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Robust Distributed Diffusion Recursive Least

Squares Algorithms with Side Information for

Adaptive Networks
Yi Yu, Haiquan Zhao, Senior Member, IEEE, Rodrigo C. de Lamare, Senior Member, IEEE, Yuriy

Zakharov, Senior Member, IEEE, and Lu Lu

Abstract—This work develops robust diffusion recursive least
squares algorithms to mitigate the performance degradation often
experienced in networks of agents in the presence of impulsive
noise. The first algorithm minimizes an exponentially weighted
least-squares cost function subject to a time-dependent constraint
on the squared norm of the intermediate update at each node. A
recursive strategy for computing the constraint is proposed using
side information from the neighboring nodes to further improve
the robustness. We also analyze the mean-square convergence
behavior of the proposed algorithm. The second proposed algo-
rithm is a modification of the first one based on the dichotomous
coordinate descent iterations. It has a performance similar to
that of the former, however its complexity is significantly lower
especially when input regressors of agents have a shift structure
and it is well suited to practical implementation. Simulations
show the superiority of the proposed algorithms over previously
reported techniques in various impulsive noise scenarios.

Index Terms—Distributed algorithms, diffusion cooperation,
dichotomous coordinate-descent, impulsive noises, recursive least
squares algorithms.

I. INTRODUCTION

O
VER the past decade, distributed parameter estima-

tion over wireless sensor networks with multiple nodes

(agents) has attracted much attention. It only relies on the local

data exchange between interconnected nodes, and therefore

removes the requirement of a powerful central processor and,

as such, reduces communications bandwidth of the traditional

centralized estimation whilst retaining similar estimation per-

formance [2], [3]. Distributed estimation has been applied to

target localization [4], clustering [5], frequency estimation [6]

and spectrum estimation in Cognitive radio (CR) [7], [8].
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A. Prior and Related Work

According to the cooperation strategies between intercon-

nected nodes, existing algorithms can be categorized as in-

cremental [9], consensus [10], and diffusion [11]–[14] types.

Among these, the diffusion strategy is popular, because it does

not require a Hamiltonian cycle path as in the incremental type,

thereby it is more robust to nodes/links failures; it is stable

and shows a faster convergence rate and a lower mean-square

error than that of the consensus approach. Several diffusion

algorithms were proposed, e.g., diffusion least mean square

(dLMS) algorithm [11] and its variable step size variants [15],

[16].

In practice, the measurements can be corrupted by non-

Gaussian noise with impulsiveness. Impulsive noise has small

occurrence probability but much higher amplitude than the

nominal measurements. It may occur due to atmospheric

phenomena, or man-made due to either electric machinery

in the operation environment [17]–[19]. Other examples are

keyboard clicking or pen dropping in teleconference [20],

double-talk in echo cancellation [21], biological noise [22]

or ice cracking [23] in various underwater signals, out-of-

band spectral leakage in CR [24], etc. In such scenarios, the

conventional algorithms like the dLMS designed for Gaussian

noise would undergo a significant performance deterioration.

To this end, many robust distributed algorithms have been

proposed. Some algorithms are based on the instantaneous

gradient-descent method to minimize different robust crite-

ria, for instance, the diffusion error nonlinearity (dEN) [25],

diffusion least mean p-th power (dLMP) [26], diffusion sign

error LMS (dSE-LMS) [27], and diffusion maximum corren-

tropy [28] algorithms. Moreover, because of the insensitivity of

correntropy to impulsive noise, the maximum total correntropy

diffusion algorithm was proposed in [29] for the case of large

outliers in communication links. Nevertheless, their main lim-

itation is slow convergence especially when the nodes’ input

signals are colored (highly correlated). As shown in [25], the

dEN algorithm converges slower than the dSE-LMS algorithm.

In [30], by resorting to the adaptive projected subgradient

method, a robust diffusion algorithm was developed which

projects the output errors onto halfspaces defined by Huber’s

error function at each node, thereby speeding up the conver-

gence. However, the setting of the parameters controlling the

algorithm’s robustness requires prior knowledge of the noise

distribution which is often unavailable.
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It is well-known that due to the exponentially weighted least

squares (EWLS) criterion, the diffusion recursive LS (dRLS)

algorithm provides fast convergence even for colored signals

[31], [32]. By means of the alternating direction method of

multipliers to solve the EWLS problem, Mateos et al. proposed

another type of distributed RLS algorithm [33]. Following this

algorithm, to reduce computation and communication costs, its

variants were presented by censoring observations with small

innovations [34]. Likewise, these algorithms might experience

convergence issues in impulsive noise environments, because

impulsive noise samples are directly involved in the adaptation

through output errors of nodes. For the single-agent case,

many works have proposed RLS algorithms robust against

impulsive noise, e.g., [35], [36]. However, distributed RLS-

based techniques that are robust to impulsive noise have

not been well investigated. The study in [37] develops the

diffusion recursive least p-th power (dRLP) algorithm, while

its robustness relies on the value of p as the dLMP does.

Analogous to the RLS, distributed RLS requires high com-

putational complexity. Apart from this, it may also suffer from

numerical instability due to accumulation of round-off errors in

finite-precision implementations [38]. Aiming to address these

problems, an efficient alternative method is the dichotomous

coordinate-descent (DCD) that solves a system of normal

equations associated with the RLS-type algorithms [38]–[41].

In particular, the DCD method only involves shift and addition

operations, thus the DCD-based RLS algorithms reduce the

computational cost and improve the numerical stability in

contrast with the original RLS counterparts, whilst preserving

comparable estimation performance. For this reason, refer-

ence [42] also explored the use of the DCD in distributed

networks, and developed the DCD-dRLS algorithm. It is worth

mentioning that, however, the development of the DCD-based

algorithms in impulsive noise environments has not been

studied in single nor multi -agent scenarios.

B. Contributions

The focus of this paper is on developing robust distributed

RLS algorithms for scenarios with impulsive noise. Specifi-

cally, our contributions are listed as follows:

1) A robust dRLS (R-dRLS) algorithm is developed by

extending the framework of [35] to multi-agent scenarios with

a diffusion distributed strategy. To ensure that the proposed R-

dRLS algorithm has good convergence performance after an

abrupt change in the set of parameters to be estimated, we also

propose a diffusion-based non-stationary control (NC) method.

2) Theoretical insights into the mean square steady-state

and evolution behaviors of the R-dRLS algorithm in impulsive

noise environment are presented.

3) We employ the DCD method for developing recursions

used in the adaptation step of the R-dRLS algorithm, re-

sulting in the DCD-R-dRLS algorithm with similar learning

performance. Remarkably, the DCD-R-dRLS algorithm brings

a reduction in computational complexity; especially for shift

structured input regressors, it reduces the order of complexity

fromO(M2) toO(M), where M is the length of the estimated

vector.

4) Simulation examples are presented to demonstrate the

performance of the proposed algorithms in impusive noise

scenarios described by either Bernoulli-Gaussian (BG) or α-

stable processes.

In comparison to the preliminary results [1] related to this

work, the current version is further developed due to the main

contributions 2) and 3). We slightly improve the NC method

by a smoothing operation as shown in (15). Moreover, the

effectiveness of the proposed algorithms are also verified in

an application to distributed spectrum estimation.

This paper is organized as follows. In Section II, the

estimation problem is described. The R-dRLS algorithm is

derived in Section III. Analyses of its mean square behavior

are presented in Section IV. In Section V, we review the DCD

algorithm and propose the DCD-R-dRLS algorithm. In Section

VI, extensive simulations are presented to verify the proposed

algorithms. Finally, conclusions are given in Section VII.

Notation: Throughout the paper, all vectors are column

vectors. We use the parenthesis on i to denote matrices

and vectors, and the subscript on i to denote scalars. The

superscript (·)T denotes the transpose, ‖·‖2 denotes the l2-

norm of a vector, and E{·} denotes the expectation of random

variables. We use col{· · ·} to denote an enlarged column

vector structured by stacking its columns on top of each other,

diag{· · ·} to yield a diagonal matrix with its arguments, and

Tr{·} to denote the trace of a matrix. IM is the identity matrix

of size M × M , ⊗ is the Kronecker product, and 1 is the

column vector of length M with all entries being one. For

symmetric matrices X and Y , the notation X ≥ Y stands

for X − Y ≥ 0, meaning that the matrix difference X − Y
is positive semi-definite.

II. PROBLEM FORMULATION

Let us consider a diffusion network with N nodes located

at different positions in space, as shown in Fig. 1, where each

node communicates only with its neighboring nodes by a link

(single-hop communication). All nodes connected directly to

node k (including itself) are referred to as its neighborhood,

denoted as Nk. At every time instant i ≥ 0, every node has

access to an M × 1 input regressor vector uk,i and an output

measurement dk(i), which are related as:

dk(i) = u
T
k,iw

o + vk(i), (1)

where wo is a parameter vector of size M×1 to be estimated,

and vk(i) is the additive noise at node k. The additive noises

vk(i) and vl(j) are spatially and temporally independent for

k 6= l and i 6= j. Moreover, any uk,i is independent of any

vl(j). The model (1) is used in many applications [3], [43].

