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Abstract 13 

The southern Cape coast of South Africa boasts an impressive suite of Plio-Pleistocene aeolian dune 14 

deposits (aeolianite). Previous research has shown that in this region onshore dune accumulation was 15 

generally focused around interglacial sea level highstands, with the locus of coastal dune accumulation 16 

shifting onto the adjacent continental shelf during glacial sea level lowstands. Here, using new 17 

luminescence dating results, we present the first evidence for preserved onshore glacial age dunes. 18 

Specifically, on the Robberg Peninsula, a rocky headland 28 km east of Knysna, two phases of aeolianite 19 

formation are identified, corresponding to early (45-60 ka) and late (35-30 ka) marine isotope stage (MIS) 20 

3. Subsequently, during the Holocene, all substantive dune accumulation occurred between 10.2 and 7.0 21 

ka, forming cliff-fronting dunes and filling the limited accommodation space on the headland, including 22 

an archaeological rock-shelter.  Combining these ages with bathymetric data, we infer that this distinct 23 

onshore glacial age aeolianite record reflects: 1) restricted accommodation space during sea level 24 

highstands; 2) a regional narrowing of the continental shelf, and 3) liberation of sediments lying on a 25 

prominent -45 to -60 m offshore terrace, which would have been exposed during MIS 3. This demonstrates 26 

that despite broad regional-scale trends in  the timing of coastal aeolian activity - driven by commonalities 27 

in relative sea level trends and climate - distinct local variations in late Quaternary coastal evolution can 28 

be identified. This is ascribed to local controls on preservation (accommodation space) and sediment 29 

supply (shoreline position and antecedent offshore sediment supplies). Such findings may have wider 30 

implications for interpretations of site context/resource availability at several notable coastal 31 

archaeological sites, and more broadly suggest that local offshore or onshore geologic contexts can at 32 

times assume greater influence on a preserved coastal aeolianite record than the regional-scale trends in 33 

sea level and climate. 34 

Keywords: coastal dune, sea level, luminescence dating, Holocene, Pleistocene, archaeology 35 
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1. Introduction 36 

The passive margin southern Cape coast of South Africa (Figure 1) preserves an impressive record of Plio-37 

Pleistocene sea-level change and associated coastal dune formation. The latter comprises extensive suites 38 

of carbonate-cemented aeolian dunes (�aeolianite�) (Roberts et al., 2011; 2013). Coastal aeolianites are 39 

typically associated with temperate carbonate shelves (Brooke, 2001) and, considered globally, the 40 

southern Cape aeolianites are particularly extensive and well-studied, with some of the largest examples 41 

preserved as the ~200 m high barriers of the Wilderness Embayment (Martin, 1962; Tinley, 1985; 42 

Illenberger, 1996; Bateman et al., 2011; Figure 1). Aeolianites are widespread from Cape Town (Roberts 43 

et al., 2009) to Port Elizabeth and are formally mapped as the Cenozoic Bredasdorp Group (Malan, 1989). 44 

They tend to young in a seaward direction (Roberts et al., 2008), with deposits near the contemporary 45 

coastline largely dating from the middle Pleistocene to the Holocene (Roberts et al., 2008; 2013). The 46 

widespread application of optically stimulated luminescence (OSL) dating has created a relatively detailed 47 

picture of the links between the sea-level change and past episodes of onshore coastal dune/aeolianite 48 

accretion (Bateman et al., 2004; Carr et al., 2007; Roberts et al., 2008; Bateman et al., 2011; Roberts et 49 

al., 2012; 2013; Cawthra et al., 2012; 2014; 2018).  There are now more than 100 published OSL ages for 50 

southern Cape aeolianites. The resulting emplacement timings and dune types are inferred to broadly 51 

reflect the interplay between sediment supply (mediated by relative sea-level change), underlying 52 

geological/topographic controls, which determine shoreline positions through time (Bateman et al., 53 

2011), and climatic controls (via vegetation cover) on the propensity for dunes to migrate inland or be 54 

stacked vertically (Roberts et al., 2009). The coastline is considered to have experienced limited tectonic 55 

activity (and associated vertical motion) during the middle-late Pleistocene (Roberts et al., 2012).  56 

Most phases of dune/aeolianite formation preserved onshore are associated with relatively high 57 

sea levels prior to, during and immediately after interglacial sea level highstands, particularly marine 58 
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oxygen isotope stages (MIS) 11, 7, 5e, 5c and 5a (Bateman et al., 2004; Roberts et al., 2008; 2012; Carr et 59 

al., 2010; Bateman et al., 2011). The need for a proximal shoreline sediment source is implied and indeed 60 

amino acid racemisation analyses have further demonstrated the importance of nearshore sediment 61 

reworking during highstands for the construction of barrier dune systems (Roberts et al., 2008). On the 62 

southern Cape, sea levels repeatedly attained similar elevations which, combined with a relatively humid 63 

climate, promoted the vertical accretion of coastal dune systems, as opposed to extensive inland 64 

migration (Illenberger, 1996; Roberts et al., 2009). This limited landward migration of dunes is thought to 65 

account for an absence of onshore dune ages from glacial periods (i.e.  MIS 4-2), when the sediment 66 

source, and thus locus of net dune accumulation, tracked southwards onto the continental shelf (Birch et 67 

al., 1978; Martin and Flemming, 1986; Cawthra et al., 2012; 2014; 2018).  68 

 69 

Somewhat different coastal dune/aeolianite records are seen elsewhere. On the KwaZulu-Natal 70 

coastline (South Africa), for example, last interglacial coastal dune systems were both weathered (de-71 

calcified) and in places reworked during MIS 2 (Botha et al., 2003; Porat and Botha, 2008). Further afield, 72 

and in contrast to South Africa, aeolian reworking of exposed continental shelf sediments has been 73 

invoked to account for MIS 3 aeolianite formation in Western Australia (Brooke et al., 2014; 2017). 74 

Similarly, drier glacial climates and exposed continental shelf sediments during lowstands are inferred to 75 

account for MIS 5c/b, 4 and 3 aeolianite formation in the Mediterranean basin (Fornos et al., 2009; 76 

Andreucci et al., 2012).  On the southern Cape of South Africa offshore dunes have been mapped 77 

(Bateman et al., 2011, Cawthra et al., 2012; 2014) and have recently been shown to date to ~110 ka and 78 

80 ka (Cawthra et al., 2018), but thus far no onshore MIS 3 or MIS 2 aeolianite has been identified. 79 
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In this study, we present new bathymetry and lithological data, and a suite of new OSL ages for 80 

aeolianites and dunes located in an unusual southern Cape context: the prominent headland of the 81 

Robberg Peninsula, south of Plettenberg Bay (Figures 1 and 2).  82 

In rocky coast contexts, cliff-fronting and climbing-dune aeolianites have been described in detail 83 

in the Mediterranean Basin (Clemmensen et al., 1997; Fornos et al., 2009; Andreucci et al., 2010a; de Valle 84 

et al., 2016). In such situations, where there is much more restricted onshore accommodation space, it 85 

has been shown that there is a strong dependency on relative sea-level change to promote periods of 86 

dune accumulation, via liberation of a sediment source and provision of new accommodation space for 87 

dunes to form within. By contrast, in South Africa, few studies have considered aeolianite from headlands 88 

although several locales, such as Pinnacle Point (near Mossel Bay), show evidence that some 89 

contemporary rocky headlands did, at times, host sandy beach-dune systems that are no longer present 90 

(cf. Shaw et al., 2001; Bateman et al., 2004; Jacobs, 2010). The Robberg Peninsula therefore presents an 91 

important opportunity to consider a variant of the broad southern Cape glacial-interglacial coastal 92 

geomorphic response. In this context, the aims of this study were to:  93 

• use OSL dating to provide a suite of numerical age constraints for southern Cape 94 

aeolianites/dunes in a headland rocky-shoreline setting;  95 

• consider the timing of dune activity in light of newly digitised offshore single-beam bathymetric 96 

data and existing literature pertaining to offshore sediment composition;  97 

• consider the drivers of dune formation/preservation in high-energy, headland environments of 98 

the southern Cape;  99 

• relate these findings to the regional patterns of aeolianite deposition in South Africa and further 100 

afield. 101 
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2. Study area 102 

