦௣ȟܶ൯ߙ ൅  ఋȟܶǤ (8)ߙ

Where ߣ is the reflected wavelength in the deformed condition, ߣ଴ is the reference wavelength, ݇ is the 

gauge factor, ߙ௦௣ is the expansion coefficient of the specimen material, ߙఋ is the change of refraction index 

per unit temperature, and ܶ߂ is the temperature variation. Indeed, the total measure is the sum of the strain 

caused by mechanical loads ߝ௠, that caused by thermal variations ߙ௦௣ȟܶ and the apparent strain caused by 

modification of the refraction index ߙఋȟܶ. When damage propagation monitoring is the objective, the 

temperature effect must be compensated for, as it could hamper the damage identification process if its 

effect is comparable or even higher than the sensitivity to damage. However, the temperature field is usually 

not uniform on the monitored structure, thus requiring multiple thermal measures for a correct and effective 

compensation. Moreover, even assuming a uniform thermal field, strains induced by thermal gradients 

strictly depend on the boundary conditions, i.e. the compliance of the measured area, especially for 

overconstrained structures. These aspects require, for an ideal compensation of the thermal effect, the strain 
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to be measured from a second, identical structure undergoing the same temperature field, measured on the 

same locations, but mechanically unloaded. Obviously, such a solution is not realistically feasible and only 

remains a valid possibility for small-scale laboratory tests. Although other solutions are readily available 

commercially, including different means of temperature compensation on foil gauges and a variety of 

commercial temperature-compensated gauges [16], their dimensions is not often compatible with the 

deployment of a dense sensor network. In this framework, cointegration can have a clear advantage. Indeed, 

assuming that the temperature variation would introduce common trends within the measured signals, 

cointegration would automatically remove such a temperature effect, with the residuals highlighting the 

presence of anomalies in the recorded signals, i.e. potential damages in the structure, without any a-priori 

compensation. 

3.1. Aluminium panels test set-up 
The tested aluminium panels, displayed in Fig. 1, replicate the actual rear fuselage components of a medium-

heavy weight helicopter. Additional reinforcements were added to the specimens, especially near the 

constrained zones, in order to obtain a stress field congruent with the real working condition on the 

rotorcraft. Dimensionally, the panel has a 500x600 mm skin with four riveted vertical stringers of length 

435 mm. The skin is made in Al2024-T6, while the stringer and the additional reinforcements are in Al7075-

T76. 

For the first specimen ʹ hereafter, denoted Panel-SC ʹ an artificial notch was created in a central position on 

the skin bay. This artificial defect can be considered representative of a generic impact damage, causing 

nucleation of a Skin Crack (SC). The second sample ʹ Panel-RC ʹ had a rivet removed and then, as before, a 

crack was propagated from an artificial defect located into the panel skin. Rivet-propagating Cracks (RC) can 

occur in this kind of rotorcraft structure, as rivet holes can act as stress concentrators. Locations of the 

artificial notches are shown again in Fig. 1. In both cases, after creation of the artificial notch, a certain 

number of load cycles was required for the nucleation of an actual crack from the artificial notches. A steady 

condition is expected on the measured strain signals before crack propagation, hereafter referred to as 

baseline. 

The optical fibre carrying the FBG sensor network was bonded to the structure onto the four stringers with a 

two-component adhesive, including a total number of 20 FBG sensors. Specifically, the sensors are FBGS Draw 

Tower Gratings (DTG®s) written in Low Bend Loss fibre LBL-1550-125. Each grating is 8mm long and they are 

positioned close to the stringer edge, with a gap of 60mm between one another. The locations of the gratings, 

between two consecutive rivets, are highlighted in Fig. 1. An additional FBG is used for temperature 

measurement; however, its data are not considered in this study for temperature compensation, which is 

only achieved by the cointegration-based technique. 

