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Abstract

The determination of time-dependent reaction coefficients in free boundary heat transfer
problems is, for the first time, numerically investigated. The additional data which pro-
vides a unique solution is given by the Stefan boundary condition and the heat moments.
The finite difference method with the Crank-Nicolson scheme combined with a regular-
ized nonlinear optimization are employed. The resulting nonlinear system of equations
is solved numerically using the MATLAB toolbox routine lsqnonlin for minimizing the
Tikhonov regularization functional. A discussion of the choice of regularization parame-
ters is provided. Numerical results are presented and discussed.

Keywords: Inverse problem; Free boundary; Heat equation; Tikhonov regularization.

1 Introduction

Coefficient identification problems involving an unknown free boundary are some of the
most complicated and practically important problems, [18,19,21], and the Stefan problem
is a particular example, [5, 7].

In [2, 12], the authors investigated free boundary problems with nonlinear diffusion.
The numerical solution of inverse Stefan problems based on the method of fundamental
solutions has been investigated in [13,14]. The determination of time-dependent thermal
coefficients was solved using the method of suboptimal stage-by-stage optimization in [3].
The heat equation with an unknown time-dependent thermal diffusivity or heat source
in a domain with a free boundary has been investigated in [11] and [17], respectively.
Time-dependent thermal conductivity identifications subject to various kind of overdeter-
mination conditions have been studied in [15].

In recent papers, [8–10], the authors have investigated the identification of multiple
time-dependent coefficients together with an unknown free boundary. Continuing these
analyses, in this paper, we investigate the numerical reconstruction of time-dependent
reaction coefficients in the heat equation with a free boundary subject to initial, Dirichlet
and Stefan boundary conditions, as well as heat moment measurements. It should be
noted that the fundamental contribution of this work is the proposal of a regularization
algorithm to solve the identification problem and its numerical realization.

The paper is structured in the following way. The mathematical formulation of the in-
verse problems are formulated in Section 2. The numerical solution for the direct problem
based on the finite difference method (FDM) with the Crank-Nicolson scheme is briefly
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mentioned in Section 3. In Section 4, the numerical approach based on the minimization
of the nonlinear Tikhonov regularization functional is introduced. Numerical results are
presented and discussed in Section 5. Finally, conclusions are presented in Section 6.

2 Mathematical formulation

Consider the one-dimensional time-dependent parabolic heat equation

∂u

∂t
(x, t) = a(x, t)

∂2u

∂x2
(x, t) + b(x, t)

∂u

∂x
(x, t) + (c1(t)x+ c2(t))u(x, t) + f(x, t),

(x, t) ∈ ΩT , (1)

for the unknown temperature u(x, t) in the moving domain ΩT = {(x, t)|0 < x < h(t), 0 <
t < T} with unknown free boundary x = h(t) > 0 and time-dependent coefficients c1(t)
and c2(t), subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ h(0) =: h0, (2)

where h0 > 0 is given, the Dirichlet boundary conditions

u(0, t) = µ1(t), u(h(t), t) = µ2(t), t ∈ [0, T ], (3)

and the over-determination conditions

h
′

(t) + ux(h(t), t) = µ3(t), t ∈ [0, T ], (4)

∫ h(t)

0

u(x, t)dx = µ4(t), t ∈ [0, T ], (5)

∫ h(t)

0

xu(x, t)dx = µ5(t), t ∈ [0, T ], (6)

where φ(x) and µi(t) for i = 1, 5 are given functions. We assume that the functions in
the above equations are sufficiently regular as required in the sequel and that the input
data (2)–(6) are compatible.

Equation (4) represents a Stefan interface moving boundary condition. Also, equa-
tions (5) and (6) represent the specification of the energy (or mass) and heat momentum,
respectively. In equation (1), the coefficients a and b representing diffusion and convec-
tion/advection are assumed to be known, as is the heat source f . Note that from (2) and

(5) we can, in fact, obtain h0 as a positive solution of the equation µ4(0) =
∫ h0

0
φ(x)dx.