2.1 Geomorphic setting and the Robberg Peninsula 103 

Structurally the southern Cape coastline comprises three key elements - the Cape Fold Belt mountains, an 104 

(onshore)  seaward-dipping coastal platform and a broad continental shelf (Birch, 1978) (Figure 1). The 105 

Cape Fold Belt is the result of orogenesis of the Cape Supergroup ~278 � 230 Ma (Newton et al., 2006). 106 

Following fragmentation of Gondwana and the opening of the South Atlantic in the Early Cretaceous (~136 107 

Ma) (Martin and Hartnady, 1986), offshore, arcuate normal faults bounded several graben and halfgraben 108 

structures, which became depocentres for Mesozoic and Cenozoic terrigenous sediments (Tinker et al., 109 

2008 a,b). The half-grabens morphologically manifest themselves as a series of rocky headlands separated 110 

by embayments. The latter particularly occur where Bokkeveld Group shales have been preferentially 111 

eroded (e.g. Roberts et al., 2013). These basins contain Late Mesozoic clastic sedimentary infills (e.g. Enon 112 

and Kirkwood Formations) and have tended to be loci for Neogene - Quaternary aeolian and marginal-113 

marine deposition (Roberts et al., 2008; Marker and Holmes, 2010). This structural control defines the 114 

major aeolianite-containing embayments (e.g. Still Bay and Mossel Bay). The Wilderness Embayment is 115 

an exception, in that the embayment is the result of preferential erosion of less resistant Precambrian 116 

strata (Dunajko and Bateman, 2010), but it too presents a significant space within which barrier dunes 117 

and back-barrier lagoons have formed and been protected from subsequent erosion during the last 118 

250,000 years (Bateman et al., 2011).  119 

Plettenberg Bay,  approximately 50 km east of Wilderness, is one of a series of eastward-opening 120 

headland bays of the southern Cape (Figure 1). It has a log-spiral planimetric shape (Bremner, 1983) and 121 

has developed in the lee of the Robberg Peninsula, which defines its southern boundary. Plettenberg Bay 122 

lies at the eastern margin of the Agulhas Bank, at the divide between the broad shelf to the west and a 123 

narrower shelf to the east (Figure 1). The shelf break at Robberg occurs at about 200 m water depth, 124 
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which is ~90 km to the south. The -100 m isobath, however, is only 19 km from the coast. The Robberg 125 

Peninsula extends 3.7 km into the Indian Ocean (Figures 1 and 2). It is orientated E-W (aligned on a 126 

heading of 106°) and is the only true peninsula on the entire southern Cape coastline. It varies in width 127 

from 0.75 km to 0.2 km (the latter represents �The Gap�- a narrowing at the western end of the peninsula) 128 

and reaches 120 m above sea level at its eastern end. Geologically, it comprises quarzitic sandstones of 129 

the Early Cretaceous Robberg Formation and younger Cretaceous conglomerates (Toerien, 1979; 130 

Reddering, 2003). The Robberg Formation consists of sandstone, subordinate conglomerate and breccia, 131 

reaching a thickness of 95 m (Reddering, 2003). The overlying Enon Formation comprises reddish-brown 132 

to orange-yellow conglomerate with infrequent interbedded sandstone and mudstone (Shone, 2006). 133 

Clasts were derived from the arenaceous Table Mountain Group north of the Gamtoos Basin. The 134 

shoreline around much of the peninsula is rocky, with well-developed shore platforms at the southeast 135 

end of the peninsula (Figure 2). Three rivers, the Piesang, Bitou and Keurbooms enter Plettenberg Bay, 136 

with the latter two sharing a combined estuary mouth at Formosa Bay. The estuaries act as sediment traps 137 

and allow only the fine fraction of sediment to pass through in suspension during floods (Reddering, 1983).  138 

The Peninsula presently features an active �headland-bypass� dune system (sensu Tinley, 1986; 139 

Illenberger and Burkinshaw, 2008) which comprises a climbing-falling dune system (�Witsand�) located 140 

mid-way along the Peninsula (Figure 2). This produces net cross-headland sand transport, which is a 141 

significant component of the down-drift/down-wind Robberg Beach sediment budget (Hellström and 142 

Lubke, 1996). The source of sand is a large tombolo formed between �The Island� (an offshore aeolianite 143 

stack; Butzer and Helgren, 1972) and the peninsula (Figure 2). The tombolo is a similarly unique feature 144 

on the southern Cape. South of �The Gap� on the steep coastal cliffs of the southwestern peninsula, 145 

several archaeologically-significant caves have formed, notably Nelson Bay Cave (Klein, 1972; Deacon, 146 

1984; Inskeep, 1987) and Hoffman�s Cave (also known as East Guanogat Cave; Butzer and Helgren, 1972; 147 

Rudner and Rudner, 1973; Kyriacou, 2009). Immediately east of Hoffman�s Cave the first significant 148 
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accumulations of uncemented aeolian sands occur, comprising well-vegetated unconsolidated dune sands 149 

banked against the rock cliff-line west of the tombolo (Figure 2). Moving eastwards to the tip of the 150 

peninsula, the unconsolidated dune sand cover is much thinner, but significant exposures of well-151 

cemented aeolianite are found along the southeast margin of the peninsula.  152 

 153 

2.2 Climate and oceanography 154 

The Plettenberg Bay area is part of the year-round (aseasonal) rainfall zone that characterises the 155 

southern Cape coast between George and Port Elizabeth. This region represents the transition between 156 

the winter rainfall zone of the west and the summer rainfall zone to the east. Thus, the area is relatively 157 

humid and mean annual rainfall is in the range of 800-1000 mm yr-1. To the south and east of Robberg, 158 

the near coastal current flow is in a westerly direction (Tripp, 1967) in response to the Agulhas counter-159 

current and flows at an average rate of 1.5 knots. On the southern Cape coast, the prevailing winds are 160 

from the west to west-southwest, with a strong easterly and east-southeasterly component during the 161 

spring and summer months. The strongest wind speeds (which may exceed 20 m s-1) occur in the austral 162 

winter/spring between July and October (Hellström and Lubke, 1996), coincident with the passage of 163 

westerly systems through the Cape winter rainfall zone. The dominant wave regime is from the southwest 164 

(Silvester, 1974; Bremner, 1983) and the long-period waves are diffracted around the Robberg Peninsula. 165 

Median significant swell heights in this region (east of Knysna) are of the order ~2.5 m and the spring tide 166 

range is approximately 2 m (Whitfield et al., 1983). The coastline is thus considered microtidal (e.g. 167 

Cooper, 2001). 168 

  169 
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3. Sampling sites 170 

We aimed to describe and provide age constraints for the major occurrences of aeolian sediments 171 

on the Robberg Peninsula. These comprise: 1) the aeolianites on the southeastern margin of the 172 

Peninsula; 2) aeolianites on the offshore stack (�The Island�) south of the Peninsula; 3) unconsolidated, 173 

but vegetated dune sands west of the active Witsand system and 4) a thick sequence of aeolian sand 174 

preserved within Hoffman�s Cave, west of Witsand.  175 

3.1 The Robberg Peninsula 176 

Aeolianite is exposed for ~800 m (laterally) near the Peninsula tip (Figure 3). At the eastern-most 177 

exposure (sample Leic13004) aeolianite is preserved in a distinct topographic low in the underlying 178 

Robberg Formation. The aeolianite presents high-angled foreset beds (measured dips ranging between 179 

28 and 32°) dipping to the ENE (measured range 68-90°) and is well-cemented, with limited evidence of 180 

root bioturbation or rhizoliths. Small-scale slump structures are apparent in some locations. About 400 m 181 

to the west, additional semi-continuous (alongshore) exposures of well-cemented aeolianite are seen. 182 

The upper surface of the aeolianite here is characterised by abundant rhizoliths, and close to OSL sample 183 

Shfd13049 (Figure 2) it is overlain by a veneer of ~1.5 m of uncemented dune sands. The aeolianite is 184 

characterised by high-angle (28-30°) foreset beds dipping in easterly or north-easterly directions 185 