A cyclic fatigue load was supplied by a hydraulic actuator, and the specimen fixture apparatus assured that 

the load was applied only in the vertical direction. In particular, the load cycle was a sinusoidal function with 

a frequency of 12 Hz and a load ratio R, defined as the ratio between the minimum and the maximum values 

within one load cycle, equal to 0.1 for both test cases. For Panel-SC, the peak load was kept constant at 35 kN, 

while for Panel-RC three different operational conditions were imposed with the peak force reaching 35 kN 

for the first ͵ ൈ ͳͲହ cycles, than 25 kN for about ͷ ൈ ͳͲହ cycles and finally the test was concluded at 30 kN 

of peak force. Again, a certain number of load cycles is needed in order for the crack to start propagating, 

and a portion of those load cycles has been used here as a baseline. Although the fatigue tests were stopped 

at predefined intervals for visual inspection and crack length measured by a caliper, the exact instant of crack 

nucleation was not identified, thus posing additional uncertainty in the identification of the baseline limits 

for cointegration algorithm training. 
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3.2. Tail boom test set-up 
The second FCG test activity was performed on the tail boom of a retired Military Mi-8/17 helicopter provided 

by the Air Force Institute of Technology of Poland. As shown in Fig. 2, the tip of the tail carrying the tail rotor 

was removed, while the root of the tail was connected to a rigid frame by means of a dedicated structure in 

CFRP material. This constraint was calibrated on the stiffness of the rotorcraft central fuselage, thus 

reproducing realistic boundary conditions. The fatigue load was applied on the free end, transversally to the 

tail axis, to simulate the effect of the tail rotor and to induce bending and torsion at the root of the tail. 

Specifically, the applied load was again of a sinusoidal form with frequency 1.5 Hz, peak value 8 kN and load 

ratio R=0.1. 

A series of optical fibre sensors were mounted on the inside stringers of the structure. In particular, nine 

FBGs were positioned on five stringers, for a total of 45 sensors, as shown by the schematics in Fig. 2. The 

same type of sensors as for the panel structures is considered here. The crack was artificially initiated at a 

rivet hole (after rivet removal) by inserting a notch approximately 15 mm-long, specifically on stringer STR7, 

between sensors S5 and S6. Two crack gauges were also applied to monitor the crack growth. The ambient 

and structure temperatures were also measured by a thermometer and a dedicated FBG sensor. However, 

as previously stated, the data from the two instruments will not be used here to compensate the 

temperature-effect on the strain signals. 

Fig. 1: Experimental test configuration for the aeronautical panels, on the left, and location of FBG sensors and cracks (rivet 

crack, RC, and skin crack, SC) on the right. 
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3.3. Signal acquisition and temperature effect 
For both the experimental activities, the FBG signals were acquired with a HBM-DI410 dynamic interrogator 

with four channels and a maximum sampling frequency of 1 kHz. In order to reduce the data size, only a 

specific number of cycles were recorded during the fatigue tests: in particular, 30 cycles every 500 cycles of 

the fatigue test were acquired, with the maximum sampling frequency allowed by the system. In post-

processing, as shown in Fig. 3a, the wavelength peak shifts, caused by the sinusoidal load, were extracted 

from these blocks of data. The average peak level of the data block was then stored to create the time series 

of strain values for each sensor. 

An example of the strain signals recorded from the first stringer sensors from the Mi-8/17 tail test is shown 

in Fig. 3b, highlighting the problem previously discussed in Section 2. In particular, the first ͳͲହ cycles are 

displayed, during which the crack had not started its propagation yet, however showing a 200 ʅɸ ƐƚƌĂŝŶ 
variation solely due to the temperature shift, i.e. to the sun gradually hitting the tail boom as the day went 

on (at  ͷ ൈ ͳͲସ cycles the test was stopped and then resumed the next day). This strain trend induced by 

thermal effects can easily hide the crack-induced change of the structure behaviour, especially at the early 

stages of propagation. Thus, a compensation for this effect is needed to isolate the damage-induced strain 

deviations from a generic baseline condition. 

Fig. 2: Experimental test configuration of the Mi-8 helicopter tail boom (a) and location of the crack monitored during the FCG 

tests. 
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4. Simulating thermal effects on measured strain 
In order to get an understanding of the different contributions on the strain field, FEM simulations of the 

aluminium panel shown in Section 3.1 were carried out in Abaqus® 6.14-5. The simulated strain signals were 

generated not only taking the effect of crack propagation into account but also the influence of thermal 

expansion. The FEM model is shown in Fig. 4, with a rivet crack (Panel-RC) highlighted by the stress contour 

plot. Rivets were modelled as springs with proper stiffness values in the three directions, connecting the 

components of the panel. Specifically, the springs/dashpots feature was used, defining for each rivet point 

three connection interactions between the skin panel and the stringers: each interaction refers to one of the 

three degrees of freedom, of which the appropriate stiffness was analytically derived. Boundary conditions 

were opportunely chosen to replicate the structure fixture of Fig. 1. 