Finally, remark that the reaction coefficient in (1) is linearly dependent on the space
variable x with two unknown time-dependent coefficients c1(t) and c2(t). This can also
be seen as a particular case of a space and time-dependent blood perfusion coefficient in
bio-heat transfer, [23].

First, the change of variable y = x/h(t) is performed, [21], to reduce the prob-
lem (1)–(6) to the following inverse problem for the unknowns h(t), c1(t), c2(t) and
v(y, t) := u(yh(t), t):

∂v

∂t
(y, t) =

a(yh(t), t)

h2(t)

∂2v

∂y2
(y, t) +

b(yh(t), t) + yh
′

(t)

h(t)

∂v

∂y
(y, t)

+(yh(t)c1(t) + c2(t))v(y, t) + f(yh(t), t), (y, t) ∈ QT , (7)
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in the fixed domain QT := {(x, t)|0 < y < 1, 0 < t < T} = (0, 1)× (0, T ),

v(y, 0) = φ(yh0), y ∈ [0, 1], (8)

v(0, t) = µ1(t), v(1, t) = µ2(t), t ∈ [0, T ], (9)

h
′

(t) +
1

h(t)
vy(1, t) = µ3(t), t ∈ [0, T ], (10)

h(t)

∫ 1

0

v(y, t)dy = µ4(t), t ∈ [0, T ], (11)

h2(t)

∫ 1

0

yv(y, t)dy = µ5(t), t ∈ [0, T ]. (12)

The uniqueness of a solution of the inverse problem (7)–(12) has been established in [21]
and reads as follows.

Theorem 1. Assume that

a ∈ C2,0([0,∞)× [0, T ]), b, f ∈ C1,0([0,∞)× [0, T ]), a(x, t) > 0, (x, t) ∈ [0,∞)× [0, T ],

φ(x) ≥ φ0 > 0, x ∈ [0,∞), µi(t) > 0, i = 1, 2, 4, t ∈ [0, T ].

Then, a solution (h, c1, c2, v) ∈ C1[0, T ]× (C[0, T ])2×C2,1(QT ), h(t) > 0, t ∈ [0, T ], of the
problem (7)–(12) is unique.

Remark 1.
(i) We remark that the values of c1(0) and c2(0) can be determined using the compatibility
of input data in (1)–(6). Indeed, first observe that by differentiating (5) and (6) with
respect to t and integrating (1) with respect to x we obtain

µ′

4(t)− h′(t)µ2(t) =

∫ h(t)

0

ut(x, t)dx =

∫ h(t)

0

(

a(x, t)uxx(x, t) + b(x, t)ux(x, t)
)

dx

+c1(t)µ5(t) + c2(t)µ4(t) +

∫ h(t)

0

f(x, t)dx, t ∈ [0, T ], (13)

µ′

5(t)− h(t)h′(t)µ2(t) =

∫ h(t)

0

xut(x, t)dx =

∫ h(t)

0

x
(

a(x, t)uxx(x, t) + b(x, t)ux(x, t)
)

dx

+c1(t)

∫ h(t)

0

x2u(x, t)dx+ c2(t)µ5(t) +

∫ h(t)

0

xf(x, t)dx, t ∈ [0, T ]. (14)

Also, (4) yields

h′(t) = µ3(t)− ux(h(t), t), t ∈ [0, T ]. (15)
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Applying the compatibility of the data (2)–(6) at t = 0 in (13)–(15) imposed at t = 0
results in:






























c1(0)µ5(0) + c2(0)µ4(0) = µ′

4(0)− µ2(0)
(

µ3(0)− φ′(h0)
)

−
∫ h0

0
f(x, 0)dx

−
∫ h0

0

(

a(x, 0)φ′′(x) + b(x, 0)φ′(x)
)

dx,

c1(0)
∫ h0

0
x2φ(x)dx+ c2(0)µ5(0) = µ′

5(0)− h0µ2(0)
(

µ3(0)− φ′(h0)
)

−
∫ h0

0
xf(x, 0)dx

−
∫ h0

0
x
(

a(x, 0)φ′′(x) + b(x, 0)φ′(x)
)

dx.

(16)

This system of two linear equations with two unknowns has a unique solution determined
by the data (2)–(6) at t = 0 if and only if the determinant of the system is non-zero, i.e.