(measured azimuths 80-100°). At the western limit of these exposures, (sample Leic13005), similarly well-186 

cemented aeolianite is preserved within a low point in the underlying Robberg Formation (Figure 3). At 187 

present, it is also protected from marine erosion by large hard-rock outcrops and boulders, and an 188 

extensive shore platform. 189 

  190 

3.2 The Island 191 
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A striking feature of the study area is �The Island�; an aeolianite stack connected to the peninsula 192 

by a 300 x  500 m sandy tombolo (Figures 2, 4 and 5a/c). The tombolo Island length (I) to offshore distance 193 

(J) ratio is ~1.6 and is typical of tombolo forms in high-energy settings (Sanderson and Elliot, 1996). The 194 

Island itself measures ~450 m x ~150 m with a long axis orientation of 73°. It is composed entirely of 195 

aeolianite, with an upper veneer of uncemented dune sands. (Figure 4). Butzer and Helgren (1972) 196 

provided a detailed description of The Island�s stratigraphy (although not of aeolianite elsewhere on the 197 

Peninsula) and argued that it is a remnant of a former barrier dune system (identifying topsets and 198 

backsets and foreset bedding structures). They described two well-developed palaeosols (P1 and P2) 199 

separated by ~8 m of aeolianite. A radiocarbon date of 7300 ± 120 14C yr BP (UW201: 7595-8015 cal yr. 200 

BP; Table S1) was obtained from a terrestrial gastropod (Achatina zebra) in uncemented dune sands 201 

stratigraphically above the upper Palaeosol P2. A second radiocarbon date of 16,000 ± 220 14C yr BP 202 

(18,770-19,800 cal yr. BP; Table S1) from the lower palaeosol (P1) was obtained using �inorganic 203 

carbonate� and is of questionable reliability. The total thickness of the aeolianite below P1 was estimated 204 

to be > 30 m (Butzer and Helgren, 1972). 205 

The two major palaeosols are readily apparent, although subtler protosols and weakly decalcified 206 

layers can be identified within the aeolianite (i.e. between P1 and P2) on the northwestern side of The 207 

Island.  The upper palaeosol P2 is a prominent feature running across much of the upper surface (Figure 208 

4). It comprises de-calcified/rubified sands, underlain by an often well-developed calcrete, comprising 209 

both nodular and massive (hardpan) pedogenic calcrete types. It is overlain by up to 2 m of unconsolidated 210 

sands containing abundant terrestrial gastropods (presumably the same sands/shells from which Butzer 211 

and Helgren�s (1972) radiocarbon date was obtained). At the northwest edge of The Island a large shell 212 

midden dominated by Perna perna (Mytilidae) and containing Later Stone Age (LSA) artefacts is preserved, 213 

the base of which dates to 2870-3116 cal yr. BP (Table S1). Unconsolidated sands immediately underlying 214 

the midden, but overlying palaeosol 2 were sampled for OSL dating (Leic13002). Beneath these sands P2 215 
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is clearly expressed and is, in turn, underlain by rhizolith-rich aeolianite (relating to OSL sample Shfd13047, 216 

sampled below the rhizolith horizon). At the southwestern (seaward facing) margin of The Island 217 

landwards-dipping (~20°) aeolianite (OSL sample Shfd13048) is exposed. This lies stratigraphically 218 

between P1 and P2, while on the southern side of The Island the two palaeosols are separated by 9.5 m 219 

of well-cemented aeolianite (OSL sample Leic13003). As on the mainland, the aeolianite is characterised 220 

by high-angle eastwards dipping beds. The upper layers are root bioturbated, but two prominent foreset 221 

units are also separated by a unit of low-angle laminated beds (see also Butzer and Helgren, 1972), which 222 

are exposed on the SE side of The Island (also between P1 and P2).  223 

3.3 Unconsolidated dunes in the Witsand system and Hoffman�s Cave 224 

Beyond the Witsand system, unconsolidated and/or vegetated dune sands are limited in occurrence. 225 

However, significant dune deposits are found ~300 m west of Witsand, forming a distinct cliff-front dune 226 

reaching ~31 m above the shoreline (Figure 5b). The crest line of the dune runs for 150 m alongshore and 227 

is ~10-20 m in front of the hard-rock cliff line. The distance between the dune crest and cliff narrows to 228 

the NW as the cliff line lowers and this feature is interpreted as an echo dune (Clemmensen et al. 1997). 229 

Augering from the dune brink revealed a total sand depth of 10.5 m. Four samples (Leic13008, Leic13007, 230 

Shfd13052 and Shfd13053) were obtained for OSL dating. Hoffman�s Cave lies a further 100 m west of the 231 

echo dune. This contains ~1.6 m of LSA shell midden deposits (Figure S1). There have been several 232 

attempts to provide a chronology for this deposit (Butzer and Helgren, 1972; Fairhall et al., 1976). The 233 

best resolved dates were obtained on charcoal from a controlled excavation in 2007-2008, and range from 234 

3453-3644 cal. yr BP (Beta-241142) to 4233-4529 cal yr. BP (Beta-241146) (Kyriacou, 2009; Table S1) 235 

Beneath the LSA deposits several metres of archaeologically-sterile dune sand were reported in previous 236 

excavations, the basal depth and age of which (along with the presence of any underlying archaeology) 237 
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were unknown. Here, through augering we sampled these sands for OSL dating to a depth of 5.5 m (See 238 

Figure S1 for details of the specific stratigraphic relationships).  239 

 240 

4. Methods 241 

4.1 Offshore bathymetry 242 

A new bathymetric map, used as a basis for offshore interpretations, was constructed through a 243 

compilation of existing datasets (SANHO, 1972; Flemming et al., 1983) and gridded at the Council for 244 

Geoscience using the statistical method of Kriging in software Surfer 9 to smooth the varying resolutions. 245 

Additional datasets were derived from single-beam echo-sounding data collected by the Fisheries Division 246 

of the Department of Agriculture, Forestry and Fisheries during routine demersal cruises on the vessels 247 

R/V Africana and R/V Algoa (de Wet, 2013) and satellite altimetry data from the ETOPO1 - 1Arc-Minute 248 

Global Relief Model (Amante and Eakins, 2009). 249 

 250 

4.2 Sediment Characterisation 251 

Particle size distributions (0.01-ϯϱϬϬ ʅŵͿ ĨŽƌ ĚƵŶĞ sands and aeolianites were obtained using a 252 

Mastersizer 3000 laser particle size analyser (Malvern Panalytical Ltd.), following treatment with 253 

dispersant. To consider geochemistry, metal oxide concentrations were determined via XRF (PANalytical 254 

Axios Advanced XRF spectrometer) at the University of Leicester with additional trace element data (some 255 

of which was used for environmental dose rate measurements for OSL dating) determined via Inductively-256 

Coupled Plasma-Mass Spectrometry (ICP-MS) using a ThermoScientific ICAP-Qc quadrupole ICP mass 257 

https://www.sciencedirect.com/science/article/pii/S0025322718302834?via%3Dihub


Final version at https://www.sciencedirect.com/science/article/pii/S0025322718302834?via%3Dihub  