 

Several simulations were carried out with semi-crack lengths ranging from 2 mm to 25 mm, and for a static 

load of 35 kN applied vertically as for the peak load condition of the real experimental test. The same 

simulations were subsequently repeated with a thermal field, constant through the thickness of all the 

different panel components (skin, stringers, reinforcement plates, etc.). Specifically, a 10°C increment in 

temperature was considered. Finally, the strain values along the stringer axis (E22) were extracted at 

coordinates coincident with the sensor positions of the real panels. In Fig. 5, the obtained database of 

simulated strain values, as a function of the semi-crack length, is shown for the two thermal conditions (0°C 

and 10°C). The progressive strain increase caused by the crack propagation is easily recorded by sensor 3 on 

channel 2, the closest sensor to the crack, in both cases. A noticeable raise of the overall strain pattern is 

observed when the thermal field is applied to the panel. 

Fig. 3: Example of the acquired FBG signals with highlighted peaks (a) and variation of mean value of the strain peaks (b) due to 

temperature shift (black dash-dot line, measured by the dedicated FBG sensor). 
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Fig. 4: FEM model (right) with highlighted components and Panel-RC with superimposed stress contour plot. 

Fig. 5: Strain values (E22 component, vertical direction) of the 20 simulated sensors for the case without (a) and with (b) thermal 

field. 
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4.1. Linking the strain value with time 
Since the objective is to analyse a time series, the strain value must be linked to a time step. To do so, the 

Paris law for crack propagation [29] is taken into account: for every semi-crack length ܽ, the number of cycles 

needed for its propagation can be calculated. Specifically, with ܥ and ݉ as Paris coefficients, stress ratio ܴ, 

and Walker parameter ߛ, to account for ܴ ൐ Ͳ, the speed at which the crack grows is given by, 

 
݀ܽ݀ܰ  ൌ ௠  ሺͳܭȟܥ  െ ܴሻ௠ሺଵିఊሻ  (9) 

where the stress intensity factor range is 

 ȟܭ ൌ  (10)  ܽߨξߪሺܽሻȟߚ

with ߚሺܽሻ the geometry factor, a function of the semi-crack length expressed as in [30] for stiffened plate 

structures, and with ߪ߂ the far-field stress range applied to the structure. Once the previous parameters in 

relation to the material of the specimen and to the characteristic of the loading considered were defined, a 

Matlab iterative routine was implemented. At every k step, if a finite ܽ߂௞ ൌ ܽ௞ െ ܽ௞ିଵ is imposed, the 

related variation of the stress intensity factor ȟܭ௞ can be calculated. Thus, the propagation speed of Eq. 9 is 

known and the ߂ ௞ܰ  cycles needed for that ܽ߂௞ can be found. 

The database previously created comprises only 22 semi-crack lengths. The calculation of the ܰ cycles, at 

which those lengths will be reached, is carried out on a higher sampled semi-crack vector, in order to avoid 

biases in the numerical integration of tŚĞ PĂƌŝƐ͛Ɛ ůĂǁ. The related strain values are consequently interpolated 

over the new crack step with a piecewise cubic polynomial to preserve the function shapes of Fig. 5. The 

obtained strain-cycle function is show in Fig. 6a for the first temperature condition. Again, in order to have 

more samples and an evenly spaced vector, the obtained strain-cycles function is resampled/interpolated 

over a new time vector with higher resolution. 

4.2. Temperature and noise 
Based on the compensator FBG used during the fatigue test of the Panel-RC, a temperature signal is 

extracted, smoothed and resampled to match the resolution of the simulated signals. The temperature trend 

of Fig. 6b comprises full day transitions and is used to linearly interpolate between the two strain signals 

databases of Fig. 5 (plus 0°C and plus 10°C) at every time increment. Moreover, uncorrelated Gaussian noise 

is added to the simulated signals. In fact, noise is always present in reality to some degree and, in the 

simulation, it also improves the conditioning of the linear algebra needed for cointegration. Specifically, the 

additive noise has a standard deviation of 0.25 ʅɸ, selected by analysing the real FBG signals. Eventually, a 

baseline was also added, with the initial data only influenced by the temperature field variations, before 

enabling the start of crack propagation at ͳͲ଺ cycles. The simulated, but realistic, final signals are shown in 

Fig. 7. 
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5. Cointegration performance assessment on numerically-simulated 

strain field 
The cointegration method described in Section 2 is applied here to the simulated strain signal described in 

the previous section. The objective here is to detect an anomalous deviation of the cointegration residuals 

(i.e. the detrended time series obtained by projection onto the cointegrating vector) in a controlled scenario, 

specifically analysing how the temperature induced correlation between strain signals is ruined during 

damage extension and verifying the algorithm response on the introduction of damage sensitive data in the 

training. Part of the strain time series data are used as training datasets and each series is tested for a unit 

root process with the ADF test prior to the application of the Johansen procedure. The obtained cointegration 

Fig. 6: Simulated strain signals and crack length history (a) and temperature signal from the compensator sensor (resampled and 

smoothed). 