µ2
5(0)− µ4(0)

∫ h0

0

x2φ(x)dx 6= 0.

From (5), (6) and using that φ > 0 and Cauchy’s inequality we immediately obtain that

µ2
5(0)− µ4(0)

∫ h0

0

x2φ(x)dx =
(

∫ h0

0

xφ(x)dx
)2

−
(

∫ h0

0

φ(x)dx
)(

∫ h0

0

x2φ(x)dx
)

< 0,

and therefore the system of equations (16) has a unique solution indeed.
(ii) As remarked in [8,10,18], the Stefan condition (4) can be replaced by the second-

order moment specification
∫ h(t)

0

x2u(x, t)dx = µ6(t), t ∈ [0, T ], (17)

or, in terms of the variable v, by

h3(t)

∫ 1

0

y2v(y, t)dy = µ6(t), t ∈ [0, T ]. (18)

(iii) Sufficient conditions for the local existence of solution of the inverse problems were
also provided in [18,21].

3 Solution of direct problem

In this section we consider the direct initial boundary value problem given by equations
(7)–(9), where h(t), c1(t), c2(t), a(x, t), b(x, t), f(x, t), φ(x), and µi(t), i = 1, 2, are known
and the solution v(y, t) is to be determined together with the quantities of interest µi(t),
i = 3, 6. To achieve this, we use the FDM with the Crank-Nicolson scheme, [10], based
on subdividing the solution domain QT = (0, 1) × (0, T ) into M and N subintervals of
equal step lengths ∆y and ∆t, where ∆y = 1/M and ∆t = T/N, respectively. This
implicit scheme is unconditionally stable and is second-order accurate in space and first-
order accurate in time. At the node (i, j) we denote v(yi, tj) = vi,j, where yi = i∆y,
tj = j∆t, a(yi, tj) = ai,j, b(yi, tj) = bi,j, h(tj) = hj, c1(tj) = c1j, c2(tj) = c2j, and
f(yi, tj) = fi,j for i = 0,M and j = 0, N . The expressions in equations (10)–(12) and (18)
are calculated using the following finite difference approximation formula and trapezoidal
rule for integrals:

µ3(tj) =
hj − hj−1

∆t
−

4vM−1,j − vM−2,j − 3vM,j

2(∆y)hj

, j = 1, N, (19)
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µk+3(tj) =
hk
j

2N

(

yk−1
0 v0,j + yk−1

M vM,j + 2
M−1
∑

i=1

yk−1
i vi,j

)

, j = 1, N, k = 1, 2, 3. (20)

4 Numerical approach to solve the inverse problem

In this section, we wish to obtain a simultaneous stable determination of the two unknown
coefficients c1(t) and c2(t), together with the free boundary h(t) and the transformed tem-
perature v(y, t), satisfing equations (7)–(12), or (7)–(9), (11), (12) and (18). Nevertheless,
since the inverse problems under investigation are ill-posed there is scope to regularize
and then discretize, but due to the nonlinearity of the coefficient identification problems
and because the minimization is performed numerically using an exterior toolbox rou-
tine, we proceed the other way around by first discretizing and afterwards regularizing.
Therefore, we formulate the inverse problems as a nonlinear minimization of the Tikhonov
regularization function

F (h, c1, c2) =
N
∑

j=1

[hj − hj−1

∆t
+

vy(1, tj)

hj

− µ3(tj)
]2

+
N
∑

j=1

[

hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N
∑

j=1

[

h2
j

∫ 1

0

yv(y, tj)dy − µ5(tj)
]2

+ β1

N
∑

j=1

(hj − h∗

j)
2 + β2

N
∑

j=1

(c1j − c∗1j)
2

+β3

N
∑

j=1

(c2j − c∗2j)
2, (21)

or,

F (h, c1, c2) =
N
∑

j=1

[

hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N
∑

j=1

[

h2
j

∫ 1

0

yv(y, tj)dy − µ5(tj)
]2

+
N
∑

j=1

[

h3
j

∫ 1

0

y2v(y, tj)dy − µ6(tj)
]2

+ β1

N
∑

j=1

(hj − h∗

j)
2 + β2

N
∑

j=1

(c1j − c∗1j)
2

+β3

N
∑

j=1

(c2j − c∗2j)
2, (22)

where v solves (7)–(9) for given (h, c1, c2), that is, at each iteration n, the FDM of Section
3 is employed to solve the direct problem (7)–(9) with given coefficients hn, cn1 and cn2 . In
(21) and (22), h∗, c∗

1
and c∗

2
represent some a priori estimates of the solution of the inverse

problem that are of great importance to be able to apply the scheme of regularization of
Tikhonov, ( [6], Chapter 10).