13 

 

spectrometer. For this, samples were dissolved in a metal acid mixture (HF, HCl, HNO3) at 120°C in sealed 258 

containers for 12 hours. 259 

 260 

4.3 OSL dating 261 

Fifteen OSL samples were obtained from natural exposures by hammering opaque steel / plastic tubes 262 

into exposed sediment, or by cutting large blocks of well-cemented aeolianite (Leic13004). The latter was 263 

spray painted and broken open under red light conditions. Tube ends were retained for moisture content 264 

and dose rate estimates. The echo dune and sands from Hoffman�s Cave were obtained using a Dormer 265 

sand drill system. Samples were independently prepared and equivalent doses independently measured 266 

in the Sheffield University and the University of Leicester OSL laboratories using otherwise identical 267 

procedures. Samples were treated with hydrochloric acid to remove carbonates, 32% H2O2 to remove 268 

organic matter and then sieved to fractions betǁĞĞŶ ϮϱϬ ĂŶĚ ϵϬ ʅŵ͘ Heavy liquid was used to isolate the 269 

fraction between 2.58-2.70 g cm-3 and the samples were etched in 48% HF for 45 minutes. All 270 

measurements were carried out on a Risø TL-DA 20 TL/OSL readers. Sub-samples were mounted as 9 or 2 271 

mm spots on stainless steel disks using silicone spray. The total number of 180-212 µm grains within the 272 

area of a 2-mm spot is 150-250 grains.  273 

OSL was detected with an EMI 9235QA photomultiplier tube and a U-340 filter. Stimulation (40 s 274 

at 125°C) was provided by blue LEDs (stimulation wave length 470 nm). Laboratory irradiations were 275 

produced by a 90Sr beta source, calibrated for using the Risø calibration quartz. Equivalent doses were 276 

determined using the single aliquot regeneration (SAR) protocol (Murray and Wintle, 2000; 2003). Dose 277 

response curves (DRCs), comprising both zero and recycling dose points were constructed using the first 278 

0.8 seconds of the OSL signal with a background subtraction based on the last 2 seconds. These dose 279 

response curves were fitted with saturating exponential fits. Equivalent dose uncertainties include 280 
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counting statistics, curve fitting uncertainties and a 1.5% systematic uncertainty. Aliquots were rejected 281 

from the analysis if they exhibited recycling ratios more than 10% from unity, D0 estimates (the parameter 282 

describing the degree of saturation for a saturating exponential fit) > twice (given measurement 283 

uncertainties) the equivalent dose (e.g. Thomsen et al., 2016), recuperation (zero dose signal) >5% of the 284 

natural sensitivity-corrected luminescence signal or failed the IR depletion test for feldspar contamination 285 

(Duller, 2003). The suitability of the SAR protocol and specific preheating conditions were determined via 286 

dose recovery preheat plateau tests (Table S2). These demonstrated that accurate and precise 287 

determinations of the administered dose could be obtained across a range of preheating conditions. Final 288 

equivalent doses (Table 1) were derived using the Central Age Model (CAM) of Galbraith et al., (1999) and 289 

include an additional 3% laboratory beta source calibration uncertainty within the quoted 1 sigma De 290 

uncertainties.  291 

Given the sampling of well-cemented aeolian deposits, inter-aliquot equivalent dose scatter due 292 

to incomplete bleaching or post-depositional bioturbation was not anticipated to be significant. However, 293 

some inter-grain equivalent dose variability has been reported for aeolianites both in this region (Bateman 294 

et al., 2004) and beyond (Brooke et al., 2014). As such, supplementary analyses using 2 mm aliquots, and 295 

some single grain analyses (Table 1) were undertaken.  Single grain measurements were conducted using 296 

a focused 532 nm Nd:YVO4 solid state diode-ƉƵŵƉĞĚ ůĂƐĞƌ ĞŵŝƚƚŝŶŐ Ăƚ ϱϯϮ Ŷŵ ĨŽĐƵƐĞĚ ƚŽ Ă ƐƉŽƚ ΕϮϬ ʅŵ 297 

in diameter with grains rejected if the test dose signal was less than 3 sigma above background, the 298 

relative test dose uncertainty was larger than 20%, or recycling ratio exceeded 20% of unity. Equivalent 299 

doses determined via the single grain, 2 mm single aliquot and 9 mm single aliquot analyses are consistent 300 

(Table 1; Figure S2) and do not suggest the presence of significant numbers of grains with poor OSL 301 

properties (which are removed from single grain analyses) that might bias the single aliquot data (e.g. 302 

Brooke et al., 2014). The level of over-dispersion for single aliquot and single grain measurements is typical 303 

of well-bleached aeolian sediments in this region (Jacobs et al., 2003a; 2003b). Ages obtained using the 304 
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Central Age Model (CAM) equivalent dose are thus considered suitable estimates of the burial doses 305 

received by the samples.  306 

Environmental dose rates were calculated in an identical manner for all samples (regardless of 307 

the laboratory in which the De was measured) and were determined using in-situ gamma spectrometry 308 

(using the �windows� method; Aitken, 1985) or using a combination of ICP-MS analysis and XRF (latter for 309 

K2O content). Elemental concentrations were converted to dose rates following Guerin et al., (2011) and 310 

were then corrected for grain size (Mejdahl, 1979), etching (Bell, 1979) and water content (Aitken, 1985). 311 

An internal alpha dose rate of 30 ± 8 mGy a-1 was included (Jacobs et al., 2003a). Water contents were 312 

based on modern values with a 3% (absolute content) uncertainty. The cosmic dose was calculated 313 

following Prescott and Hutton (1994) using the measured burial depths. For the Hoffman�s Cave samples, 314 

the cosmic dose was further adjusted for the shielding of 50% of the horizon by the rock forming the cave.   315 

It was noted, as found elsewhere along the southern Cape, that the elemental ratio of U:Th is 316 

relatively high (Figure 7, Table S4). This most likely reflects the incorporation of marine carbonate 317 

(Bateman et al., 2008) and here the highest U:Th ratios are associated with the highest carbonate contents 318 

(mostly the aeolianites rather than dune sands). In previous studies in the region, dose rates (and thus 319 

OSL ages) derived from such materials have shown acceptable correspondence with independent age 320 

control (Bateman et al., 2008; Bar-Matthews et al., 2010). For samples with both gamma spectrometry 321 

measurements and ICP-MS measurements (Leic13002, Leic13006) the dose rates (and resulting ages) are 322 

in broad agreement (Table S3), despite each method measuring differing parts of the 238U and 232Th decay 323 

chains. For Hoffman�s Cave, independent age constraints are provided by the radiocarbon ages from the 324 

overlying LSA deposit. The resulting ages therefore assume no change in burial dose rate. 325 

https://www.sciencedirect.com/science/article/pii/S0025322718302834?via%3Dihub


Final version at https://www.sciencedirect.com/science/article/pii/S0025322718302834?via%3Dihub  

16 

 

5. Results 326 

5.1 Offshore topography/bathymetry 327 

The offshore topography is characterised by a distinct terrace with minimum depth of -45 m and a 328 

maximum depth of -60 m (Figures 1 and 6). This is located close to the contemporary coast and it serves 329 

as a platform for the accumulation of shelf sediments between the subaerially exposed peninsula and the 330 

steeper offshore shelf below -65 m. Offshore sediments in this region tend to be trapped in the nearshore 331 

zone, and at Robberg they form an elongated sediment prism from -45 m, which extends 2 km offshore 332 

(see also Martin and Flemming, 1986). Further south, a clear change in gradient between the inner- and 333 

mid-shelf is observed as the seafloor drops relatively rapidly to ~-60 to-80 m at ~7 km from the coast. The 334 

bathymetry then deepens more gradually to -120 m at the shelf edge, where the MIS 2 Last Glacial 335 

Maximum shoreline would have been located, approximately 30 km from the contemporary coastline. 336 

The most prominent feature on bathymetric datasets from Robberg is a submerged spit-bar extending 337 

south and east of the Peninsula, which rises from -90 m in the south and from -55 m in the north, reaching 338 

up to -40 m below Mean Sea Level. This 7.5 km long deposit reaches a maximum thickness of 51 m 339 

(average of 40 m). By contrast, the sediments in Plettenberg Bay to the north and further east present a 340 

far thinner veneer, reaching a maximum thickness of just 5 m (Birch, 1978). 341 

 342 

5.2 Aeolianite/Dune sedimentology and geochemistry 343 

Particle size data for the dune and aeolianite samples are shown in Table 2. The aeolianites comprise 344 

negatively skewed (-0.20 to -0.06), well-sorted (0.99 -0.63 phi) medium-grained sands (median 1.48 to 345 

1.87 phi). The echo dune and the Hoffman�s Cave dune sands are texturally identical to one another, but 346 
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are finer (median 1.86 to 2.02 phi), better sorted (0.41-0.44 phi), and less-skewed (0.00 to -0.02) than the 347 

aeolianites.  348 

 349 

In terms of their trace element geochemistry, elemental ratios usually associated with immobile (e.g. 350 

zircon) minerals (e.g. Zr/Hf, La(N)/Yb(N)) show no substantial difference between the unconsolidated 351 

dunes and aeolianite (although note that the sample numbers are small), suggesting no major differences 352 

in their non-carbonate sediment provenance. These ratios are broadly comparable to the Wilderness 353 

dune sands (though they appear more variable at Robberg) (Figure 7; see also Dunajko and Bateman 354 