 

Fig. 7: Simulated strain signals at a constant 35kN reference load, with superimposed temperature effect, and crack length 

history. 
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residuals are subsequently tested for stationarity, i.e. reliability of the obtained monitoring feature: the ADF 

test is again used, seeking the rejection of the null hypothesis [25,26]. 

The 20 simulated signals, each one normalised by its mean and standard deviation for an easier interpretation 

of the trends, and the residuals of the cointegration, performed considering all the 20 simulated signals, are 

shown in Fig. 8. The ͚novelty ĚĞƚĞĐƚŝŽŶ͛ (the red circle) refers to the moving average of the residuals 

exceeding the േʹߪ confidence band, where ߪ is the standard deviation of the cointegration residuals of the 

training set. The confidence band acts as a statistical process control X-chart [31], so that if subsequent strain 

measurements leave the control interval, an anomaly in the structure behaviour can be assumed to exist. 

Taking the moving average as the monitoring feature has the advantage of avoiding false alarms caused by 

transient spikes of the residuals due to any potential discontinuities in the data. However, it should be noted 

that the choices of the moving average window length, the end-point of the training set and the detection 

strategy could have an effect on the detection time instant. In the specific case of Fig. 8, with a training set 

including the ͚baseline͛ up to ͺ ൈ ͳͲହ cycles (vertical black solid line), the cointegration residuals are seen to 

leave their stationary behaviour at about ʹǤͳ ൈ ͳͲ଺ cycles with an increment of the total crack length of 

1.4 mm. 

Here, the moving average appeared as a good choice to filter the residual trend, even if the selection of an 

excessive window length may add some delay to the novelty detection instant. However, more advanced 

approaches may be adopted to detect when (or if) cointegrating residuals are no longer stationary, or if they 

no longer belong to a Gaussian distribution, reducing the effect of heuristic choices on the final algorithm 

performance. 

 

 

Fig. 8: Cointegration of FEM signals - all sensors are considered. In the upper plot, normalised signals (coloured) are displayed 

along with the crack length (black circled points) as a function of time (number of cycles). In the lower plot, the cointegration 

residuals are shown, with a focus of the instant when the moving average (green line) of the residuals (blue line) leaves the 

confidence band (in red). The training data window is highlighted in grey in both plots. 
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Furthermore, the selection of the training set length is non-trivial, and varies with data availability and with 

the fact that, in some cases, the true health condition of the structure is unknown, potentially causing the 

inclusion of undetected damage condition in the training domain. The latter can be a common situation with 

large structures like bridges, high-rise buildings, or large airframes when subject to ageing. In our 

applications, the algorithm designer may wonder whether the training set includes part of data relative to 

the initial crack propagation. This is a very important point. The cointegration algorithm is actually able to 

remove (project out) multiple trends. If a period of crack growth is included in the training data, it is possible 

that the cointegration algorithm will identify the damage progression simply as another trend, potentially 

removing it. However, one can argue that, if a small portion of data from initial crack progression is included 

in the training data, cointegration will not project out all evidence of crack growth. According to the Paris 

law, the crack will propagate at an exponential rate; however, assuming that only incipient crack growth is 

present in the training data, and bearing in mind the highly local nature of strain sensors, the effects of the 

crack in the different sensor signals will manifest as strain trends approximated by low-order monomials of 

different powers. The cointegration algorithm will effectively linearise the trends in order to remove them. 

However, any further crack growth not included in the training dataset would require a new cointegrating 

vector for trend removal. Thus, even if a small portion of crack growth is present in the training data, the 

algorithm will still detect it once the nature of the cointegration relation changes due to crack progression. 