The minimization of the objective function (21), or (22), is performed using the MAT-
LAB toolbox routine lsqnonlin, which does not require supplying by the user the gradient
of the objective function, [16]. This routine attempts to find the minimum of a sum of
squares by starting from the initial guesses h0, c0

1
and c0

2
for h, c1 and c2, respectively,

and marching to the next iterate according to a trust region reflective search method [4].
In general, it is sensible to take the a priori estimates h∗, c∗

1
and c∗

2
be equal with the

initial guesses h0, c0
1
and c0

2
, however, in this study we take them to be zero in order

to investigate a more severe search for the minimum of the nonlinear functionals (21)
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and (22). Since the inverse problems under investigation have unique solutions, in case
of exact data, a robust numerical search algorithm should converge to the unique solu-
tion, independent of the initial guess, i.e. it should be globally convergent. In particular,
changing the penalised least-squares functionals (21) and (22) into strongly convex Car-
leman choices [1] will be the subject of future work.

We have compiled the routine lsqnonlin with the following specifications:

• Algorithm is the Trust Region Reflective (TRR) minimization, [4].

• Maximum number of iterations, (MaxIter)= 10×(number of variables).

• Maximum number of objective function evaluations, (MaxFunEvals)= 105×(number
of variables).

• Termination tolerance on the function value, (TolFun) = 10−20.

• Solution tolerance value, (xTol)=10−20.

• The lower and upper simple bounds are 10−10 and 103 for h, and −103 and 103 for
c1 and c2.

The inverse problems are solved subject to both exact and noisy input data which is
numerically simulated as follows:

µǫk
k+2(tj) = µk+2(tj) + ǫkj, j = 1, N, k = 1, 4, (23)

where ǫkj are random variables generated from a Gaussian normal distribution with mean
zero and standard deviation σk given by

σk = p× max
t∈[0,T ]

|µk+2(t)|, k = 1, 4, (24)

where p represents the percentage of noise. We use the MATLAB function normrnd(0, σk, N)
to generate the random variables (ǫkj)j=1,N for k = 1, 4.

5 Numerical results and discussion

In this section we investigate a couple of examples in order to assess the accuracy and
stability of the numerical methods introduced in Section 3 for the direct problem based
on the FDM with M = N = 40, and in Section 4 for the numerical approach to solve
the inverse problem based on minimizing the nonlinear Tikhonov regularization objective
functional (21) or (22). Furthermore, we add noise to the input data in equations (10)–
(12) and (18) to mimic the real situation of measurement errors, by using equations (23)
and (24). We compute the root mean squares error given by

rmse(h) =

[

T

N

N
∑

j=1

(

hnumerical(tj)− hexact(tj)
)2
]1/2

, (25)

and similar expressions exist for c1(t) and c2(t). For simplicity, we take T = 1 in all
examples.
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5.1 Example 1

We consider the inverse problem (1)–(6) with unknown coefficients h(t), c1(t) and c2(t),
and the input data given by

a(x, t) =
1

2
(1 + t) + x, b(x, t) = −1− x− t, φ(x) = 2 + x, µ1(t) = et(2 + t),

f(x, t) = et(2 + t+ x)(3 + t+ x+ tx), µ2(t) = et(3 + 2t), µ3(t) = 1 + et,

µ4(t) =
1

2
et(1 + t)(5 + 3t), µ5(t) =

1

4
(1 + t)2(3 + 6t+ t2), h0 = 1. (26)