The objective of the in-network processing is to estimate wo,

using the available data {uk,i, dk(i)} collected at nodes. For

this purpose, the global EWLS estimation problem is described

as [31]:

wi = argmin
w


λi+1δ‖w‖22 +

i∑

j=0

λi−j
N∑

k=1

(
dk(j)− uT

k,iw
)2


 ,

(2)
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Nk

node k

{uk,i, dk(i)}

link

Fig. 1. A simple diffusion network showing a neighborhood Nk of node k.
At time instant i, node k acquires the data {uk,i, dk(i)}.

where δ > 0 is a regularization constant, and λ (0 < λ ≤ 1)

is the forgetting factor. The dRLS algorithm solves (2) in a

diffusion-based distributed manner [31]. As already mentioned

in the introduction, the noise vk(i) may be non-Gaussian with

impulsiveness so that the algorithms derived from (2), e.g.,

the dRLS algorithm, would exhibit poor convergence and even

diverge. In general, when studying robust adaptive algorithms,

both contaminated-Gaussian (CG) [27], [44] and α-stable [45],

[46] random processes are often used for modeling impulsive

noise.

III. PROPOSED R-dRLS ALGORITHM

In this section, we derive the R-dRLS algorithm and propose

a control method for endowing it with tracking capability. The

diffusion strategy has two alternatives: the adapt-then-combine

(ATC) and the combine-then-adapt (CTA). However, we focus

only on the ATC policy, which performs first the adaptation

step and then the combination step. This is based on the fact

that the extension to CTA is straightforward by reversing the

order of the adaptation and combination steps [2], [5]. In what

follows, we neglect the notation ATC for brevity.

A. dRLS Algorithm

To conveniently develop the R-dRLS algorithm, we re-

derive here the dRLS algorithm from the following method

instead of directly solving (2).

In the adaptation step, every node k, at time instant i,
finds an intermediate estimate ψk,i of wo by minimizing the

individual local cost function:

Jk(ψk,i) =‖ψk,i −wk,i−1‖2Bk,i

+ [dk(i)− uT
k,iψk,i]

2,
(3)

with Bk,i = Φk,i − uk,iu
T
k,i, where

Φk,i ,λi+1δIM +

i∑

j=0

λi−juk,ju
T
k,j

=λΦk,i−1 + uk,iu
T
k,i

(4)

is the time-averaged correlation matrix for the input vector at

node k, and wk,i−1 is an estimate of wo at node k at time in-

stant i−1. Notice that the quadratic form ‖x‖2Bk,i
, xTBk,ix

in (3) defines the Riemmanian distance between vectors ψk,i

and wk,i−1, where Bk,i is a Riemannian metric tensor char-

acterizing that the distance properties are not uniform along

the M -dimensional space [47], [48].

Setting the derivative of Jk(ψk,i) with respect to ψk,i to

zero, we obtain

ψk,i = wk,i−1 + Pk,iuk,iek(i), (5)

where

ek(i) = dk(i)− uT
k,iwk,i−1 (6)

stands for the output error at node k, and

Pk,i , Φ
−1
k,i

=
1

λ

(
Pk,i−1 −

Pk,i−1uk,iu
T
k,iPk,i−1

λ+ uT
k,iPk,i−1uk,i

)
,

(7)

with Pk,i initialized as Pk,0 = δ−1IM . The recursion (7) is

the result of applying the matrix inversion lemma [43].

At the combination step, the intermediate estimates ψm,i,

m ∈ Nk from the neigborhood of node k are linearly

weighted, yielding a combined estimate wk,i [3]:

wk,i =
∑

m∈Nk

cm,kψm,i, (8)

where the combination coefficients {cm,k} are non-negative,

and satisfy:

∑

m∈Nk

cm,k = 1, and cm,k = 0 if m /∈ Nk. (9)

Note that cm,k is a weight that node k assigns to the in-

termediate estimate ψm,i received from its neighbor node

m. If one assumes wk,i−1 = Φ
−1
k,i−1zk,i−1 in (5), where

zk,i = λzk,i−1 + uk,idk(i), (5) is a standard RLS update for

node k. In summary, (5)-(8) formulate the dRLS algorithm.

It is noteworthy that the term Pk,iuk,i in (5) provides the

decorrelating ability for colored inputs, thus speeding up the

convergence.

Remark 1: In general, {cm,k} in (9) are determined by

one of many static rules (e.g., the Metropolis rule [49] that

we adopt in this paper) which keeps them constant during

the estimation. Considering that nodes may be working under

different signal-to-noise ratios (SNRs), several adaptive rules

have been proposed to optimize the algorithm behavior [49]–

[51]. However, these adaptive rules are severely polluted when

impulsive noise samples appear, since the output errors at

nodes directly participate in the adaptation of cm,k. Designing

a robust adaptive rule is an alternative, but it is not the focus

of this paper. In another approach, based on the detection

of impulsive noise, Ahn et al. proposed a robust variable

weighting coefficients dLMS (RVWC-dLMS) algorithm which

sets the weighting coefficients to zero at nodes disturbed by

impulsive noise [52]. Likewise, the RVWC scheme can be

extended to dRLS in a straightforward way, resulting in the

RVWC-dRLS algorithm with robustness in impulsive noises1,

as can be seen in the simulations later on.

1In the literature, the RVWC scheme was presented for more general
diffusion strategies (namely, also exchanging information among nodes in
adaptation step). However, here we do not consider this case for a fair compar-
ison. Besides, such general diffusion strategies require higher computational
complexity and communication load [5].
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B. R-dRLS Algorithm

An impulsive noise sample at time instant i might lead the

dRLS algorithm to diverge via ek(i) in (5) due to its large

amplitude and the propagation of its effect. This degradation

effect can last for many iterations. To endow the algorithm

with robustness in impulsive noise scenarios, we propose to

minimize (3) under the following constraint:

‖ψk,i −wk,i−1‖22 ≤ ξk(i− 1), (10)

where ξk(i − 1) is a positive bound. A similar constraint

appeared in an adaptive filter for a single agent scenario [35],

but when generalizing to the distributed version with multiple

agents, the constraint could be imposed on the adaptation

at all the nodes. This constraint represents that the energy

(squared norm) of the update at every node k from wk,i−1 to

ψk,i always does not exceed the amount ξk(i− 1) regardless

of the type of noise (possibly, impulsive noise), thereby

guaranteeing the robustness of the algorithm. In doing so, if (5)

satisfies (10), i.e.,

‖gk,i‖2|ek(i)| ≤
√

ξk(i− 1), (11)

where gk,i , Pk,iuk,i represents the Kalman gain vector,

then (5) is a solution of the above constrained minimiza-

tion problem. Conversely, if (10) is not satisfied (usu-

ally in the case of appearance of impulsive noise), i.e.,

‖gk,i‖2|ek(i)| >
√
ξk(i− 1) , we propose to replace the up-

date (5) by its normalized form to satisfy the equality in (10),

which is described by

ψk,i = wk,i−1 +
√

ξk(i− 1)
gk,i

‖gk,i‖2
sign(ek(i)), (12)

where sign(·) is the sign function. Thus, combining (5), (11)

and (12), we obtain the adaptation step for each node k as:

ψk,i = wk,i−1 +min

[ √
ξk(i− 1)

‖gk,i‖2|ek(i)|
, 1

]
gk,iek(i). (13)

Evidently, the crucial problem is how to properly choose

the bound ξk(i) as it controls the robustness of the algorithm

against impulsive noise and influences its dynamic behavior.