To better understand what may happen when damage data is included in the cointegration-training period, 

Fig. 9 shows the relationship between two of the simulated strain measurements, close to and far from the 

crack respectively, with the colour of the line representing the length of the crack at that instant. The reader 

should note that this does not provide a complete picture of the behaviour of the residual, as this is 

comprised of multiple measurements and not just the two measurements shown. However, studying Fig. 9, 

one can see that as the crack grows, the relationship between the strain measurements evolves, which is 

why cointegration is able to detect it. Interestingly, the evolution appears to manifest itself as linear 

relationships with changing gradients until the crack dimension becomes significant. If the training period 

were increased to include data from one of these regimes, the sensitivity of the residuals to crack growth 

would not reassert itself until the gradient of the linear relationship changed sufficiently. 

In order to evaluate the performance of the algorithm when different crack lengths are included into the 

training, increasing training set lengths are considered starting from 10% up to 80% of the entire time series. 

In Fig. 10a and 10b, the results of this sensitivity assessment is shown in terms of novelty detection time as 

a function both of size of the training dataset and the maximum length of the crack that the training dataset 

 

Fig. 9: Correlation plot between two of the FEM-generated signals, one from a virtual sensor close to the crack (CH2S3) and one 

relatively away from it (CH1S1). The different data points are coloured accordingly to the corresponding semi-crack length value. 
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includes. When most of the training set is associated to the baseline condition (non-propagating damage), 

the detection happens quite early after only a few millimetres of crack evolution. As the training data includes 

more of the crack propagation, the anomaly is identified later and later until reaching a plateau around ͷǤͷ ൈͳͲ଺ cycles. Thus if the calculation of the cointegrating vector is based on data that contain little of the 

investigated phenomenon, as discussed above, the appearance of contributions of higher order can still 

trigger the detection. On the contrary, once the crack growth is mostly included in the training dataset, only 

steep changes in propagation speed are detected, as after the ͷǤͷ ൈ ͳͲ଺ cycles in this case. 

It is finally worth noticing that, provided the cointegrating vector projects out the environmental influences 

included in the training, the resulting residuals can be expected to replicate the effect of crack length on the 

strain signals. This is confirmed in Fig. 11, where the non-linear correlation between cointegration residuals 

and crack length is evident, with non-linearity related to the non-linear dependence of the strain measures 

from the crack length. Although outside the scopes of the present study, this information can be exploited in 

future activities in the context of damage prognosis.  

 

 

Fig. 10: Detection time and crack length at detection as a function of number of cycles considered as training data (a) and as a 

function of the crack length at the end of the considered training data (b). 

 

Fig. 11: Correlation plot between the cointegration residuals and the crack length trend for the simulated panel case. The data 

points colour indicates time. 
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6. Application to experimental data 
The cointegration algorithm is now applied on the experimental data introduced in Section 3.  

6.1. Fatigue crack growth detection in Panel-SC 
The normalised signals acquired during the test of Panel-SC are displayed in Fig. 12. As highlighted, the test 

was paused at around ʹǤͲͷ ൈ ͳͲହ cycles and then resumed the same day. During the first half of the test, a 

cyclic variation of the strain is present due to temperature oscillations in the laboratory. As before, part of 

the baseline is used for training, or for the evaluation of the cointegrating vector. The cointegration residuals 

maintain their stationarity inside the baseline, and then begin to deviate after an increase of the total crack 

length of less than 3 mm. Moreover, the test pause does not affect the cointegration residuals (or at least 

only marginally) since no changes were produced on the structure between one and the subsequent part of 

the experiment and the temperature is assumed to have ranged similarly. The abrupt rises of the residuals 

at ʹǤʹ ൈ ͳͲହ and at ͵Ǥʹͷ ൈ ͳͲହ cycles are due to significant changes in boundary conditions: indeed, the test 

was suspended again but this time also the panel itself had to be removed and then reinstalled for logistic 

reasons. 

In Fig. 13, regarding the correlation between two sensors, one close and one far from the damage, a similar 

behaviour can be noticed as expected from the previous simulation. In particular, the effect of the crack in a 

stiffened panel can be assumed to be localized as well as the measure from an FBG, due to its own 

dimensions. These characteristics of the system justify the fact that only when the crack reaches a size that 

ĐĂŶŶŽƚ ďĞ ͚ignored͛ by the stiffened structure, the gradient of the linear relationship changes significantly. 