One can observe that the conditions of Theorem 1 are satisfied and hence, the uniqueness
of solution is guaranteed. The analytical solution is given by

h(t) = 1 + t, c1(t) = −1− t, c2(t) = −1− t, (27)

u(x, t) = et(2 + t+ x). (28)

Also, the analytical solution for the transformed temperature v(y, t) satisfying (7)–(12) is
given by

v(y, t) = et
(

2 + t+ y(1 + t)
)

. (29)

The initial guesses for the vectors h, c1 and c2 are taken as

h0(tj) = h(0) = h0 = 1, c01(tj) = c1(0) = −1, c02(tj) = c2(0) = −1, j = 1, N, (30)

where the values of c1(0) and c2(0) have been obtained exactly by solving the system of
equations (16).

We consider first the case when there is no noise in the input data µ3, µ4 and µ5, i.e.
p = 0 in (24). The objective function (21), as a function of a number of iterations, is
plotted in Figure 1, with and without regularization. From this figure, it can be seen that
a rapid monotonic decreasing convergence is achieved in a few iterations.

0 2 4 6 8 10 12 14 16 18 20
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−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

number of iterations

Ob
jec

tiv
e f

un
cti

on

 

 

β
i
=0, i=1,2,3

β
1
=0, β

i
=10−8, i=2,3

Figure 1: The objective function (21), as a function of a number of iterations, no noise, with

and without regularization, for Example 1.

The rmse values for the unknowns coefficients h(t), c1(t) and c2(t), obtained with and
without regularization are presented, versus the number of iterations, in Figure 2. The
corresponding numerical solutions obtained after 20 iterations (in 38 minutes computa-
tional time) are illustrated in Figure 3 (for h(t), c1(t) and c2(t)) and Figure 4 (for v(y, t)).
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First, from Figure 2 it can be observed that rmse(h) values are much lower than the
rmse(ci), i = 1, 2, indicating that the free boundary h(t) is retrieved more accurately
than the coefficients c1 and c2. Second, from Figure 2 it can be observed that in the
case of no regularization the rmse values settle to stationary levels after 6 to 8 iterations.
However, the numerical results presented in Figure 3 show that whilst the retrieval of
h(t), see Figure 3(a), is very accurate, instabilities manifest in the unregularized solu-
tions for the coefficients c1(t) and c2(t), see Figures 3(b) and 3(c), respectively. Note that
although there is no random noise numerically simulated through (23), there still exists
some small numerical noise caused by the discrepancy between the FDM direct problem
numerical solution with a fixed mesh size and the exact values of the data (26). Thus
the instabilities for the unregularized solution illustrated in Figures 3(b) and 3(c) show
that the inverse coefficient identification problem is ill-posed in the coefficients c1(t) and
c2(t). These will be even more amplified when later on we will include noise in the data
(23). Including a small regularization in (21) alleviates this instability, as shown in the
regularized numerical results in Figures 2 and 3. The choice of β1 = 0, β2 = β3 = 10−8 is
of course not optimal and in fact these regularization parameters may still be too small,
see for example, the occurence of minima in the rmse values after a certain number of
iterations. But overall, corroborated with the more stable results achieved in Figures 3(b)
and 3(c), it shows that regularization is required in order to obtain stable solutions for
the coefficients c1(t) and c2(t). Finally, by inspecting Figures 3(a) and 4 it can be seen
that the inverse problem seems stable in the components h(t) and v(y, t) of the solution
for which regularization is not necessary. Based on this argument we shall take β1 = 0,
i.e. we do not penalise h in (21) (or (22)), in the remaining of the paper.
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Figure 3: The exact (27) and numerical solutions for: (a) h(t), (b) c1(t) and (c) c2(t), no noise,

with and without regularization, for Example 1.
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Figure 4: The exact (29) and numerical solutions for the transformed temperature v(y, t), for

Example 1, no noise, with (a) βi = 0, i = 1, 2, 3 and (b) β1 = 0, βi = 10−8, i = 2, 3. The absolute

error between them is also included.