To be more specific, we wish ξk(i) to have larger values at the

earlier adaptation stage to provide a fast initial convergence,

while for enforcing good robustness against impulsive noise,

its values cannot be too large. In addition, we also wish to

obtain a small estimation error at steady-state, so ξk(i) should

be reduced to a small value. Based on these requirements,

we consider the equality in (10) to propose a useful recursive

method for adjusting ξk(i), as described by

ζk(i) =βξk(i− 1) + (1− β) ‖ψk,i −wk,i−1‖22
= βξk(i− 1) + (1− β)min[‖gk,i‖22e2k(i), ξk(i− 1)],

ξk(i) =
∑

m∈Nk

cm,kζm(i),

(14)

where β is a memory factor with 0 < β < 1. At every node k,

ξk(i) can be initialized by ξk(0) = Ecσ
2
d,k/(Mσ2

u,k), where

Ec is a positive integer, and σ2
d,k and σ2

u,k are powers of

the output measurement dk(i) and the input regressor uk,i,

TABLE I
PROPOSED R-dRLS ALGORITHM ALLIED WITH THE NC METHOD

Parameters: 0 < β < 1, λ, δ and Ec (R-dRLS part);

̺, τ and tth (NC part)

Initialization: wk,0 = 0, Pk,0 = δ−1IM and ξk(0) = Ec

σ2
d,k

Mσ2
u,k

(R-dRLS part);

Θold,k = Θnew,k = 0, σ2
e,k = 0, Vt = ̺M

and Vd = 0.75Vt (NC part)

for iteration i = 1, 2, 3, ...
for node k = 1, 2, 3, ..., N

[R-dRLS part:]

ek(i) = dk(i)− uT
k,iwk,i−1

Pk,i = 1
λ

(

Pk,i−1 −
Pk,i−1uk,iu

T
k,i

Pk,i−1

λ+uT
k,i

Pk,i−1uk,i

)

gk,i = Pk,iuk,i

ψk,i = wk,i−1 + min

[ √
ξk(i−1)

‖gk,i‖2|ek(i)| , 1

]

gk,iek(i)

wk,i =
∑

m∈Nk

cm,kψm,i

[NC part:]

Step 1: to compute ∆k(i)
if i = nVt, n = 0, 1, 2, ...

aT
k,i = R

([

e2
k
(i)

‖uk,i‖
2
2
,

e2
k
(i−1)

‖uk,i−1‖22
, ...,

e2
k
(i−Vt+1)

‖uk,i−Vt+1‖22

])

σ2
e,k ← τσ2

e,k + (1− τ)aT
k,ie

Θnew,k = 1
Vt−Vd

∑

m∈Nk

cm,kσ
2
e,m

∆k(i) =
Θnew,k−Θold,k

ξk(i−1)

end

Step 2: to reset ξk(i)
if ∆k(i) > tth

ζk(i) = ξk(0), Pk,i = Pk,0

elseif Θnew,k > Θold,k

ζk(i) = ξk(i− 1) + (Θnew,k − Θold,k)
else

ζk(i) = βξk(i− 1) + (1− β)min
[

‖gk,i‖22e2k(i), ξk(i− 1)
]

end

Θold,k = Θnew,k

ξk(i) =
∑

m∈Nk

cm,kζm(i)

end

end

respectively. As one can see in (14), every node k not only

uses its own adaptive rule to update ξk(i), but also exploits

the side information ζm(i) transmitted from its neighboring

nodes by the diffusion cooperation. In doing so, the proposed

R-dRLS algorithm is more effective at computing consistent

estimates at all nodes, which will be observed in Section VI-A.

Table I details the proposed R-dRLS algorithm together with

the NC method.

Remark 2: As can be seen from (13), the operation mode

of the proposed R-dRLS algorithm in the adaptation step can

be as follows. At time instant i, if ‖gk,i‖22e2k(i) ≤ ξk(i − 1),
the classical RLS update is performed. If not, the squared

norm of the RLS increment is limited to the amount ξk(i−1)
as in (12) for guaranteeing the robustness in impulsive noise.

At the early iterations, the values of ξk(i − 1) can be high

compared to ‖gk,i‖22e2k(i) so that the algorithm will behave as

the dRLS algorithm, providing a fast initial convergence. On

the other hand, whenever an impulsive noise sample appears,

due to its significant magnitude, the R-dRLS algorithm will

work as an dRLS update multiplied by a very small scaling

factor

√
ξk(i−1)

‖gk,i‖2|ek(i)| . It has been shown in [53], [54] that

in the adaptation update term, the multiplication of a small

scaling factor can reduce the negative influence of impulsive

noise on the estimation. Thus, this also indirectly implies

that the R-dRLS algorithm has robustness against impulsive
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noise. Moreover, the robustness is further maintained over

the iterations, due to the decreasing property of ξk(i) given

by (14). In addition to this, the diminishing ξk(i) also leads to

a reduction in the steady-state error of the algorithm. To sum

up, the R-dRLS algorithm can be considered as an improved

dRLS algorithm with a variable ’step-size’ scheme which has

an automatic switch between 1 and

√
ξk(i−1)

‖gk,i‖2|ek(i)| , as can be

observed in (13).

C. NC Method

As a consequence of the diminishing sequence {ξk(i)},
the R-dRLS algorithm has poor ability of tracking (i.e., re-

convergence of the algorithm) after wo undergoes an abrupt

change. In order to overcome this problem, inspired by the

idea in [21] for the single-agent scenario, we propose here a

diffusion-based NC method, as summarized in Table I. The

NC method is implemented in the following two steps.

Step 1: A variable ∆k(i) at node k is computed

once for every Vt iterations, to judge whether the un-

known vector changed or not. In this step, aT
k,i =

R
([

e2k(i)

‖uk,i‖22
,

e2k(i−1)
‖uk,i−1‖22

, ...,
e2k(i−Vt+1)

‖uk,i−Vt+1‖22

])
with R(·) denoting

the ascending arrangement for its arguments. With e =
[1, ..., 1, 0, ..., 0]T being a vector whose first Vt−Vd elements

set to one, where Vd is a positive integer with Vd < Vt, the

product aT
k,ie can remove the effect of outliers (e.g., impulsive

noise samples) when computing ∆k(i). We use a smooth

filtering of aT
k,ie to avoid large fluctuations in computing

Θnew,k (see Table I), as follows:

σ2
e,k ← τσ2

e,k + (1− τ)aT
k,ie, (15)

where τ , 0 < τ < 1, is a memory factor. Note that, every

node k to compute Θnew,k also combines the information from

its neighboring nodes based on a diffused cooperation; Θold,k

stores the value of Θnew,k at the last time instant.

From Step 1, one can see that using a larger Vt, the

algorithm has lower steady-state error but a higher delay

in tracking. Moreover, for a large occurrence probability of

impulsive noise, the value of Vd should be increased to better

discard the impulsive noise samples in the computation of

∆k(i). From our extensive simulations, we found out that for

both Vt and Vd, good choices are Vt = ̺M with 1 ≤ ̺ ≤ 3
and Vd = 0.75Vt [21].

Step 2: If ∆k(i) > tth, where tth is a predefined threshold,

it is decided that a change of wo has occurred. Then, we reset

ξk(i) to its initial value ξk(0) so that the R-dRLS algorithm

can track this change rapidly. Meanwhile, Pk,i should also be

re-initialized with Pk,0.

It is worth noting that in this scheme the parameters τ, ̺,

and tth are not affected by each other so that their choices are

simplified.

IV. MEAN SQUARE PERFORMANCE ANALYSES

A. Steady-state Behavior

In this section, we discuss the steady-state behavior of the R-

dRLS algorithm in impulsive noise. Assuming that the vector

wo is invariant, then we define the estimate deviation and

intermediate estimate deviation vectors respectively as:

w̃k,i , w
o −wk,i,

ψ̃k,i , w
o −ψk,i.

(16)

Using these definitions and (14), it is easy to rearrange (13)

and (8), respectively, as:

ψ̃k,i = w̃k,i−1 −
√

ζk(i)− βξk(i− 1)

1− β

gk,i

‖gk,i‖2
sign(ek(i)),

(17)

and
w̃k,i =

∑

m∈Nk

cm,kψ̃m,i. (18)

Equating the squared l2-norm of both sides of (17) and then

taking the expectation, we obtain

E
{
‖ψ̃k,i‖22

}
= E

{
‖w̃k,i−1‖22

}

− 2E

{√
ζk(i)− βξk(i− 1)

1− β

w̃T
k,i−1gk,i
‖gk,i‖2

sign(ek(i))

}

+
E {ζk(i)} − βE {ξk(i− 1)}

1− β
.

(19)

Likewise treating (18) and applying Jensen’s inequality [55,

p.77], we obtain

E
{
‖w̃k,i‖22

}
≤
∑

m∈Nk

cm,kE
{
‖ψ̃m,i‖22

}
. (20)

Typically, β is close to 1 so that the variances of ζk(i) and

ξk(i) given in (14) would be small enough. Accordingly, it

can be assumed that

E

{√
ζk(i)− βξk(i− 1)

1− β

w̃T
k,i−1gk,i
‖gk,i‖2

sign(ek(i))

}
≈

√
E {ζk(i)} − βE {ξk(i− 1)}

1− β
E

{
w̃T

k,i−1gk,i
‖gk,i‖2

sign(ek(i))

}
.

(21)

Then, with this approximation, (19) is changed to

E
{
‖ψ̃k,i‖22

}
=E

{
‖w̃k,i−1‖22

}
−

2

√
E {ζk(i)} − βE {ξk(i− 1)}

1− β
×

E

{
w̃T

k,i−1gk,i
‖gk,i‖2

sign(ek(i))

}

︸ ︷︷ ︸
(a)

+

E {ζk(i)} − βE {ξk(i− 1)}
1− β

.

(22)

To deal with the (a) term in (22), some assumptions are

helpful.

Assumption 1: The input regressors uk,i are zero-mean

with covariance matrices Rk = E{uk,iu
T
k,i} and spatially

independent.