 

 

Fig. 12: Cointegration of Panel-SC test signals - all sensors are considered. In the upper plot, normalised signals (coloured) are 

displayed along with the crack length (black circled points) as a function of time (number of cycles). In the lower plot, the 

cointegration residuals are shown, with a focus of the instant when the moving average (green line) of the residuals (blue line) 

leaves the confidence band (in red). The training data window is highlighted in grey in both plots. 
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6.2. Fatigue crack growth detection in Panel-RC 
Regarding Panel-RC, once again the detection happens fairly quickly at around 4 mm of total crack length 

increment as shown in Fig. 14. As anticipated in Section 3.1, three different ͚operational conditions͛ were 

imposed: in the second part of the experiment, the applied load is not high enough to continue crack 

propagation and this is reflected by the residuals, which regain their stationarity, yet remain outside the 

control band. When the load reaches a suitable value to restart damage growth, the residuals͛ absolute value 

increases accordingly. As previously noticed on simulated data and confirmed in Fig. 15, this highlights a 

correlation of the cointegration residuals with the cointegrated strain measures, and thus with the crack 

length, which can be further exploited in future activities for damage prognosis. 

In Fig. 16a, the correlation plot, between two sensors is reported as before. A linear correlation is again 

present, especially in the crack-stationary portion of data (between Ͷ ൈ ͳͲହ and ͺ ൈ ͳͲହ cycles) as Fig. 16b 

confirms with the group of data points in the lower left corner. Once the crack propagates further, the 

gradient of the linear relationship increases. 

 

Fig. 13: Correlation plot between two signals from Panel-SC, one close to (CH2S3) and one far from (CH1S1) the crack. Colours 

indicate the corresponding crack length. 
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Fig. 14: Cointegration of Panel-RC test signals - all sensors are considered. In the upper plot, normalised signals (coloured) are 

displayed along with the crack length (black circled points) as a function of time (number of cycles). In the lower plot, the 

cointegration residuals are shown, with a focus of the instant when the moving average (green line) of the residuals (blue line) 

leaves the confidence band (in red). The training data window is highlighted in grey in both plots. 

 

Fig. 15: Correlation plot between the cointegration residuals and the crack length trend for Panel-RC. The data points colour 

indicates time. 
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6.3. Fatigue crack growth detection in full-scale tail boom test 
For the full-scale FCG test, the results are shown in Fig. 17. Once again, the initial portion of the data not 

affected by crack propagation is taken as the training dataset for the algorithm. Indeed, the damage was not 

visible during the first Ͷ ൈ ͳͲହ  load cycles, so the initial data refer to the 15 mm long artificial notch. The 

detection is triggered at a total crack length of about 18 mm, thus equal to a 3 mm increment from the 

artificial notch. At around ͻ ൈ ͳͲହ cycles, a patch was installed on the other side of the monitored tail section 

to prevent unwanted failures. This effect, coupled with the increasing crack propagation rate, is thought to 

be responsible for the second easily noticeable drift in the residuals. Again, looking at the cointegration 

projection of the strain signal, several discontinuities can be observed. The first kind are related to missing 

data from the time series: unfortunately, some cycles were not recorded properly by the acquisition system. 

The last kind reflects the sudden spikes in the FBG sensor signals: the behaviour of the sensors, when the sun 

directly hits the structure in their vicinity, is deemed not to be the same as in their normal condition. If a non-

uniform strain field was applied to an FBG, its spectrum would likely become broadband [32] with the 

interrogator choosing a slightly different spectrum peak and following no more the original wavelength shift. 

Although this produces an unpredicted and transient new correlation between the different signals, 

manifesting as the sudden spikes of Fig. 17, the algorithm produces a usable cointegrating vector when 

simply coupled with a smoothing technique, in this case consisting in the moving average. 

Once again, the correlation plot in Fig. 18 shows the usual stepped behaviour, with clustering of the data 

points related to the cycle groups between test pauses. Specifically, both the signals considered are from 

sensors on the same stringer, on which the crack was initiated. Gradient variation for the evolving linear 

relationship is less evident here mainly because the tail-boom structure is so redundant, and stiffer, that it 

redistributes the strain field more uniformly, coping better with a localised damage than in the panel cases. 

 

Fig. 16: Correlation plot between two signals from Panel-RC, one close to (CH2S3) and one far from (CH1S1) the crack. Colours 

indicate the corresponding crack length (a) and the corresponding cycle (b). 
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Finally, the sensitivity of the method towards the distance of the sensors from the damage location is 

illustrated in Fig. 19. Specifically, only sensors on stringer number 7, which is the one where the crack 

propagated, are taken into account and their cointegration relationship is analysed in pairs. Such a 

performance is in reasonable agreement with the current damage tolerance regulation indicated in [33], in 

both cases when the entire sensor network is taken into account and when just only the two sensors on the 

 

Fig. 17: Cointegration of tail boom test signals - all sensors are considered. In the upper plot, normalised signals (coloured) are 

displayed along with the crack length (black circled points) as a function of time (number of cycles). In the lower plot, the 

cointegration residuals are shown, with a focus of the instant when the moving average (green line) of the residuals (blue line) 

leaves the confidence band (in red). The training data window is highlighted in grey in both plots. 