Next, we add a small amount of p = 0.01% noise to the data µ3(t), µ4(t) and µ5(t),
as in (23), in order to model the errors which are inherently present in any practical
measurement and moreover, to investigate the stability of the numerical results. We have
also experimented with higher amounts of noise p in equation (24), but the results obtained
were less accurate and therefore they are not presented. From the previous analysis, we
anticipate that the regularization is needed in order to achieve stable and accurate results
because the problem is ill-posed and very sensitive to noise. The decreasing convergence
of the objective function (21), as a function of the number of iterations, is shown in Figure
5 with and without regularization. Notice that the total amount of noise included in the
input data when p = 0.01% is 0.0220.
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Figure 5: The objective function (21), as a function of a number of iterations, p = 0.01% noise,

with and without regularization, for Example 1.

As previously argued, since there is no need to regularize the free boundary h(t) we
fix β1 = 0. Also, taking β2 = β3, as positive regularization parameters in (21), the L-
curve, [9], for the choice of the regularization parameter is shown in Figure 6, by plotting
the solution norm

√

||h||2+||c1||2+||c2||2, as a function of the residual norm given by
square root of the sum of first three terms in the right-hand side of (21). From this
figure, it can be seen that regularization parameters near the ”corner” of the L-curve are
β2 = β3 ∈ {10−6, 10−5, 10−4}.

The exact and numerical solutions for the free boundary h(t), and the coefficients c1(t)
and c2(t), with and without regularization are shown in Figure 7. From this figure, it can
be noticed that the accurate and stable results are achieved for the free boundary h(t) both
with and without regularisation, but unstable results are obtained for the coefficients c1(t)
and c2(t), if no regularization is imposed with rmse(c1) = 0.5645 and rmse(c2) = 0.5949.
In order to stabilise the coefficients c1(t) and c2(t), we employed regularization with β1 = 0,
β2 = β3 = 10−4 (given by the L-curve in Figure 6), obtaining rmse(c1) = 0.1089 and
rmse(c2) = 0.1040. Finally, the numerical solutions for v(y, t) were obtained stable and
accurate and, for brevity, they are not presented.
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Figure 6: The residual norm versus the solution norm for various regularization parameters

β2 = β3 ∈ {10−i|i = 1, 7}, for Example 1 with p = 0.01% noise.
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Figure 7: The exact (27) and numerical solutions for: (a) h(t), (b) c1(t) and (c) c2(t), p = 0.01%

noise, with and without regularization, for Example 1.

13



(a)

0

0.5

1

0

0.5

1
0

5

10

15

t

Exact solution

y

v(
y,

t)

0

0.5

1

0

0.5

1
0

5

10

15

t

Numerical solution 

y
v(

y,
t)

0

0.5

1

0

0.5

1
0

0.01

0.02

0.03

t

Error graph 

y

A
bs

ol
ut

e 
er

ro
r

(b)

0

0.5

1

0

0.5

1
0

5

10

15

t

Exact solution

y

v(
y,

t)

0

0.5

1

0

0.5

1
0

5

10

15

t

Numerical solution 

y

v(
y,

t)

0

0.5

1

0

0.5

1
0

0.005

0.01

0.015

0.02

t

Error graph 

y

A
bs

ol
ut

e 
er

ro
r

Figure 8: The exact (29) and numerical solutions for the transformed temperature v(y, t), for

Example 1, p = 0.01% noise, with (a) βi = 0, i = 1, 2, 3 and (b) β1 = 0, βi = 10−4, i = 2, 3. The

absolute error between them is also included.

5.2 Example 2

In this example we consider the second inverse problem given by equations (1)–(3), (5),
(6) and (17), with the same input data (26) as in Example 1, except that the data µ3(t)
given by equation (4) is replaced by the second-order heat moment µ6(t) given by equation
(18) as

µ6(t) =
1

12
et(t+ 1)3(7t+ 11), t ∈ [0, 1]. (31)

Also, the initial guesses for the vectors h, c1 and c2 are given by equation (30), the same
as in Example 1.

Figures 9 –16 for Example 2 are the corresponding analogue of Figures 1–8 for Example
1 and, in order to avoid repetition, we shall discuss below only the main similarities and
differences between the two examples.
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Figure 9: The objective function (22), as a function of a number of iterations, no noise, with

and without regularization, for Example 2.