2010), with the ratio from the Rare Earth Elements (La(N)/Yb(N)) slightly higher at Robberg compared to 355 

Wilderness. The average Ti/Zr ratios for the cemented (0.92) and unconsolidated dunes (0.90) at Robberg 356 

are also essentially identical. The total calcium content (largely from CaCO3) and the associated element 357 

strontium is distinctly lower in the Robberg unconsolidated dunes compared to the Robberg aeolianite 358 

(Table S4), although the Sr/Ca ratio is identical (0.005) across the sites, and identical to dunes at 359 

Wilderness, reflecting a dominantly foraminifer/coccolith contribution to the carbonate fraction (Kim et 360 

al., 1999). The reduced Ca and Sr content of the unconsolidated dunes compared to the aeolianite is 361 

mirrored by the trends in several element ratios viz: Rb/Sr and Ba/sr (also Th/U) (Figure 7; Table S4).  362 

 363 

5.3 OSL dating results 364 

All samples produced bright, rapidly decaying luminescence signals (reaching <10% of initial signal within 365 

0.5 seconds), suggesting a dominant quartz fast component OSL signal (Figure 8). Consistent with this, 366 

dose recovery data (Murray and Wintle, 2003) for a suite of samples demonstrate good accuracy and 367 

precision across a range of temperature treatments (Table S2). For the Pleistocene aeolianites, equivalent 368 
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doses fall in the range of 58 to 80 Gy and most aliquots produced equivalent doses below twice the D0 369 

parameter (for Leic13003 this accounted for 4 aliquot rejections). Very few aliquots were rejected due to 370 

failure of recycling ratio, recuperation or feldspar depletion tests (Table 1). The independently obtained 371 

equivalent doses from the two different luminescence laboratories show good stratigraphic conformity 372 

with, for example, Leic13006 producing an age of 7.0 ± 0.3 ka and the subjacent sample Shfd13050 373 

producing an age of 8.7 ± 0.4 ka. 374 

 375 

OSL ages for the Robberg Peninsula span 67 ± 4 ka to 7.1 ± 0.4 ka and show clear spatial patterning. The 376 

oldest ages are from the aeolianites at the southeast tip of the Peninsula, 67-56 ka (Leic13004, Shfd13049, 377 

Leic13005). By contrast, all the sampled aeolianite from The Island (Figure 9; samples Leic13001, 378 

Shfd13047, Shfd13048, Leic13003), which lies stratigraphically between P1 (lower) and P2 (upper), falls 379 

between 35 ± 3 and 42 ± 3 ka. The age of the (inaccessible) aeolianite below P1 remains unknown but may 380 

correspond in age with the older aeolianite from the eastern Peninsula. Leic13002 from above P2 (Figure 381 

4) produced an age of 6.9 ± 0.4 ka, which is close to Butzer and Helgren�s (1972) reported radiocarbon age 382 

(dune snail calibrated age of 7595-8105 cal yr. BP) from sands overlying P2, noting that: a) the death of 383 

their sampled snail may predate the deposition of the dune sands and b) their exact sampling location is 384 

unknown. 385 

The dune sands spanning the depth range of the echo dune east of Hoffman�s Cave and underlying 386 

the LSA midden in Hoffman�s Cave all have early Holocene ages (Table 1). For the echo dune, accumulation 387 

began at 10.2 ± 0.5 ka (basal sample at 9.8 m depth and 0.5 m above bedrock) and continued to 7.1 ± 0.4 388 

ka (3.3 m depth), with the uppermost two samples producing ages with overlapping uncertainties. The 389 

most surficial sample, Leic13008, shows the greatest single grain (and single aliquot) over-dispersion (32% 390 

OD; Table 1), reflecting the presence of a small number of higher dose grains (Figure S2). No obvious 391 
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evidence for a depositional break was observed in the sediment during excavation, but it cannot be fully 392 

assessed whether there was continuous accumulation between Shfd13052 (8.8 m depth and 9.1 ± 0.4 ka) 393 

and Leic13007 (7.1 ± 0.4 ka). The dune sands within Hoffman�s cave 150 m to the west closely match the 394 

ages of the adjacent dune (9.3 ± 0. ka to 7.0 ± 0.4 ka; Table 1) and are also stratigraphically consistent 395 

with the age of the overlying LSA midden (Table S1; Figure S1). Both sites suggest that the early Holocene 396 

was a time of significant aeolian activity on the southern margin of the peninsula.  397 

6. Discussion 398 

The history of onshore dune/aeolianite formation along the southern Cape has been considered 399 

in detail, particularly in the Wilderness embayment (Bateman et al., 2004; 2011; Cawthra et al., 2014). 400 

Combining findings from studies further west at Mossel Bay (Jacobs, 2010), Still Bay (Roberts et al., 2008; 401 

Bateman et al., 2008), the Agulhas Plain (Carr et al., 2006; Bateman et al., 2008) and False Bay (Roberts et 402 

al., 2009), there are broadly-comparable trends in the timing of onshore aeolianite/dune emplacement, 403 

with accumulation largely associated with interglacial highstands (summarised in Roberts et al., 2013). At 404 

the Wilderness embayment, except for two samples of surficial (decalcified) sands from the seaward 405 

barrier (Carr et al., 2007) there is an absence of OSL ages from the MIS 4 (79 ± 9 ka; Shfd08189) until MIS 406 

1 (6.9 ± 0.4 ka; Shfd04275) (Bateman et al., 2011; Figure 10). Based on eustatic sea level trends, at 407 

Wilderness this was coincident with a sea level regression to below ~-30 m at c. 80 ka (Figure 10), which 408 

would have placed the contemporary shoreline ~15 km south of the modern shore (Bateman et al., 2011). 409 

The presence of offshore aeolianite ridges demonstrates that coastal aeolian activity tracked the receding 410 

shoreline at both Wilderness and Mossel Bay (Cawthra et al., 2014; 2015; 2018).  By contrast, the 411 

aeolianites at Robberg fall almost entirely within MIS 3 (57-29 ka; Lisiecki and Raymo, 2005), while the 412 

unconsolidated dune ages all coincide with the post-glacial Marine Transgression (PMT). The aeolianites 413 

therefore represent the first identified onshore MIS 3 aeolianite on the southern Cape. The ages from the 414 
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southeast Robberg Peninsula correspond to early MIS 3, while the ages from upper strata of The Island 415 

cluster towards the end of MIS 3 (36-42 ka). Plotted in relation to the Wilderness dataset (Figure 10) they 416 

fill a significant and longstanding gap in our coastal geomorphic-aeolian record. These new ages present 417 

several questions: 1) why are  MIS 5 aeolianites absent at Robberg despite extensive MIS 5 accumulation 418 

elsewhere? 2) why only in the context of Robberg has onshore evidence of MIS 3 dune activity been 419 

preserved? 3) how do these ages/mechanisms relate to the regional pattern of aeolianite deposition? 420 

6.1 Why are there no MIS 5 aeolianites at Robberg? 421 

On the southern Cape, large headlands such as Cape Agulhas, Buffels Bay and Cape St. Francis are 422 

associated with substantial accumulations of unconsolidated dunes and aeolianite, which can be traced 423 

to coastline/beaches orientated perpendicular to the prevailing (westerly) sand transporting winds 424 

(Tinley, 1985; Carr et al., 2006; Claassen, 2014). This has generated extensive headland dune systems, 425 

which in some locations connect with the down-drift embayment forming �headland by-pass� dunefields 426 

(Illenberger and Burkinshaw, 2008; Roberts et al., 2009). These have been shown to date to both the 427 