Assumption 2: The regressors {uk,i} are independent of

the estimates {wm,j} for j ≤ i and all k,m, referred to as
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the independence assumption, which is known as useful in the

analysis of adaptive algorithms [43] and distributed estimation

algorithms [3], [56].

Assumption 3: There is an iteration number i0 such that

for all i > i0, the time-averaged matrix Φk,i at every node

k can be replaced by its expected value E {Φk,i}. This is an

ergodicity assumption since 0≪ λ < 1, and from (4) we have

lim
i→∞

E {Φk,i} =
Rk

1− λ
, Φ̄k. (23)

Correspondingly, we can also replace the random matrix Φ
−1
k,i

by Φ̄
−1
k , E

{
Φ
−1
k,i

}
for a sufficiently large number of

iterations i. Note that such replacements are commonly used

in the performance analysis of RLS-type algorithms, see [31],

[32], [43], [57] and the references therein.

Applying assumption 3, we are able to represent the term

(a) in (22) as:

E

{
w̃T

k,i−1gk,i
‖gk,i‖2

sign(ek(i))

}

≈ E




w̃T

k,i−1Φ̄
−1
k uk,i√

uT
k,iΦ̄

−2
k uk,i

sign(ek(i))





= E




w̃T

k,i−1R
−1
k uk,i√

uT
k,iR

−2
k uk,i

sign(ek(i))



 .

(24)

In the light of assumption 1, if the dimension of wo is large,

i.e., M ≫ 1, the fluctuation of the denominator term in (24)

from one iteration to the next can be assumed to be small. So,

we could make the following approximation (which is also

verified in Appendix A):

E




w̃T

k,i−1R
−1
k uk,i√

uT
k,iR

−2
k uk,i

sign(ek(i))



 ≈

χkE
{
e
R

−1
k

a,k (i)sign (ea,k(i) + vk(i))
}
,

(25)

where
ea,k(i) , w̃

T
k,i−1uk,i,

e
R

−1
k

a,k (i) , w̃T
k,i−1R

−1
k uk,i,

χk = E





1√
uT
k,iR

−2
k uk,i



 .

(26)

Considering the presence of impulsive noise, we need the

following assumptions to continue the analysis.

Assumption 4: At every node k, the additive noise vk(i) is

drawn from a CG random process, vk(i) = θk(i) + ηk(i),
where θk(i) is the background noise assumed to be zero-

mean white Gaussian with variance σ2
θ,k. The impulsive part

ηk(i) is described as ηk(i) = bk(i)gk(i), where bk(i) is

drawn from a Bernoulli random process with the probability

P [bk(i) = 1] = pr,k , and gk(i) is drawn from a white Gaus-

sian random process with zero-mean and variance σ2
g,k =

~σ2
θ,k, ~ ≫ 1. Usually, pr,k is also called the appearance

probability of an impulsive noise sample.

Then, the mean and variance of vk(i) are zero and σ2
v,k =

pr,k(~ + 1)σ2
θ,k + (1 − pr,k)σ

2
θ,k, respectively. Note that,

only when pr,k = 0 or 1, vk(i) is Gaussian; otherwise,

vk(i) is non-Gaussian. Also, vk(i) conditioned on bk(i) is

Gaussian [44]. Although the α-stable process is more appro-

priate for modeling impulsive noise in practice [20], [45],

[46], one would not consider it in the algorithms’ analysis

because its probability density function has no explicit form.

Accordingly, the above assumption was used frequently for

performance analysis of adaptive algorithms in impulsive noise

environments, providing mathematical tractability [21], [27],

[44], [58].

Furthermore, as pointed out in [59], when M ≫ 1, then by

using the central limit theorem, it can be assumed that ea,k(i)
and eΣa,k(i) are zero mean Gaussian variables for any constant

matrix Σ. Then, we can employ the following Lemma.

Lemma: Let ea and u be jointly Gaussian zero-mean random

variables. Let e = ea+v, where v is a zero-mean CG random

variable with variance σ2
v = pr(~ + 1)σ2

θ + (1 − pr)σ
2
θ , and

v is independent of ea and u. If e1 = ea + ω1 and e2 =
ea + ω2, where ω1 and ω2 are zero-mean Gaussian random

variables with variances σ2
ω1

= (~+ 1)σ2
θ and σ2

ω2
= σ2

θ , and

are independent of u and ea, then

E{sign(e)u} = prE{sign(e1)u}+ (1− pr)E{sign(e2)u}.

Such a Lemma has been commonly used in the past for

analyzing the sign-based algorithms [27], [58]. Based on

Price’s theorem in [60], Lemma and assumption 2, we can

establish the following equation

E
{
e
R

−1
k

a,k (i)sign (ea,k(i) + vk(i))
∣∣∣ w̃k,i−1

}

= ̟k,iE
{
e
R

−1
k

a,k (i)ea,k(i)
∣∣∣ w̃k,i−1

}
,

(27)

where

̟k,i =

√
2

π





pr,k√
E{e2a,k(i)}+ (~+ 1)σ2

θ}

+
1− pr,k√

E{e2a,k(i)}+ σ2
θ}



 6= 0,

(28)

and the notation E{s|q} accounts for the expectation of s
conditioned on q. Subsequently, the right-hand term in equal-

ity (25) becomes

E
{
e
R

−1
k

a,k (i)sign (ea,k(i) + vk(i))
}

= E
{
E
{
e
R

−1
k

a,k (i)sign (ea,k(i) + vk(i))
∣∣∣ w̃k,i−1

}}

= ̟k,iE
{
e
R

−1
k

a,k (i)ea,k(i)
}

(a)
= ̟k,iE

{
‖w̃k,i−1‖22

}
,

(29)

where the equality (a) is the result of using (26) under

assumption 2.
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Substituting (25) and (29) into (22), it is rearranged as

E
{
‖ψ̃k,i‖22

}
= E

{
‖w̃k,i−1‖22

}

− 2χk̟k,i

√
E {ζk(i)} − βE {ξk(i− 1)}

1− β
E
{
‖w̃k,i−1‖22

}

+
E {ζk(i)} − βE {ξk(i− 1)}

1− β
.

(30)

Next, we introduce the following network global vectors:

Xi , col
{
E{‖ψ̃1,i‖22}, ..., E{‖ψ̃N,i‖22}

}
,

Wi , col
{
E{‖w̃1,i‖22}, ..., E{‖w̃N,i‖22}

}
,

(31)

and the network global matrices

Λi , diag {χ1̟1,i, ..., χN̟N,i} ,

Ωi , diag

{√
E {ζ1(i)} − βE {ξ1(i− 1)}

1− β
, ...,

√
E {ζN (i)} − βE {ξN (i− 1)}

1− β

}
.

(32)

Also, we define the matrix C to collect the combination

coefficients, i.e., [C]m,k = cm,k. Following (31) and (32),

we can formulate (20) and (30) for all nodes as follows:

Wi ≤ CTXi

= CT
[
Wi−1 − 2ΛiΩiWi−1 +Ω

2
i1M

]
.

(33)

Taking the ∞-norm for both sides of (33) leads to

‖Wi‖∞ ≤
∥∥CT

(
Wi−1 − 2ΛiΩiWi−1 +Ω

2
i1M

)∥∥
∞

≤
∥∥CT

∥∥
∞
∥∥Wi−1 − 2ΛiΩiWi−1 +Ω

2
i1M

∥∥
∞

(a)
=
∥∥Wi−1 − 2ΛiΩiWi−1 +Ω

2
i1M

∥∥
∞

(34)

where the equality (a) uses the fact that ‖CT ‖∞ = 1 in

that the summation of each column of C is 1. Since Λi

and Ωi are diagonal matrices with positive entries, (34) can

be equivalently expressed as [12]:

E
{
‖w̃k,i‖22

}
≤ E

{
‖w̃k,i−1‖22

}

− 2χk̟k,i

√
E {ζk(i)} − βE {ξk(i− 1)}

1− β
E
{
‖w̃k,i−1‖22

}

+
E {ζk(i)} − βE {ξk(i− 1)}

1− β
(35)

for k = 1, ..., N . When the algorithm reaches the steady-state,

i.e., E
{
‖w̃k,i‖22

}
= E

{
‖w̃k,i−1‖22

}
as i→∞, from (35) we

will get:

2χk̟k,i lim
i→∞

E
{
‖w̃k,i−1‖22

}
≤

√

lim
i→∞

E{ζk(i)} − βE{ξk(i− 1)}
1− β

.
(36)

In view of the result that E{ζk(i)} and E{ξk(i)} converge

approximately to 0 as i → ∞ (see Appendix B) as well as

χk 6= 0 and ̟k,i 6= 0, thus, from (36) we are able to deduce

that

E{‖w̃k(∞)‖22} ≈ 0, for k = 1, ..., N. (37)

As a result, (37) illustrates that based on given assumptions,

the R-dRLS algorithm can converge to the true parameter

vector in the mean-square sense after enough iterations even

in impulsive noise environments.