Whilst all the results of Examples 1 and 2 are consistent in terms of the numerical
regularization method employed being accurate and stable, overall one can see that the
second inverse problem (Example 2) is more ill-posed than the first inverse problem (Ex-
ample 1). This can be seen by:
(i) the larger number of iterations required to achieve convergence in the case of no noise
(compare Figures 1 and 9);
(ii) the more enhanced non-monotonic behaviour of the rmse curves (compare Figures 2
and 10);
(iii) the higher and larger oscillations manifested in retrieving the coefficients c1(t) and
c2(t) in case of no regularization (compare Figures 3, 7 and 11, 15);
(iv) the larger rmse values, as illustrated by the comparison shown in Table 1.

Table 1: The rmse values for Examples 1 and 2.

Example 1 rmse(h) rmse(c1) rmse(c2)
p = 0, β1 = β2 = 0 2.5E-4 0.1534 0.0788

p = 0, β1 = β2 = 10−8 1.3E-4 0.0452 0.0222
p = 0.01%, β1 = β2 = 0 6.1E-4 0.5645 0.5949

p = 0.01%, β1 = β2 = 10−4 4.7E-4 0.1089 0.1040
Example 2 rmse(h) rmse(c1) rmse(c2)

p = 0, β1 = β2 = 0 6.8E-4 0.4892 0.4480
p = 0, β1 = β2 = 10−8 6.8E-4 0.1968 0.0504
p = 0.01%, β1 = β2 = 0 3.3E-3 6.6965 3.7308

p = 0.01%, β1 = β2 = 10−4 2.2E-3 0.3587 0.2376
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number of iterations, no noise, with and without regularization, for Example 2.
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Figure 11: The exact (27) and numerical solutions for: (a) h(t), (b) c1(t) and (c) c2(t), no noise,

with and without regularization, for Example 2.
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Figure 12: The exact (29) and numerical solutions for the transformed temperature v(y, t), for

Example 2, no noise, with (a) βi = 0, i = 1, 2, 3 and (b) β1 = 0, βi = 10−8, i = 2, 3. The absolute

error between them is also included.
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Figure 13: The objective function (22), as a function of a number of iterations, p = 0.01%

noise, with and without regularization, for Example 2. Notice that the total amount of noise

included in the input data when p = 0.01% is 0.0349.
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1, 7}, for Example 2 with p = 0.01% noise.
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Figure 15: The exact (27) and numerical solutions for: (a) h(t), (b) c1(t) and (c) c2(t), p = 0.01%

noise, with and without regularization, for Example 2.
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Figure 16: The exact and numerical solutions for the transformed temperature v(y, t), for

Example 2, p = 0.01% noise, with (a) βi = 0, i = 1, 2, 3 and (b) β1 = 0, βi = 10−4, i = 2, 3. The

absolute error between them is also included.

6 Conclusions

In this paper, inverse nonlinear problems consisting of simultaneously identifying time-
dependent reaction coefficients in the heat equation with a free boundary have been
investigated. The direct solver based on the FDM with the Crank-Nicolson scheme has
been employed. The inverse problem was solved using the MATLAB optimisation toolbox
routine lsqnonlin for minimizing the nonlinear Tikhonov regularization functional. The
accuracy and stability of the numerical results for the two inverse problems, for Examples
1 and 2, have been assessed. Based on the numerical results and discussion we can con-
clude that the Stefan condition (4) contains more information than the second-order heat
moment condition (17). Although not illustrated, it is reported that similar conclusions
have been obtained for many other numerical tests that we have investigated including
the recovery of non-smooth reaction coefficients. Extension to the case when both sides
of the finite slab are free boundaries, [20, 22], will be the subject of future work.

21



Acknowledgments

M.J. Huntul would like to thank Jazan University in Saudi Arabia and United Kingdom
Saudi Arabian Cultural Bureau (UKSACB) in London for supporting his PhD at the
University of Leeds. Discussions with Dr M.S. Hussein are acknowledged.

References

[1] Beilina, L. and Klibanov, M.V. (2012) Approximate Global Convergence and Adap-
tivity of Coefficient Inverse Problems, Springer, New York.