Holocene (Carr et al., 2006; Bateman et al., 2008) and to previous interglacials (Roberts et al., 2009). The 428 

apparent absence of MIS 5 aeolianite at the smaller (and differently orientated) Robberg headland must 429 

therefore reflect a lack of accommodation space (Figures, 2, 3 and 5).   430 

At Robberg today, except for the small beach at The Gap and the larger tombolo system (which is 431 

contingent on the presence of The Island � see below), there are no sandy beaches to supply dune 432 

systems, and much of the modern shore is characterised by shore platforms backed by cliffs cut into the 433 

pre-Quaternary sandstone (Figure 2). This was probably the case during MIS 5e when the site was also 434 

likely to have been a peninsula and, as today, would have been a focus for incoming swell wave energy 435 

(e.g. Heydorn and Tinley, 1980).  The 6-8 m higher relative sea level during the last interglacial would have 436 

further limited the potential for dune accumulation (Carr et al., 2010; Cawthra et al., 2018). The Robberg 437 
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MIS 3 aeolianites are likely to have been preferentially preserved because they lie within (and in some 438 

cases, are presently protected from the sea by) the underlying hard-rock geology (Figure 3). Partial 439 

analogues for this situation can be identified. For example, at Pinnacle Point (near Mossel Bay to the west) 440 

only vestiges of MIS 5 and older aeolianites are preserved in cliff crevasses and caves (Figure S3), with 441 

caves covered by dunes at 90 ka (MIS 5c; Jacobs, 2010). By contrast, in low-lying large embayments such 442 

as Wilderness, multiple generations of aeolianite dunes could form through MIS 5 and older interglacials 443 

and have been preserved. Such a lack of sediment source and/or accommodation space for MIS 5 444 

aeolianite preservation has been cited elsewhere, including in the Mediterranean Basin (Fornos et al. 445 

2009; Andreucci et al., 2010a; 2010b; del Valle et al., 2016). 446 

 447 

6.2 Why are there only MIS 3 aeolianites preserved on-shore at Robberg?  448 

To answer this, the interplay between shoreline position, sea level and sediment supply needs to 449 

be examined.  Comparing the Robberg OSL ages with a eustatic sea level curve for the last glacial cycle 450 

(Figure 10), we infer that potential for dune/aeolianite formation existed at Robberg only after ~70 ka. 451 

Considering the offshore topography around the Peninsula in more detail, the high-resolution profiling 452 

results combined with the seismic profiling of Martin and Flemming (1986), Birch (1978) and de Decker 453 

(1983) show a -45m to -60 m terrace, with the -60 m isobath located <5 km from the modern shoreline. 454 

This terrace separates the inner- and mid-shelf on the south coast and can be identified at Robberg and 455 

beyond (Figures 1 and 6; Cawthra et al., 2015). Below this, the sea floor gradient is much reduced, such 456 

that during MIS 4 and late MIS3/early MIS 2 when sea level lay between -70 and -90 m, the shoreline 457 

position, while variable (due to the lower gradient), would have been >7 km from Robberg. We observe 458 

most aeolianite ages at Robberg are clustered around the two sea level highstands within MIS 3 (Figure 459 

10) at which time sea level would have intersected the relatively steeper terrace between -45 and -60 m 460 
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(Figures 6 and 10). Sea level fluctuations within this period will have occurred but would not have resulted 461 

in substantial lateral movements of the shoreline, maintaining a proximal sediment supply/shoreline. 462 

During MIS 2, when sea level fell below -90 m (27 ka to ~14 ka), the shoreline would have receded ~30 km 463 

to the south of the modern peninsula, isolating the Robberg dunes from their sediment source.  464 

In terms of sediment sources, this part of the south coast shelf is considered starved of terrestrial 465 

sediment inputs. However, approximately 43% of the total bedload sediment of the wider southern Cape 466 

shelf is located between Wilderness and Plettenberg Bay (Birch, 1978). The sediments that form the 467 

submerged spit-bar off the Robberg Peninsula (Figure 6) represent the termination of sediment deposited 468 

by this substantial (>11,000 x 106 m3; Birch, 1978) eastward-flowing littoral drift system.  Seismic profiling 469 

(Birch, 1978) indicates that the spit-bar is composed of two sedimentary units; a lower one composed of 470 

reworked muddy sediment, presumably derived from fluvial activity on the shelf during times of lowered 471 

sea level, and an upper one formed from sandy material probably derived via redistribution of the 472 

aforementioned sediment offshore of Wilderness by eastward longshore littoral drift (e.g. Dingle and 473 

Rogers, 1972; Birch, 1978; Cawthra et al., 2015). Texturally, the upper sediments of the spit-bar are 474 

comparable to those presently forming the beaches of Plettenberg Bay and are characterised by poorly 475 

sorted, polished quartz grains (mean grain size ranging from 2 to 3.5 phi) and shell fragments of a coarser 476 

texture (de Decker, 1983).   477 

The major factors controlling sedimentation on the south coast are therefore the effects of 478 

transgressive seas on a flat, shallow shelf, a powerful longshore littoral drift system, and coastal aeolian 479 

transport (Birch, 1978). The submerged sediment spit-bar likely formed during the postglacial 480 

transgression and during the Holocene has built outwards, receiving sediment via the aforementioned 481 

littoral drift system. If an analogous deposit formed during MIS 5e and was then exposed by a later sea 482 

level regression it would have potentially provided a sandy sediment source for the Robberg Peninsula. 483 
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Given the volume of the spit-bar system today, the aeolianite systems at Robberg, formed largely below 484 

modern sea level (The Island being a remnant), were potentially extensive features. Indeed, Butzer and 485 

Helgren (1972) specifically proposed that The Island is a remnant of a larger barrier dune system. This is 486 

difficult to evaluate further, but the prolonged proximity of the shore for much of MIS 3 (driven by the 487 

offshore topography) may have been sufficient to create such a feature, given the volume of barrier dune 488 

sediments that have demonstrably accumulated during MIS1 at Wilderness. There are remnants of MIS 3 489 

barrier features preserved offshore (Cawthra et al., 2014; 2018) elsewhere on the southern Cape, 490 

although perhaps tellingly, as also noted by Martin and Flemming (1986), there are no (presently known) 491 

submerged aeolianites immediately west of Robberg. The geochemistry of the Robberg dunes and 492 

aeolianite are consistent with this narrative in that: 1) their �immobile� element ratios/compositions are 493 

essentially similar to each other and to those of the Wilderness region (see also Dunajko and Bateman, 494 

2010), implying a similar provenance; 2) the Pleistocene aeolianite is more carbonate rich, akin to the 495 

upper (modern) spit bar composition and the up-drift aeolianites; 3) the Holocene dunes have lower 496 

carbonate contents, which is perhaps evidence for a different offshore sediment source and/or a greater 497 

contribution from �pre-weathered� continental shelf sediment, reworked during the PMT, rather than 498 

from the spit bar system (Figure 7).   499 

In summary, although the regional-scale sediment supply at Robberg is/was essentially the same 500 

as Wilderness, the timing of dune/aeolianite formation at Robberg was strongly mediated by onshore 501 

accommodation space, sea level change and potentially the formation of a specific local offshore sediment 502 

supply. As with cliff-fronting dune systems in the Mediterranean, aeolianite formation here was thus 503 

contingent on sea level regressions. This had the combined effect of exposing a supply of (previously 504 

unavailable) sediment and provided accommodation space for dunes and/or barrier systems at this (then 505 

former) headland. The offshore terrace -45 to -60 m meant that the shoreline position was relatively 506 

stable during MIS 3, promoting dune/aeolianite accretion.  507 
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 508 

6.3 What controlled Holocene dune accumulation? 509 

The echo dune and the aeolian sediments within Hoffman�s cave are focused on the early 510 

Holocene, coinciding with the post-glacial sea level transgression (Figure 11). The earliest age at 10.2 ± 511 

0.4 ka (Shfd13053) corresponds to an RSL of -25 to -45 m (Waelbroeck et al. 2002). In contrast to coastal 512 

dune systems from other parts of the southern Cape (e.g. Carr et al., 2006; Bateman et al., 2008; 2011) 513 

there are no dune ages post-dating the mid-Holocene relative sea level high stand, which occurred ~7 to 514 