B. Analysis of Evolution Behavior

The result (37) is qualitative so that it does not predict the

steady-state performance of the algorithm, due mainly to the

use of the upper bound relation (20). In this subsection, we will

establish a recursive model to describe the evolution behavior

of the algorithm in impulsive noise. We start by defining the

following network vectors collected from all nodes:

ψ̃i , col{ψ̃1,i, ..., ψ̃N,i},
w̃i , col{w̃1,i, ..., w̃N,i},
Ξi , col{Ξ1,i, ...,ΞN,i},

(38)

where

Ξk,i =

√
ζk(i)− βξk(i− 1)

1− β

gk,i

‖gk,i‖2
sign(ek(i)) (39)

for nodes k = 1, ..., N . By these defined vectors, we can

associate (17) with (18) at all the nodes:

w̃i = CT [w̃i−1 −Ξi], (40)

where C = C ⊗ IM . Post-multiplying (40) by its transpose

and taking the expectation, we have

Wi =CT

Wi−1 − E{w̃i−1Ξ

T
i }︸ ︷︷ ︸

I

−

E{Ξiw̃
T
i−1}︸ ︷︷ ︸

II

+E{ΞiΞ
T
i }︸ ︷︷ ︸

III


 C,

(41)

where Wi , E{w̃iw̃
T
i } denotes the covariance matrix of the

deviation vector w̃i, and its k-th diagonal block of size M×M ,

i.e., Wk,i , E{w̃k,iw̃
T
k,i}, represents the covariance matrix

of the deviation vector w̃k,i at node k.

To evaluate terms I-III in (41), in addition to the spatially

independence in assumption 1, we also require the input

regressors uk,i to be statistically independent in time, which is

also often used in analysis of distributed estimation algorithms

[2], [3]. Therefore, performing similar manipulations as in

Section IV-A on the expectations under assumptions 2-4,

Lemma and Price’s theorem, we can compute these three

terms. Specifically, the term I in (41) becomes

E{w̃i−1Ξ
T
i } = E{E{w̃i−1Ξ

T
i |w̃i−1}}

=Wi−1[(ΛiΩi)⊗ IM ],
(42)
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where we rewrite ̟k,i contained in Λi as

̟k,i =

√
2

π

{
pr,k√

Tr{Wk,i−1Rk}+ (~+ 1)σ2
θ}

+
1− pr,k√

Tr{Wk,i−1Rk}+ σ2
θ}

}
.

(43)

The term II in (41) is the transpose of (43). For any k and

m belonging to the set {1, ..., N}, we define the (m, k)-th
M ×M matrix E{ΞiΞ

T
i } as follows:

E{ΞiΞ
T
i }m,k = E{Ξm,iΞ

T
k,i}. (44)

When k = m, (44) represents the k-th diagonal block of

E{ΞiΞ
T
i }, which is described as

E{ΞiΞ
T
i }k,k = Ω2

k,iE




R−1k uk,iu

T
k,iR

−1
k,i√

uT
k,iR

−2
k uk,i



 , (45)

where Ωk,i is the k-th element of Ωi. When k 6= m, the off-

diagonal blocks will be simplified as

E{ΞiΞ
T
i }m,k = E{E{Ξm,iΞ

T
k,i|w̃k,i−1, w̃k,i−1}}

≃ E{E{Ξm,i|w̃m,i−1} · E{ΞT
k,i|w̃k,i−1}}

= χm̟m,iΩm,iE{w̃m,i−1w̃
T
k,i−1}χk̟k,iΩk,i.

(46)

From (45) and (46), we obtain the term III in (41):

E{ΞiΞ
T
i } =[(ΛiΩi)⊗ IM ][Wi−1 − W̆i−1]×

[(ΛiΩi)⊗ IM ] + R̆,
(47)

where

W̆i−1 = diag{W1,i−1, ...,WN,i−1},

R̆ = diag



Ω2

1,iE




R−11 u1,iu

T
1,iR

−1
1,i√

uT
1,iR

−2
1 u1,i



 , ...,

Ω2
N,iE




R−1N uN,iu

T
N,iR

−1
N,i√

uT
N,iR

−2
N uN,i







 .

(48)

By substituting (42) and (47) into (41), we obtain the recursive

expression for Wi:

Wi =CT {Wi−1 −Wi−1[(ΛiΩi)⊗ IM ]−
[(ΛiΩi)⊗ IM ]TW T

i−1 + [(ΛiΩi)⊗ IM ]×
[Wi−1 − W̆i−1][(ΛiΩi)⊗ IM ] + R̆

}
C.

(49)

The mean square deviation (MSD) at node k is defined

as MSDk(i) , Tr{Wk,i}, and the network MSD over all

the nodes is defined as MSDnet(i) = 1
N

∑N
k=1 MSDk(i) =

Tr{Wi}/N [2]. Equation (49) models the MSD evolution

behavior of the algorithm. It needs to be mentioned that

to implement the model (49), E{ξk} and E{ζk} defined in

Ωi still need to be evaluated further. However, as shown

in (14), ξk and ζk between interconnected nodes are affected

by each other and there is a comparison operation, so it is

difficult to provide an evolution expression for them. In this

paper, we suggest that E{ξk} and E{ζk} are obtained by the

ensemble average using simulations. Consequently, although

(49) is a semi-analytic result, it can also be used to evaluate

the convergence of the proposed algorithm.

TABLE II
DCD METHOD FOR SOLVING (51).

Parameters:H, Nu, Mb,

Initialization: ∆ŵk,i = 0, rk,i = bk,i, y = 1, µ = H/2
for j = 1, ..., Nu

l = arg max
j=1,...,M

{|[rk,i]j |}
while |[rk,i]l| ≤ (µ/2)[Φk,i]l,l and y ≤Mb

y = y + 1, µ = µ/2
end

if y > Mb

break

else

[∆ŵk,i]l ← [∆ŵk,i]l + µsign([rk,i]l)
rk,i ← rk,i − µsign([rk,i]l)[Φk,i]:,l

end

end

V. DCD-BASED ALGORITHMS

In this section, we review the DCD-dRLS algorithm

from [42], and then develop a robust DCD-dRLS algorithm.

A. The Original DCD-dRLS Algorithm

Since the dRLS algorithm involves the matrix operation of

size M × M in the computations of gk,i and (7) at every

node, it requires a computational complexity that scales as a

quadratic function of M in terms of additions and multiplica-

tions per iteration i. To reduce the complexity, the adaptation

step of the DCD-dRLS algorithm is described as [42]:

ψk,i = wk,i−1 +∆wk,i, (50)

where the increment ∆wk,i is obtained by solving the normal

equation:

Φk,i∆wk,i = bk,i, (51)

bk,i = λrk,i−1 + ek(i)uk,i, (52)

rk,i−1 defines the residual vector at node k at time instant i−1:

rk,i−1 = bk,i−1 −Φk,i−1∆ŵk,i−1. (53)

For reducing the complexity of computing ∆ŵk,i and rk,i,

the DCD method presented in Table II is used; see [38]–[40]

for details. In Table II, [rk,i]l is the l-th entry of a vector rk,i,

and [Φk,i]l,l and [Φk,i]:,l are the (l, l)-th entry and the l-th
column of Φk,i, respectively.

The accuracy and complexity of the DCD method are

dependent on three parameters: H , Mb, and Nu. In general, H
is chosen as a power-of-two number; Mb is the number of bits

being enough for a fixed-point representation of ∆ŵk,i within

an amplitude range [−H,H]; and Nu defines a maximum

number of elements in ∆ŵk,i that can be updated at a time

instant. The DCD method only requires 2NuM+Mb additions

at most at each time instant with no multiplication [38].

Also, a larger Nu makes the solution ∆ŵk,i closer to the

optimal solution ∆wk,i in (51), but increases the number

of additions. It follows that if Nu < M , the DCD-based

algorithm implements a selective partial update [61].

Similar to the dRLS algorithm, however, the DCD-dRLS

algorithm will also encounter the performance deterioration

when impulsive noise happens.
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TABLE III
PROPOSED DCD-R-dRLS ALGORITHM

Parameters: 0≪ β < 1, λ, δ and Ec

Initialization: wk,0 = 0, Φk,0 = δIM and ξk(0) = Ec

σ2
d,k

Mσ2
u,k

for each node k:

ek(i) = dk(i)− uT
k,iwk,i−1

Φk,i = λΦk,i−1 + uk,iu
T
k,i

bk,i = λrk,i−1 + ek(i)uk,i

Using DCD to solve Φk,i∆wk,i = bk,i, yielding

∆ŵk,i = ∆ŵ
(1)
k,i

and rk,i = r
(1)
k,i

if ‖∆ŵk,i‖22 > ξk(i− 1)

bk,i = λrk,i−1 +

√
ξk(i−1)

‖∆ŵk,i‖2
ek(i)uk,i

Using DCD to solve Φk,i∆wk,i = bk,i, yielding

∆ŵk,i =

√
ξk(i−1)

‖∆ŵ
(2)
k,i

‖2

∆ŵ
(2)
k,i

and rk,i = r
(2)
k,i

end

ψk,i = wk,i−1 + ∆ŵk,i

wk,i =
∑

m∈Nk

cm,kψm,i

ζk(i) = βξk(i− 1) + (1− β)‖∆ŵk,i‖22
ξk(i) =

∑

m∈Nk

cm,kζm(i)

B. Proposed DCD-R-dRLS Algorithm

To achieve robustness against impulsive noise, we present

here the DCD-R-dRLS algorithm.