[2] Broadbridge, P., Tritscher, P. and Avagliano, A. (1993) Free boundary problems with
nonlinear diffusion, Mathematical and Computer Modelling, 18, 15–34.

[3] Borukhov, V.T. and Kostyukova, O.I. (2013) Identification of time-dependent co-
efficients of heat transfer by the methods of suboptimal stage-by-stage optimation,
International Journal of Heat and Mass Transfer, 59, 286–294.

[4] Coleman, T.F. and Li, Y. (1996) An interior trust region approach for nonlinear
minimization subject to bounds, SIAM Journal on Optimization, 6, 418–445.

[5] Crank, J. (1984) Free and Moving Boundary Problems, Clarendon Press, Oxford.

[6] Engl, H.W., Hanke, M. and Neubauer, A. (2000) Regularization of Inverse Problems,
Kluwer Academic Publishers, Dordrecht.

[7] Goldman, N.L. (1997) Inverse Stefan Problems, Springer Science & Business Media,
Berlin.

[8] Huntul, M.J., Lesnic, D. and Hussein, M.S. (2017) Reconstruction of time-dependent
coefficients from heat moments, Applied Mathematics and Computation, 301, 233–
253.

[9] Hansen, P.C. (1992) Analysis of discrete ill-posed problems by means of the L-curve.
SIAM Review, 34, 561–580.

[10] Hussein, M.S., Lesnic, D., Ivanchov, M.I. and Snitko, H.A. (2016) Multiple time-
dependent identification thermal problems with a free boundary, Applied Numerical
Mathematics, 99, 42–50.

[11] Hussein, M.S. and Lesnic, D. (2014) Determination of a time-dependent thermal
diffusivity and free boundary in heat conduction, International Communications in
Heat and Mass Transfer, 53, 154–163.

[12] Hussein, M.S., Lesnic, D. and Ivanchov, M. (2013) Free boundary determination in
nonlinear diffusion, East Asian Journal on Applied Mathematics, 3, 295–310.

[13] Hon, Y.C. and Li, M. (2008) A computational method for inverse free boundary
determination problem, International Journal for Numerical Methods in Engineering,
73 (9):1291-1309.

22



[14] Johansson, B.T., Lesnic, D. and Reeve, T. (2011) A method of fundamental solutions
for the one-dimensional inverse Stefan problem, Applied Mathematical Modelling,
35(9):4367-4378.

[15] Lesnic, D., Yousefi, S.A. and Ivanchov, M. (2013) Determination of a time-dependent
diffusivity from nonlocal conditions, Journal of Applied Mathematics and Computing,
41(1-2):301-320.

[16] Mathworks (2012) Documentation Optimization Toolbox-Least Squares (Model Fit-
ting) Algorithms, available at www.mathworks.com.

[17] Malyshev, I.G. (1975) Inverse problems for the heat-conduction equation in a domain
with a moving boundary, Ukrainian Mathematical Journal, 27, 568–572.

[18] Snitko, H.A. (2010) Coefficient inverse problem for a parabolic equation in a domain
with free boundary, Journal of Mathematical Science, 167, 30–46.

[19] Snitko, H.A. (2012) Inverse problem for determination of time-dependent coefficients
of a parabolic equation in a free-boundary domain, Journal of Mathematical Science,
181, 350–365.

[20] Snitko, H.A. (2014) On a coefficient inverse problem for a parabolic equation in a
domain with free boundary, Journal of Mathematical Sciences, 200, 374–388.

[21] Snitko, H.A. (2014) Inverse problem of finding time-dependent functions in the minor
coefficient of a parabolic equation in the domain with free boundary, Journal of
Mathematical Science, 203, 40–54.

[22] Snitko, H.A. (2014) Determination of the lowest coefficient for a one-dimensional
parabolic equation in a domain with free boundary, Ukrainian Mathematical Journal,
65, 1698–1719.

[23] Trucu, D., Ingham, D.B. and Lesnic, D. (2011) Reconstruction of the space- and time-
dependent blood perfusion coefficient in bio-heat transfer, Heat Transfer Engineering,
32, 800–810.

23