5 ka (Compton, 2001; Figure 11). During this time sea level on the south coast were as much as 2.8 m 515 

higher than present. This is based on in-situ Loripes clausus shells from Knysna dated to 6012-6243 cal yr. 516 

BP (Pta5860; 5910 ± 30 14C yr. BP; Table S1) (Marker and Miller 1993) and Loripes clausus shells found at 517 

+1.7 to +2.7 m in the Keurbooms Estuary dated to 5128-5546 cal yr. BP (Pta4317; 5180 ± 70 14C yr BP; 518 

Table S1) (Reddering, 1988).  The final stages of dune deposition at both Hoffman�s Cave and the adjacent 519 

echo dune (7.1 ± 0.4 ka) thus immediately precede this early-mid Holocene relative sea level highstand.  520 

Subsequently, dune activity on Robberg has been limited to the Witsand climbing-falling dune 521 

system (Butzer and Helgren, 1972; Hellström and Lubke, 1996). Today, there are no sandy beaches upwind 522 

of Hoffman�s Cave or the echo dune, (Figure 2) implying considerable shoreline re-configuration during 523 

the early-mid Holocene, when relative sea level was still rising.  The sand of beaches formed at this time 524 

was probably sourced from reworked shelf sediments as relative sea level rose. Geochemically, the 525 

Holocene dune sands (Hoffman�s Cave and the echo dune) contain lower abundances of mobile elements 526 

compared to the aeolianites (Figure 7); as this difference is not indicative of greater post-depositional 527 

weathering (i.e. they are substantially younger features in the landscape), it probably reflects reworking 528 

or pre-weathering of sub-aerial continental shelf sediments prior to the PMT. This may also account for 529 

the finer and better sorted texture of the Holocene dunes compared to the aeolianites.  530 
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When the shore reached levels comparable to or slightly above the present, Robberg would have 531 

been established as a prominent Peninsula and the resulting concentration of swell wave energy (Heydorn 532 

and Tinley, 1980) removed any sandy beaches, except for the sands of the tombolo, which are protected 533 

by (or had begun to accumulate due to) the presence of The Island. The Island is critical to the formation 534 

of the tombolo (by definition), inducing swell convergence in its leeside (Sanderson et al., 1996; Sanderson 535 

and Elliot, 1996). It is presently asymmetric, presenting a longer shoreline on the west-southwest side, 536 

which faces the predominant SW swell (and wind) direction. Once formed, given the orientation relative 537 

to the prevailing winds, all subsequent aeolian activity focused on the Witsand system. Mid- to late- 538 

Holocene dune activity on Robberg Peninsula was thus characterised by net sediment transfer across the 539 

peninsula, presenting a further contrast with embayment dune systems, such as Wilderness, where 540 

significant late Holocene (vertical) parabolic dune accretion occurred (Illenberger, 1996; Bateman et al., 541 

2011). Butzer and Helgren (1972) identified buried soil profiles within the Witsand system, implying some 542 

variation in either the level of activity, or the locus of active sand movement (See also Figure 2). Snail 543 

shells within these buried sands were dated to 3837-4246 cal. yr BP, (UW-199; 3740 ± 70 14C yr. BP; Table 544 

S1) (Butzer and Helgren, 1972) confirming activity post-dating the early Holocene dune activity in and 545 

around Hoffman�s Cave. In summary, these rather specific spatial-temporal patterns in Holocene dune 546 

formation illustrate the role of sea level stabilisation and the more unusual formation of the tombolo 547 

system in controlling the timing and locations of Holocene dune activity. 548 

 549 

6.4 How does this relate to the regional patterns of aeolianite deposition? 550 

Direct dating of the Robberg aeolianites to MIS 3, in conjunction with the recent dating of offshore 551 

aeolianite (Cawthra et al., 2018) confirms that aeolian activity was, in essence, continuous along the 552 

southern Cape coast throughout glacial-interglacial cycles. As the region is considered generally 553 
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tectonically stable, for both rocky headlands and embayments the primary factors controlling whether 554 

onshore dunes were formed and preserved are accommodation space, sea level change and local 555 

sediment supply. In embayments where accommodation space is high, the repeated establishment of 556 

interglacial high stand coastlines at similar locations led to extensive stacked barrier dunes and high 557 

preservation potential. Off-shore preserved, but now submerged dunes formed in front of embayments, 558 

but were spread across a large area as the coastline transgressed over low gradient topography (Figure 559 

1).  Where accommodation space was limited, as on rocky headlands, sea level high stands inevitably led 560 

to erosion of pre-existing dunes. At Robberg, however, the presently submerged nearshore terrace 561 

provided a coastline of sufficient stability for dune formation during periods in MIS 3 when sea level was 562 

lower than present. Here, preservation of the sub-aerial Island outcrop has allowed us to identify this 563 

differently aged aeolianite. Additional near-shore seismic analyses might allow the identification of 564 

similarly aged and more extensive offshore remnants. 565 

It has been argued that the broad commonalities seen elsewhere in the wider southern Cape 566 

onshore aeolianite record reflect comparable trends in relative sea level (including general tectonic 567 

stability; Roberts et al., 2012), wind direction (Carr et al., 2006; Roberts et al., 2008) and (in contrast to 568 

the west coast) sufficient humidity to ensure that dunes are stabilised relatively close to the shoreline 569 

(Roberts et al., 2009). The situation at Robberg illustrates the need to consider both regional and local-570 

scale factors in studies of coastal evolution. Local geological/bathymetric settings are shown to exert a 571 

potentially strong secondary impact on the timing and character of preserved coastal dune/aeolianite 572 

record. This has been previously observed at several locations in the Mediterranean Basin, such as 573 

Mallorca (e.g. Fornos et al., 2009), Ibiza (del Valle et al., 2016) and Sardinia (Andreucci et al., 2010a; 574 

2010b).  Such events may be further supported by inherited offshore sand supplies that (in this case) 575 

accumulated during the immediately preceding highstand.  576 
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7. Conclusions 577 

This study adds to our knowledge of the diversity of local-regional scale coastal aeolian landform 578 

responses over glacial-interglacial cycles, and directly illustrates the key role a site�s local geological 579 

framework has in influencing the timing and preservation of palaeo-coastal dune accumulations.  580 

At Robberg aeolianite/dune accretion formation was confined to early and late MIS 3 and to the early 581 

Holocene, providing the first evidence for onshore MIS 3 aeolianite accumulation in the otherwise well-582 

studied southern Cape aeolianite/coastal geomorphic record. This reflects: 1) the limited accommodation 583 

space of this headland environment (cf. embayments); 2) the character of the offshore topography;3) the 584 

hypothesised importance of an inherited offshore sediment supply source; in this case sediments 585 

reworked from the inner shelf and a putative spit-bar system formed in MIS 5e, analogous to that forming 586 

in the Holocene.  587 

Moving beyond Robberg and the southern Cape, this study emphasises the necessity of having both on-588 

shore and off-shore topographic and lithological data to consider sediment sources, transportation 589 

pathways and shoreline positions through time.   590 

It also demonstrates challenges when scaling between site-scale studies to regional scale considerations 591 

and controls; in that local off-shore or on-shore contexts at times exert greater influence on the preserved 592 

aeolianite record than regional-scale trends in sea-level and climatic conditions. The distinct timing of 593 

dune accumulation in Hoffman�s Cave illustrates the importance of this point in the context of the region�s 594 

coastal archaeological record (Figure S3), and this observation is relevant to interpretations of the 595 

stratigraphic record at several coastal rock-shelter sites (see Carr et al. 2016, also Jacobs, 2010). 596 

 597 
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Figures 814 

 815 

Figure 1: Upper panel � the location of Plettenberg Bay and other locales mentioned in the text. The 816 

continental shelf bathymetry was derived from the ETOPO1 data (Amante and Eakins, 2009) and have 817 

been shaded by depth in segments relevant to the later discussion (note in particular the varied distance 818 
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of the -50 m isobath from the shoreline). Lower panel � the geology of the Robberg Peninsula and 819 

Plettenberg Bay study area.  820 

 821 

 822 

Figure 2: The Robberg Peninsula, with the sample sites and other locales mentioned in the text marked. 823 