Step 1: At every node k, we firstly use the DCD method

to solve the normal equation (51) with (4) and (52), yielding

a solution ∆ŵ
(1)
k,i and residual vector r

(1)
k,i . In the presence of

impulsive noise, we also impose a constraint similar to that

in (10):

‖∆ŵk,i‖22 ≤ ξk(i− 1). (54)

Step 2: If ‖∆ŵ(1)
k,i‖22 ≤ ξk(i − 1), we set ∆ŵk,i = ∆ŵ

(1)
k,i

and rk,i = r
(1)
k,i and then perform the update (50). Otherwise,

we need to recalculate bk,i in (51) as:

bk,i = λrk,i−1 +

√
ξk(i− 1)

‖∆ŵ(1)
k,i‖2

ek(i)uk,i. (55)

Subsequently, based on the DCD method, we obtain the

solution ∆ŵ
(2)
k,i and the residual vector r

(2)
k,i from the normal

equation (51) under (4) and (55), thereby performing the

update (50) with the increment

∆ŵk,i =

√
ξk(i− 1)

‖∆ŵ(2)
k,i‖2

∆ŵ
(2)
k,i , (56)

and rk,i = r
(2)
k,i .

Step 3: The combination step (12) is performed.

Step 4: The bound parameter ξk(i) in the DCD-R-dRLS

algorithm is updated according to

ζk(i) =βξk(i− 1) + (1− β)‖∆ŵk,i‖22,
ξk(i) =

∑

m∈Nk

cm,kζm(i). (57)

Table III summarizes the DCD-R-dRLS algorithm.

Remark 3: An impulsive noise sample appearing at

time instant i would yield a mismatch solution ∆ŵ
(1)
k,i so

that ‖∆ŵ(1)
k,i‖22 > ξk(i− 1) . In this case, the scaling factor√

ξk(i−1)
‖∆ŵ(1)

k,i
‖2

in (55) is small enough to eliminate impulsive noise

hidden in ek(i). A similar scaling factor

√
ξk(i−1)
‖∆ŵ(2)

k,i
‖2

in (56)

is to make the increment satisfy the constraint (54). Con-

sequently, the DCD-R-dRLS algorithm improves the robust-

ness to impulsive noise relative to the DCD-dRLS algorithm.

Moreover, the decreasing sequence {ξk(i)} shown in (57)

further guarantees the robustness. It is worth noting that due

to ‖gk,i‖2|ek(i)| ≈ ‖∆ŵk,i‖2, the DCD-R-dRLS algorithm

is a DCD-based variant of the R-dRLS algorithm. Unlike the

R-dRLS algorithm, based on the NC method we re-initialize

Φk,i with Φk,0 to endow the DCD-R-dRLS algorithm with

the tracking capability when wo suddenly changes.

Remark 4: Let C+
dcd denote the only required number of

additions for the DCD algorithm, with C+
dcd ≤ 2NuM +Mb.

In Table IV, we provide the computational complexity of

the existing dLMS, dRLS, DCD-dRLS, and both proposed

R-dRLS and DCD-R-dRLS algorithms at node k per time

instant i, where nk denotes the cardinality of Nk. For shift

structured input regressor at node k [9], [30], i.e., uk,i =
[uk(i), uk(i − 1), ..., uk(i − M + 1)]T , where uk(i) is an

input sample at time instant i, implementing Φk,i in (4) is

very simplified. In this situation, by copying the upper-left

(M − 1)× (M − 1) block of Φk,i−1 leads to the lower-right

(M −1)× (M −1) block of Φk,i. The remaining part of Φk,i

that needs to be updated is the first row and first column.

Owing to symmetry of Φk,i, only calculating the first column

is sufficient, which is formulated as:

[Φk,i]:,1 = λ[Φk,i−1]:,1 + uk(i)uk,i.

Note that, in the DCD-R-dRLS algorithm, κ = 1 represents

the case ‖∆ŵk,i‖22 > ξk(i− 1) at time instant i (which leads

to the maximum complexity), otherwise κ = 0. The compar-

isons required in the R-dRLS and DCD-R-dRLS algorithms

are counted as additions.

Consider an example with nk = 10, Mb = 32 and κ = 1,

Fig. 2 depicts the number of operations of some diffusion

algorithms in terms of multiplications and additions at node k
at each time instant versus M . It is clear that the computational

complexity of the dLMS algorithm, with the order of O(M),
is much lower than that of the dRLS algorithm. As expected,

since Nu < M , compared with the standard dRLS and

R-dRLS algorithms, their DCD versions obtain about 50%
reduction in both multiplications and additions for the case of

general input regressors. However, for shift structured input

regressors, the computational cost is drastically reduced from

the order O(M2) to O(M), which is more pronounced in

scenarios with large M . Moreover, the multiplications required

in the DCD-based algorithms are not dependent of Nu. On the

other hand, in contrast with the existing dRLS and DCD-dRLS

algorithms, the additional complexities in the proposed R-

dRLS and DCD-R-dRLS algorithms resulted from the compu-

tations of the scaling factor and the bound parameter are small.

In addition to the complexity, for both proposed algorithms,

each node k increases communication cost of nk−1 numbers

for transmitting ζk to its neighbors.

Remark 5: From the DCD-R-dRLS algorithm, we can

directly obtain its special form for a single-agent scenario,

referred it to as the DCD-R-RLS algorithm. In other words,
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TABLE IV
COMPUTATIONAL COMPLEXITY OF ALGORITHMS FOR NODE k PER TIME INSTANT.

Algorithms Multiplications Additions Divisions Square-root

dLMS nkM + 2M + 1 nkM + M - -

dRLS nkM + 4M2 + 3M nkM + 3M2 M -

DCD-dRLS

without shift structure in input nkM + 2M2 + 3M nkM + M2 + 2M + C+
dcd

- -

DCD-dRLS

with shift structure in input nkM + 5M nkM + 3M + C+
dcd

- -

R-dRLS nk(M + 1) + 4M2 + 4M + 5 nk(M + 1) + 3M2 + M + 1 M + 1 1

DCD-R-dRLS

without shift structure in input nk(M + 1) + 2M2 + 4M + 3κM + 2 nk(M + 1) + M2 + 3M + κ(2M − 1 + C+
dcd

) + C+
dcd

2κ 2κ
DCD-R-dRLS

with shift structure in input nk(M + 1) + 6M + 3κM + 2 nk(M + 1) + 4M + κ(2M − 1 + C+
dcd

) + C+
dcd

2κ 2κ
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Fig. 2. Complexity of the algorithms versus the length of the target vector
at node k. (a) multiplications and (b) additions.

the DCD-R-RLS algorithm is the DCD implementation of the

algorithm presented in [35].

VI. SIMULATION RESULTS

Simulation examples are presented for a diffusion network

with N = 20 nodes on distributed parameter estimation

and distributed spectrum estimation. The network topology

adopted for all simulations is shown in Fig. 3(a), unless oth-

erwise specified. Herein, we do not consider the measurement

sharing in the adaptation step for all diffusion algorithms.

The Metropolis rule [49] used for computing the combination

coefficients {cm,k} in combination step is expressed as:

cm,k =





1/max(nm, nk), if m ∈ Nk, m 6= k

1−
∑

m 6=k

cm,k, if m = k

0, otherwise.

A. Distributed Parameter Estimation

The vector wo to be estimated has a length of M = 16
and a unit norm; it is generated randomly from a zero-mean

uniform distribution. The input regressor uk,i has a shift

structure, where uk(i) is colored and generated by a second-

order autoregressive system:

uk(i) = 1.6uk(i− 1)− 0.81uk(i− 2) + ǫk(i),

where ǫk(i) is a zero-mean white Gaussian process with

variance σ2
ǫ,k. The background noise θk(i) is zero-mean white

Gaussian noise with variance σ2
θ,k. Variances σ2

ǫ,k and σ2
θ,k

are shown in Fig. 3(b) and (c), respectively, for all the nodes.