 

Fig. 18: Correlation plot between two signals from the tail boom, one close to (CH4S5) and one far from (CH4S1) the crack. 

Colours indicate the corresponding crack length.  
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stringer closest to the damage are considered. The algorithm results are shown in terms of crack length at 

detection time for different sensor pairs, compared to the detection time obtained including all the sensors 

into the cointegration procedure. As expected intuitively, the farther the selected sensors are from the 

damage location, the later the anomaly is revealed by a residual drift out of the control interval. If all sensors 

are considered, the algorithm performances are comparable with the case of the sensors S5-S6. Further 

investigations, which however fall outside the scope of the present study, should be carried on in this 

direction to assess the existence of an optimal number of sensors considered, although this could strongly 

depend on the characteristics of the specific analysed case. 

 

7. Conclusions 
In the present study, the cointegration-based signal processing method presented in [5,19] has been applied 

to strain signals recorded through FBG sensor networks for fatigue crack detection on aeronautical 

structures. Both numerically-simulated data and signals collected in a laboratory environment were used to 

investigate the algorithm performance.  

The numerical simulation activity has been conducted with the aim of exploring the effectiveness of the 

method in the context of fatigue crack growth and to assess its sensitivity to the size of training dataset, 

specifically including increasing crack lengths into the training set. Looking at the correlation between two 

sensors during damage evolution, it is clear that they initially exhibit a linear correlation, with a gradient 

generally increasing with crack propagation, finally exhibiting a non-linear correlation at very high damage 

extents. As a consequence, even if the training dataset contains some information about initial linear 

correlations, residual deviation from the normal condition is guaranteed by the subsequent gradient increase 

and by the final degeneration into non-linear correlation.  

Once the method͛Ɛ capabilities have been proven for damage detection, the same approach has been 

employed to remove the undesired trend from the experimental data. Indeed, cointegration has been shown 

to be an effective temperature compensation technique for FBG sensor signals. The raw sensor outputs can 

be directly used and projected on the calculated cointegrating vector without caring for an otherwise needed 

compensation coefficient optimisation and one or more dedicated temperature transducers. 

 

Fig. 19: Anomaly detection using different sensor pairs on stringer STR7 with the rivet crack. 
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Regarding performance, among the three different FCG tests, the applied method has been capable of 

detecting the onset of damage propagation within a 4 mm increment from the baseline condition. This result 

has been achieved even in the presence of large temperature fluctuations hiding the very small crack-induced 

strain variations, as in the full-scale fatigue test conducted on a helicopter tail boom. Thus, with 

cointegration, compensation of environmental changes that repeatedly appear during the system operation 

and anomaly detection can be accomplished in one-step and without any additional post-processing 

algorithm. 

As it was preliminarily done based on simulations, the experimental cointegration residuals are always 

interpreted by analysing the evolution of the correlation between two test sensors, nevertheless considering 

that this does not provide a complete picture of the behaviour of the residuals. It was further noticed that 

the cointegration residuals correlates well with damage extent, as shown with simulations and in a test with 

variable amplitude fatigue load and consequent discontinuous damage trends, thus potentially leading to 

future exploitation of the method in the context of damage prognosis. 

Finally, a qualitative indication has been provided about the sensitivity of the method towards the distance 

of the considered sensors from the damage location: the closer the sensor is, the better the damage 

detection performance. 

The foreseen drawbacks of the method, however, consist primarily in the linear correlation required for the 

time series in order to apply the Johansen procedure. Then, focusing on the specific applications of the 

present paper, the choice of strain load peaks as reference features for damage identification may not be 

appropriate in cases when the fatigue load applied on the structure has a random spectrum. Indeed, the 

strain peaks would change randomly (with the exception of changes in the operational conditions) and the 

signals would be already stationary and not integrated of order one, which is one of the main assumptions 

for cointegration to work. Therefore, the use of such a feature is questionable in real cases where the 

structure is subjected to random loads, and the use of other more robust features should be investigated. 