 824 
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 826 

 827 

Figure 3: Aeolianite sampling sites on the southeast margin of the Robberg Peninsula. A) Sampling location 828 

for Leic13004 � the contrasting dip of the aeolianite outcrops in the right and centre of the images 829 

contrasts with the Robberg Formation outcrops to the left. The edge of the contemporary shore platform 830 

is visible in the lower left. B) Leic13005 � steeply dipping aeolianites (left) unconformably overlie and sit 831 

within the topography of the Robberg Formation (right and lower left). 832 

 833 

 834 

Figure 4:  Panoramic view of The Island looking to the east from the western shoreline (immediately above 835 

Leic13001). The upper palaeosol �P2� is marked and follows the topography of the modern Island surface. 836 

The sample location for Leic13002, which overlies P2 (see also Figure 9d) is shown to the left with a large 837 
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shell midden immediately stratigraphically overlying the OSL sample, from which a radiocarbon date from 838 

a Perna perna shell was obtained (Table S1). 839 

 840 

Figure 5: A) view northwards of the tombolo from The Island. The narrow area of active sands that forms 841 

Witsand climbing dune system extends from the large apron of bare sand on the middle right of figure 5a. 842 

B) View of the cliff front echo dune (sampling site is slightly left of centre on the dune crest-line C) view of 843 

the island and tombolo from the west. D) view of the mouth of Hoffman�s Cave.  844 
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 846 

Figure 6 Bathymetry around the Robberg Peninsula � profiles F and G highlight the submerged spit bar 847 

feature south of Plettenberg Bay. 848 

 849 

 850 
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 852 

 853 

Figure 7: Selected elemental ratios for the Robberg dune sands and aeolianites, with data from the 854 

Wilderness Embayment for comparison. Left: Element ratios generally associated with immobile elements 855 

(the La and Yb data are normalised to chondrite values: Taylor and McLennan (1985)). Right: Ca-associated 856 

alkali earth elements ratios for Robberg dunes, Robberg aeolianite and the Wilderness seaward barrier.  857 
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 859 

Figure 8: Example OSL shine down (A) and dose-response curve (B) from Leic13001. Two radial plots (C: 860 

Leic13001 and D: Leic13002) illustrate the inter-aliquot scatter in single aliquot (9 mm aliquots) equivalent 861 

dose distributions . Note that all data points falling with the two horizontal bars can be considered 862 

statistically (within 2 sigma) identical. 863 

 864 

 865 

 866 
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 868 

Figure 9: Summary of site ages and sampling locations from The Island. Leic13003 (E) immediately overlies 869 

P1. 870 
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 872 

Figure 10: Comparison of OSL ages for dunes and aeolianite of the Wilderness Embayment (filled circles; 873 

Bateman et al., 2011), the Great Brak River offshore dune and foreshore deposit OSL ages (Grey squares; 874 

Cawthra et al. 2018) and the new Robberg Peninsula dune ages (open squares). Note that the OSL ages 875 

are plotted with arbitrary y axis values. 876 

 877 
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879 

Figure 11: Holocene dune ages in relation to the Holocene RSL curve of Compton (2001) (Solid line) and 880 

Waelbroeck et al 2002) (dashed line). Filled circles = coastal dunes (echo dune and dune sample from The 881 

Island, open squares = dune sands within Hoffman�s Cave 882 
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Tables 884 

 885 

Field Code Lab Code 
Depth 

(m) 

Location 
N/Nm Aliquot size CAM De (Gy) OD (%) 

Average ratio to 

D0
* 

Total Dose rate (Gy 

ka-1) 
Age (ka) 

ROB13-1-2 Leic13002 1.3 The Island 18/18 9 mm 11.3 ± 0.36 3 nd 1.62 ± 0.08 6.9 ± 0.4 

ROB13-1-2   The Island 17/18 2 mm 10.7 ± 0.47 11 nd 1.62 ± 0.08 6.6 ± 0.4 

ROB13-1-1 Leic13001 3.1 The Island 18/22 9 mm 77.7 ± 2.82 5 1.6 ± 0.4 2.18 ± 0.15 35.6 ± 2.8 

ROB13-1-3 Shfd13047 3.0 The Island 20/24 9 mm 77.7 ± 1.66 16 nd 1.87 ± 0.12 41.6 ± 2.8 

ROB13-2-1 Shfd13048 12.25 The Island 20/24 9 mm 59.5 ± 1.84 28 nd 1.68 ± 0.12 35.4 ± 2.8 

ROB13-2-2 Leic13003 6.5 The Island 18/23 9 mm 80.2 ± 3.75 12 2.0 ± 0.6 2.31 ± 0.16  34.7 ± 2.9  

ROB13-3-1 Leic13004 10 Peninsula 20/20 9 mm 58.6 ± 2.37 11 1.3 ± 0.2 0.88 ± 0.04 67.0 ± 4.2 

ROB13-3-2 Shfd13049 11.2 Peninsula 17/23 9 mm 55.0 ± 0.77 15 nd 0.96 ± 0.06 57.1 ± 3.6 

ROB13-3-3 Leic13005 12 Peninsula 22/25 2 mm 57.7 ± 2.06 6 1.7 ± 0.4 1.04 ± 0.06 55.5 ± 3.7 

HRC13-2-4 Leic13008 3.3 Echo dune 22/22 9 mm 4.71 ± 0.16 7 nd 0.57 ± 0.02 8.2 ± 0.4 

HRC13-2-4    25/25 2 mm 4.25 ± 0.15 8 nd 0.57 ± 0.02 7.4 ± 0.4 

HRC13-2-4    43/900 Single grain 4.46 ± 0.30 32 nd 0.57 ± 0.02 7.8 ± 0.6 

HRC13-2-1 Leic13007 6.8 Echo dune 21/21 9 mm 4.94 ± 0.16 4 nd 0.69 ± 0.04 7.1 ± 0.4 

HRC13-2-1    25/25 2 mm 4.68 ± 0.18 11 nd 0.69 ± 0.04 6.8 ± 0.4 

HRC13-2-1    38/1400 Single grain 4.87 ± 0.26 17 nd 0.69 ± 0.04 7.0 ± 0.5 

HRC13-2-2 Shfd13052 8.8 Echo dune 22/24 9 mm 6.66 ± 0.07 6 nd 0.73 ± 0.03 9.1 ± 0.4 

HRC13-2-3 Shfd13053 9.8 Echo dune 20/24 9 mm 8.04 ± 0.10 8 nd 0.79 ± 0.04 10.2 ± 0.5 

HRC13-1-1 Leic13006 3.3 Hoffman�s Cave 28/28 9 mm 3.84 ± 0.12 5 nd 0.54 ± 0.03 7.0 ± 0.3 

HRC13-1-2 Shfd13050 4.6 Hoffman�s Cave 22/23 9 mm 4.55 ± 0.05 6 nd 0.53 ± 0.02 8.7 ± 0.4 

HRC13-1-3 Shfd13051 5.5 Hoffman�s Cave 19/24 9 mm 4.80 ± 0.04 6 nd 0.53 ± 0.02 9.3± 0.4 

 886 

* for all measured aliquots � includes aliquots rejected for D0 ratio >2 887 

Note: for single grain measurements the �intrinsic� OD obtained measuring gamma irradiated quartz is 9% 888 
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Table 2: Particle size distribution data for the dunes and aeolianite of the Robberg Peninsula 889 

 Mean (Phi) Median (Phi) Sorting (Phi) Skew Kurtosis 

Aeolianites 

Leic13001 1.50 1.48 0.68 -0.06 0.99 

Leic13003 1.62 1.62 0.63 -0.01 0.95 

Leic13004 1.57 1.56 0.99 -0.20 1.56 

Leic13005 1.89 1.87 0.68 -0.11 1.13 

Dune sediments 

Leic13006 2.02 2.02 0.42 0.00 0.96 

Leic13007 2.00 2.00 0.44 -0.02 0.94 

Leic13008 1.86 1.86 0.41 0.00 0.96 

Leic13002 2.23 2.18 0.98 -0.28 1.56 

 890 

 891 

 892 
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