We employ the network MSD to assess the performance of

algorithms. All results are the average over 200 independent

trials.
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Example 1: Except for the background noise θk(i), a cluster

of impulses with length 200 is also added to corrupt dk(i) at

iteration i = 5001 2. The cluster is drawn from a zero-mean

white Gaussian process, but with a large variance 1000σ2
y,k

to generate impulsive samples, where σ2
y,k denotes the power

of yk(i) = uT
k,iw

o. Fig. 4 compares the performance of

the proposed R-dRLS algorithm with that of the dRLS and

both LTVFF-dRLS and LCTVFF-dRLS algorithms presented

in [57]. The parameters of the algorithms are set to make a

comparable convergence rate. The regularization constant for

all RLS-type algorithms is chosen as δ = 0.01. It is clear to

see, for a small forgetting factor λ = 0.98, the conventional

dRLS algorithm converges faster but has a higher estimation

error; conversely, by increasing the forgetting factor, it has

a lower estimation error but its convergence rate becomes

slower. In particular, using a large forgetting factor λ = 0.998,

the dRLS will need more time to converge again after a

cluster of impulses enforces the algorithm to diverge. Due to

the use of variable forgetting factor schemes, both LTVFF-

dRLS and LCTVFF-dRLS algorithms solve this performance

trade-off to a certain extent. As stated in Remark 2, the R-

dRLS algorithm also overcomes this performance trade-off

since it employs a variable ’step-size’ factor in the adaptation

step. Besides, unlike the dRLS, LTVFF-dRLS and LCTVFF-

dRLS algorithms, even though a cluster of impulses does not

happen until the algorithms reach the steady-state, the R-dRLS

algorithm also does not undergo divergence. This is because

the R-dRLS algorithm can judge by (11) whether impulses

occur or not and perform corresponding updates.
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Fig. 4. Network MSD curves of the algorithms. [Gaussian noise with a cluster
of impulses]. Parameter setting of the algorithms (with notations from refer-
ences) is as follows: α=0.97, β=0.0005, λ+=0.9998 and λ

−
=0.95 (LTVFF-

dRLS); α=0.8, β=0.015, γ=0.95, λ+=0.9998 and λ
−

=0.95 (LCTVFF-dRLS);
λ=0.98, β=0.97 and Ec=10 (R-dRLS).

Example 2: The additive noise vk(i) is a CG process given

in assumption 4. At every node k, we set pr,k as a random

number in the range of [0.001, 0.05] and σ2
g,k = 1000σ2

y,k. For

a fair comparison of RLS-type algorithms, we choose the same

forgetting factor λ=0.985 and regularization constant δ=0.01,

except δ=0.5 in the dRLP and RVWC-dRLS algorithms.

Fig. 5 checks the validity of the semi-analytic result (49),

where we plot E{ξ1(i)} at node 1 (having similar results at

2Such a scenario is similar to double-talk in echo cancellation.

other nodes). To take into account the assumption on input

regressors uk,i in analysis, here its entries are generated from

a white Gaussian process ǫk(i). To compute (49), we use

the same impulsive noise parameters: pr,k = 0.01 or 0.05,

and σ2
g,k = 10000σ2

θ,k at all the nodes. As one can see, the

theoretical results have good fit with the simulated results.

Moreover, E{ξ1(i)} obtained by the ensemble average of

simulations is a decreasing function of the iteration i, which

further supports the theory in Appendix B.
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Fig. 5. Verification of (49) for the R-dRLS algorithm (with the parameters
β=0.97 and Ec=1). (a) pr,k = 0.01 and (b) pr,k = 0.05.

Fig. 6 investigates the effect of the NC method on the R-

dRLS algorithm. It can be seen that the R-dRLS algorithm

will not re-converge after wo changes to −wo at iteration i =
2501. In this scenario, all algorithms have a large sharp phase

transition of MSD due to the mismatch between −wo and its

estimate wk,i at that moment. The NC method can endow the

R-dRLS algorithm with good tracking capability for such a

change of wo. Benefited from the smoothing operation (15),

the NC (τ = 0.96 ) only slightly degrades the steady-state

performance of the R-dRLS algorithm compared with the non-

smooth version in [1] (i.e., τ = 0 ).
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Fig. 6. Effect of the NC method. Parameter setting of algorithms: β=0.97
and Ec=1 (R-dRLS); ̺=3 and tth=15 (NC).
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In Fig. 7, we compare the performance of the dRLS,

dSE-LMS, dLMP, RVWC-dRLS, and dRLP algorithms with

that of the proposed R-dRLS with NC algorithm. Note that,

the R-dRLS (no cooperation) is that each node performs a

standalone adaptive algorithm presented in [35]. As expected,

the dRLS algorithm has a poor performance in the presence

of impulsive noise, while other algorithms are robust. Among

these robust algorithms, the convergence of dSE-LMS and

dLMP algorithms is slow. Thanks to the decorrelation property

of dRLS, the RVWC-dRLS, dRLP, and R-dRLS with NC

algorithms obtain fast convergence. In particular, the proposed

R-dRLS with NC algorithm has also a large reduction in the

steady-state MSD. This is due mainly to the fact that its

updated energy described by (10) and (14) diminishes with

iterations.
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Fig. 7. Network MSD curves of the algorithms in impulsive noise with BG
distribution. Parameter setting of algorithms (with notations from references)
is as follows: µk=0.015 (dSE-LMS); µk=0.015 and p=1.3 (dLMP); p=1.3
(dRLP); β=0.97 and Ec=1 (R-dRLS); ̺=3, τ= 0.96 and tth=15 (NC).
According to Remark 1, parameters of RVWC-dRLS are chosen as L=16,
α=2.58 and λ=0.97 (see [52] for detailed design of RVWC).

Example 3: The additive noise vk(i) here is generated

by the α-stable process, also called the α-stable noise. Its

characteristic function is given by ϕ(t) = exp(−γ|t|α) [45],

[48], where the characteristic exponent α ∈ (0, 2] describes the

impulsiveness of the noise (smaller α leads to more impulsive

noise samples) and γ > 0 represents the dispersion level

of the noise. In particular, when α = 2, it reduces to the

Gaussian noise. It is rare to find α-stable noise with α < 1
in practice [45], [48]. In this example, thus we set α = 1.2
and γ = 2/15. The learning performance of the algorithms

is shown in Fig. 8. Fig. 9 shows the node-wise steady-state

MSD of the robust algorithms (i.e., excluding the dRLS), by

averaging MSD values from iteration 2 400 to 2500. As can

be seen from Figs. 8 and 9, the proposed R-dRLS algorithm

with NC outperforms the known robust diffusion algorithms in

terms of convergence rate, steady-state accuracy and tracking

capability. As shown in Fig. 7 to Fig. 9, due to the cooperation

of interconnected nodes, the R-dRLS algorithm improves the

estimation performance compared with its non-cooperative

counterpart.
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Fig. 8. Network MSD curves of algorithms. [α-stable noise]. Parameters in
some of algorithms are tuned as follows: p = 1.18 (dLMP and dRLP); ̺=2
and tth=5 (NC).
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We also perform the simulations for the network in Fig. 10

with less connections among nodes. Fig. 11 shows the node-

wise steady-state MSD of those algorithms in Fig. 9. By

comparing these two figures, it is seen that the proposed R-

dRLS algorithm is more likely to reach the same estimates at

all nodes.
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Fig. 11. Node-wise steady-state MSD of the algorithms for the network
depicted in Fig. 10. [α-stable noise]. Parameters setting of the algorithms is
the same as Fig. 8.

Example 4: Comparison of DCD-algorithms. Figs. 12

and 13 compare the DCD-R-dRLS algorithm using different

Nu values with its standard version in CG-noise and α-

noise scenarios3. The DCD parameters are H = 4 and

Mb = 16. It is seen that, the proposed DCD-R-dRLS algorithm

is also robust to impulsive noises, and approaches the R-

dRLS performance with increase in Nu. In this example, the

DCD-R-dRLS algorithm with Nu = 4 (< M) has a good

approximation to the R-dRLS algorithm, while the complexity

of the former is significantly lower than that of the latter.

Moreover, many simulations have been carried out in different

impulsive noise scenarios by prolonging the iteration i to a

larger number than the one in Fig. 5, e.g., 5 × 105, using

MATLAB R2013A on a Intel(R) Core(TM) i5-4590 CPU

@ 3.30 GHz processor. We did not observe any numerical

instability during the simulations for both proposed R-dRLS

and DCD-dRLS algorithms.
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Fig. 12. Network MSD curves of the DCD-R-dRLS algorithm in CG noise.
Parameters choice of the DCD-R-dRLS is the same as the R-dRLS in Fig. 7
except λ = 0.975, β = 0.96 and τ = 0.97.

3Here the curves of both the R-dRLS and DCD-dRLS algorithms are
omitted due to their divergence performance in impulsive noise.
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Fig. 13. Network MSD curves of the DCD-R-dRLS algorithm in α-stable
noise. Parameters choice of the DCD-R-dRLS is the same as the R-dRLS in
Fig. 8 except λ = 0.975, β = 0.96 and τ = 0.97.