Having noted this, the strain peak time series could still be of use in cases where transient overloads need to 

be monitored over a cyclic load conditions (such as manufacturing processes and rotating machinery in 

general). Furthermore, the ideas presented in this study are directed towards an offline approach where the 

baseline signals are defined and unchanged during time, while an online version of the method, able to 

discriminate autonomously between different operational conditions or relying on features insensitive to the 

boundary load, would be of more practical value. 

Nevertheless, the present application confirms the potential of cointegration presented in previous works 

for case studies concerning laboratory scenarios or civil structures. Specifically, the method has proven its 

effectiveness also at detecting growing and propagating cracks in real structures and not only sudden 

damages or transient anomalous behaviour. 
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Figure Captions 
Fig. 1: Experimental test configuration for the aeronautical panels, on the left, and location of FBG sensors and cracks (rivet crack, RC, and skin crack, 

SC) on the right. 

Fig. 2: Experimental test configuration of the Mi-8 helicopter tail boom (a) and location of the crack monitored during the FCG tests. 

Fig. 3: Example of the acquired FBG signals with highlighted peaks (a) and variation of mean value of the strain peaks (b) due to temperature shift 

(black dash-dot line, measured by the dedicated FBG sensor). 

Fig. 4: FEM model (right) with highlighted components and Panel-RC with superimposed stress contour plot. 

Fig. 5: Strain values (E22 component, vertical direction) of the 20 simulated sensors for the case without (a) and with (b) thermal field. 

Fig. 6: Simulated strain signals and crack length history (a) and temperature signal from the compensator sensor (resampled and smoothed). 

Fig. 7: Simulated strain signals at a constant 35kN reference load, with superimposed temperature effect, and crack length history. 

Fig. 8: Cointegration of FEM signals - all sensors are considered. In the upper plot, normalised signals (coloured) are displayed along with the crack 

length (black circled points) as a function of time (number of cycles). In the lower plot, the cointegration residuals are shown, with a focus of the 
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instant when the moving average (green line) of the residuals (blue line) leaves the confidence band (in red). The training data window is highlighted 

in grey in both plots. 

Fig. 9: Correlation plot between two of the FEM-generated signals, one from a virtual sensor close to the crack (CH2S3) and one relatively away from 

it (CH1S1). The different data points are coloured accordingly to the corresponding semi-crack length value. 

Fig. 10: Detection time and crack length at detection as a function of number of cycles considered as training data (a) and as a function of the crack 

length at the end of the considered training data (b). 

Fig. 11: Correlation plot between the cointegration residuals and the crack length trend for the simulated panel case. The data points colour indicates 

time. 

Fig. 12: Cointegration of Panel-SC test signals - all sensors are considered. In the upper plot, normalised signals (coloured) are displayed along with 

the crack length (black circled points) as a function of time (number of cycles). In the lower plot, the cointegration residuals are shown, with a focus 

of the instant when the moving average (green line) of the residuals (blue line) leaves the confidence band (in red). The training data window is 

highlighted in grey in both plots. 

Fig. 13: Correlation plot between two signals from Panel-SC, one close to (CH2S3) and one far from (CH1S1) the crack. Colours indicate the 

corresponding crack length. 

Fig. 14: Cointegration of Panel-RC test signals - all sensors are considered. In the upper plot, normalised signals (coloured) are displayed along with 

the crack length (black circled points) as a function of time (number of cycles). In the lower plot, the cointegration residuals are shown, with a focus 

of the instant when the moving average (green line) of the residuals (blue line) leaves the confidence band (in red). The training data window is 

highlighted in grey in both plots. 

Fig. 15: Correlation plot between the cointegration residuals and the crack length trend for Panel-RC. The data points colour indicates time. 

Fig. 16: Correlation plot between two signals from Panel-RC, one close to (CH2S3) and one far from (CH1S1) the crack. Colours indicate the 

corresponding crack length (a) and the corresponding cycle (b). 

Fig. 17: Cointegration of tail boom test signals - all sensors are considered. In the upper plot, normalised signals (coloured) are displayed along with 

the crack length (black circled points) as a function of time (number of cycles). In the lower plot, the cointegration residuals are shown, with a focus 

of the instant when the moving average (green line) of the residuals (blue line) leaves the confidence band (in red). The training data window is 

highlighted in grey in both plots. 

Fig. 18: Correlation plot between two signals from the tail boom, one close to (CH4S5) and one far from (CH4S1) the crack. Colours indicate the 

corresponding crack length.  

Fig. 19: Anomaly detection using different sensor pairs on stringer STR7 with the rivet crack. 