B. Application: Distributed Spectrum Estimation

We have also tested the proposed algorithms’ performance

in an application of distributed spectrum estimation in CR, in

which the objective is to estimate the spectrum of a transmitted

signal source s in the network with N nodes [7], [8], [57].

We use φs(f) =
∑M

m=1 qm(f)wo
m = qT (f)wo to denote the

power spectral density (PSD) of the signal s at frequency f ,

where q(f) = [q1(f), ..., qM (f)]T is a vector consisting of

basis functions evaluated at normalized frequency f , andwo =
[wo

1, ..., w
o
M ]T stands for the power that transmits the signal

s over each of M basis functions and needs to be estimated.

Such basis expansion can accurately model the spectrum of

the signal s for large enough M . Considering Hk(f, i) is the

transfer function of the channel between the station emitting

the signal s and receiver node k at time instant i, the PSD of

the received signal at node k can be expressed as

φk,r(f) = |Hk(f, i)|2φs(f) + σ2
r,k

= qTk,i(f)w
o + σ2

r,k,
(58)

where qk,i(f) = |Hk(f, i)|q(f), and σ2
r,k is the received noise

power at node k.

At time instant i, each node k observes the received PSD

expressed in (58) over Nc frequency samples fι = fmin :
(fmax − fmin)/Nc : fmax for ι = 1, ..., Nc; accordingly, the

output measurements of node obey the following relation:

dιk(i) = q
T
k,i(fι)w

o + σ2
r,k + vιk(i), (59)

where vιk(i) denotes the observation noise at frequency fι.
The noise power σ2

r,k can be estimated with high accuracy

before the spectrum estimation, using, for example, an energy

estimator over an idle band, and then subtracted from (59) [7],

[8], [57]. Then, by collecting the output measurements over

Nc frequencies, we obtain a data model at every node k for

distributed spectrum estimation:

dk(i) = Qk,iw
o + vk(i), (60)

where Qk,i = [qk,i(f1), ..., qk,i(fNc
)]T , dk(i) =

[d1k(i), ..., d
Nc

k (i)]T , and vk(i) = [v1k(i), ..., v
Nc

k (i)]T .
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Based on this model, we estimate the unknown spectrum

wo of the signal s using different diffusion algorithms over

the network given in Fig. 3(a). In the simulation [8], [57],

we use M = 50 nonoverlapping rectangular basis functions4

with amplitude equal to one to model the PSD of the signal s.

The nodes scan Nc = 100 frequencies over the normalized

frequency axis between 0 and 1. We assume that wo has only

8 non-zero elements, meaning that the unknown spectrum is

transmitted over 8 basis functions, and the power transmitted

over each basis function is set to 0.7. The observation noise

vιk(i) is an α-stable process as in the previous Example 3 [24].

In Fig. 14, we compare the network MSD performance of

different algorithms considered for the distributed spectrum

estimation. As depicted, the dRLS algorithm can not identify

the spectrum coefficients wo due to its divergence in an α-

stable noise environment. In comparison with the dSE-LMS,

dLMP, RVWC-dRLS and dRLP algorithms, the proposed R-

dRLS and DCD-R-dRLS (with Nu = 4) algorithms still obtain

better estimation performance. We also notice from this figure

that the DCD-R-dRLS algorithm with lower computational

complexity approaches the R-dRLS performance. In Fig. 15,

we also select the robust dRLS-type algorithms to show their

performance in terms of PSD at node 1. From the results, the

proposed R-dRLS and DCD-R-dRLS algorithms have lower

side lobes in the PSD curves than those of the other two

algorithms, thus fitting much better the true spectrum.
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Fig. 14. Network MSD curves of various diffusion algorithms for distributed
spectrum estimation. Some parameters of algorithms are re-tuned as follows:
µk = 0.012 (dSE-LMS); µk = 0.016 (dLMP); λ = 0.997 (dRLP, RVWC-
dRLS); only ξk(0) = 1 (R-dRLS, DCD-R-dRLS) differing from Fig. 7.

VII. CONCLUSION

In this paper, we have derived a new dRLS algorithm which

is robust in impulsive noise, based on the minimization of a lo-

cal RLS cost function with a time-dependent constraint on the

squared norm of the intermediate estimate update. Following

the diffusion strategy, the constraint is dynamically adjusted

with the help of side information from the neighboring nodes.

We also analyze the convergence of the proposed algorithm

4Other basis functions are also possible, e.g., raised cosines, or Gaussian
bells [7].
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Fig. 15. PSD curves of various diffusion RLS algorithms.

in the mean square sense under impulsive noise. Then, its

DCD version was developed to reduce the computational

complexity. Moreover, to adapt the proposed algorithms to

an abrupt change of the unknown parameter vector, a non-

stationary control approach has also been designed. Simulation

results have verified that the proposed algorithms perform

better than the known algorithms in impulsive noise scenarios.

APPENDIX A

VERIFICATION OF (25)

From Fig. 16, one can see that the left side of (25) has a

good agreement with the right side of that5. This reveals that

the simplification from (24) to (25) is reasonable.
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Fig. 16. Simulation results for (25) at different nodes in impulsive noise. (a)
Node 1, (b) Node 6, (c) Node 11, and (d) Node 16 . Simulation setting is the
same as for Fig. 5.

APPENDIX B

CONVERGENCE OF E{ξk(i)} TO 0

It is evident from (14) that ξk(i) as a function of i is

non-increasing in adaptation process, with positive values. So,

5 Similar results at other nodes have not been shown here because of the
page limitation.
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the limit of E{ξk(i)} at i → ∞ is existent. Applying the

expectation operator to (14), we obtain

E {ζk(i)} = βE {ξk(i− 1)}+
(1− β)E

{
min[‖gk,i‖22e2k(i), ξk(i− 1)]

}
,
(B.1)

E {ξk(i)} =
∑

m∈Nk

cm,kE {ζm(i)} , (B.2)

Again using the assumption that the variance of ξk(i) is

small enough since β closes to 1, we are able to make the

approximation,

E
{
min[‖gk,i‖22e2k(i), ξk(i− 1)]

}
≈

E{ξk(i−1)}∫

0

mkdFk,i(mk)

+ E{ξk(i− 1)}Pk,i[mk > E{ξk(i− 1)}]
(B.3)

where mk
.
= ‖gk,i‖22e2k(i) means that both mk and

‖gk,i‖22e2k(i) have the same distribution, Pk,i[·] denotes the

probability of event in the argument, and Fk,i(mk) denotes

the distribution function of mk at time instant i.
Let us define the network global vectors as follows:

ξ(i) , col{ξ1(i), ..., ξN (i)},
ζ(i) , col{ζ1(i), ..., ζN (i)}.

(B.4)

Therefore, according to (B.3) and (B.4), we reformulate (B.1)

and (B.2) for all nodes as:

E{ξ(i)} =CT [βE{ξ(i− 1)}+
(1− β) (HiE{ξ(i− 1)}+m(i))]

(B.5)

where

Hi = diag {P1,i[m1 > E{ξ1(i− 1)}], ...,
PN,i[mN > E{ξN (i− 1)}]} , (B.6)

and

mi = col





E{ξ1(i−1)}∫

0

m1dF1,i(m1), ...,

E{ξN (i−1)}∫

0

mNdFN,i(mN )





.

(B.7)

Taking the ∞-norm of both sides of (B.5) and recalling

‖CT ‖∞ = 1, it is found the following inequality:

‖E{ξ(i)}‖∞ ≤β‖E{ξ(i− 1)}‖∞+

(1− β)‖HiE{ξ(i− 1)}+m(i)‖∞.
(B.8)

Based on the diagonal definition in (B.6), we deduce an

equivalent form from (B.8), i.e., for k = 1, ..., N ,

E{ξk(i)} ≤ βE{ξk(i− 1)}+
(1−β)E{ξk(i− 1)}Pk,i[mk > E{ξk(i− 1)}]+

(1−β)
E{ξk(i−1)}∫

0

mkdFk,i(mk).

(B.9)

It is supposed that there is a limit for Fk,i(mk) when i→
∞, (B.9) further reduces to

E{ξk(∞)} · Pk,∞[mk ≤ E{ξk(∞)}] ≤
∫ E{ξk(∞)}

0

mkdFk,∞(mk).
(B.10)

In (B.10), the relation E{ξk(i)} = E{ξk(i − 1)} as i → ∞
is also used. Herein, we consider the equality case in (B.10),

i.e.,

E{ξk(∞)} · Pk,∞[mk ≤ E{ξk(∞)}] =
∫ E{ξk(∞)}

0

mkdFk,∞(mk).
(B.11)

It is shown in Appendix A in [21], for a similar equation

(B.11), its solution is E{ξk(∞)}] = 0. Since (B.11) is

an upper bound of (B.10), we can conclude that E{ξk(i)}
given by (14) would also converge to zero. Moreover, as its

intermediate quantity, E{ζk(i)} also converges to zero.
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