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Abstract

Especially nice models of intuitionistic set theories are realizability models V (A), where
A is an applicative structure or partial combinatory algebra. This paper is concerned with
the preservation of various choice principles in V (A) if assumed in the underlying universe
V , adopting Constructive Zermelo-Fraenkel, CZF, as background theory for all of these
investigations.

Examples of choice principles are the axiom schemes of countable choice, dependent
choice, relativized dependent choice and the presentation axiom. It is shown that any of
these axioms holds in V (A) for every applicative structure A if it holds in the background
universe.1

It is also shown that a weak form of the countable axiom of choice, ACω,ω, is rendered
true in any V (A) regardless of whether it holds in the background universe. The paper
extends work by McCarty [16] and Rathjen [19].

Keywords: Intuitionistic, Constructive Zermelo-Fraenkel set theory, axioms of choice, real-
izability, applicative structure
MSC2000: 03F50; 03F25; 03E55; 03B15; 03C70

1 Background

In 1945, Kleene developed realizability semantics for intuitionistic arithmetic and later for other
theories. Kreisel and Troelstra [15] gave a definition of realizability for higher order Heyting
arithmetic which was extended to type theories and systems of set theory by Myhill [17] and
later by Friedman [13]. Realizability models for several non-extensional set theories were stud-
ied by Beeson [8, 9]. The extensional version of this realizability, already indicated by Beeson,
was worked out by McCarty [16]. [16] is mainly concerned with realizability for intuitionistic
Zermelo-Fraenkel set theory, IZF. As this approach employs transfinite iterations of the power-
set operation through all the ordinals in defining the realizability (class) structure V (A) for any
applicative structure A, it was not clear whether this semantics could be developed internally in
Constructive Zermelo-Fraenkel set theory, CZF. Moreover, in addition to the powerset axiom,
[16] also uses the unrestricted separation axioms. As CZF lacks the powerset axiom and has
only bounded separation it was not clear whether CZF was sufficient as background theory.
The development of this kind of realizability on the basis of CZF was carried out in [19].

1This is analogous to the well-known result from forcing, that if AC holds in V then AC also holds in any
generic extension V [G]. However, in the the context of realizability this holds only for special forms of the axiom
of choice as unfettered AC implies the law of excluded middle for atomic formulas (see [5, Section 10]) and thus
is not realizable.
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Preservation of several choice principles was shown for the special case of the first Kleene
algebra, K1, assuming a classical background theory by McCarty [16], and on the basis of CZF
in [19]. Especially it was shown that CZF augmented by the presentation axiom suffices to
validate that the presentation axiom holds in V (K1) whereas [16] uses the full axiom of choice.

A question not addressed in [16, 19] was whether these choice principles also propagate to
V (A) when A is an arbitrary applicative structure. The purpose of this paper is to revisit the
proofs in [16, 19] dealing with V (K1) in order to show that they can be amended to also work
for V (A).

In what follows we shall be drawing on [19] but will briefly explain terminology in the rest
of this section.

1.1 Constructive Zermelo-Fraenkel Set Theory CZF

CZF is an intuitionistic set theory that is closely related to Martin-Löf type theory (see [1, 2, 3])
and provides an important framework for developing and formalizing constructive mathematics
(see [4, 5]). CZF theory has the same first order language as ZF, where the only non-logical
symbol is ∈ though it is based on intuitionistic logic.
Its axioms are Extensionality, Pairing, Union, Set Induction Scheme and Infinity in their usual
forms and the following axiom schemas:
Bounded Separation Scheme

∀x∃y∀a[a ∈ y ↔ a ∈ x ∧ φ(a)]

for any bounded formula φ, where φ is bounded if all quantifiers occurring in φ are bounded.
Subset Collection Scheme

∀x∀y∃z∀u[∀a ∈ x∃b ∈ yψ(a, b, u) →

∃c ∈ z(∀a ∈ x∃b ∈ cψ(a, b, u) ∧ ∀b ∈ c∃a ∈ xψ(a, b, u))]

for any formula ψ.
Strong Collection Scheme

∀x[∀a ∈ x∃bφ(a, b) → ∃y[∀a ∈ x∃b ∈ yφ(a, b) ∧ ∀b ∈ y∃a ∈ xφ(a, b)]]

for any formula φ.

1.2 Axioms of Choice

In many texts on constructive mathematics, the axioms of countable choice and dependent
choice are adopted as constructive principles. The weakest choice axiom we shall consider,
denoted by ACω,ω, asserts that there is a function f : ω → ω with ∀i ∈ ω θ(i, f(i)) whenever
∀i ∈ ω∃j ∈ ω θ(i, j), where θ is an arbitrary set-theoretic formula.

The axiom scheme of Countable Choice, ACω, asserts that if ∀i ∈ ω∃x θ(i, x) holds for any
formula θ, then there is a function f with domain ω such that ∀i ∈ ω θ(i, f(i)). Obviously, ACω

implies ACω,ω.
The axiom scheme of Dependent Choice, DC, asserts that for any formula φ, whenever

(∀a ∈ x)(∃b ∈ x)φ(a, b) and x0 ∈ x, then there exists a function f : ω → x such that f(0) = x0
and (∀n ∈ ω)φ(f(n), f(n+ 1)).

A very useful extension of DC is Relativized Dependent Choice, RDC, which states that
for arbitrary formulas φ and ψ, if

∀x[φ(x) → ∃y(φ(y) ∧ ψ(x, y))]
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and φ(a0), then there exists a function f whose domain is ω with f(0) = a0 and

(∀n ∈ ω)[φ(f(n)) ∧ ψ(f(n), f(n+ 1))].

On the basis of CZF, ACω follows from DC and RDC implies DC (see [4, Proposition 8.3]
and [5, Section 10]).

Another very interesting choice principle is the Presentation Axiom, PAx, which has a
categorical flavor when expressed in terms of projective sets. Let C be a category and let P be
an object in C. Then, P is called projective in C if for any objects A,B in C and morphisms

-A Bf , -P Bg with f an epimorphism, there is a morphism -P Ah such
that the diagram below commutes.

--A Bf

6
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Now, taking C to be the category of sets, then it follows easily that a set P is projective if for
all P -indexed family (Xi)i∈P of inhabited sets Xi there is a function f with domain P such that
for all i ∈ P , f(i) ∈ Xi.
The presentation axiom PAx asserts that each set is the surjective image of a projective set.
Projective sets are often called bases. PAx implies DC in CZF (see [4, Proposition 8.6]).

1.3 Applicative structures

In order to define a realizability interpretation we must be given a notion of realizing functions.
A particularly general and elegant approach to realizability builds on structures which have
been variably called partial combinatory algebras, applicative structures, or Schönfinkel algebras.
These structures are best described as the models of a theory APP. The following presents the
main features of APP; for full details cf. [11, 12, 9, 22]. The language of APP is a first-order
language with a ternary relation symbol App, a unary relation symbol N (for a copy of the
natural numbers) and equality, =, as primitives. The language has an infinite collection of
variables, denoted x, y, z, . . ., and nine distinguished constants: 0, sN ,pN ,k, s,d,p,p0,p1 for,
respectively, zero, successor on N , predecessor on N , the two basic combinators, definition by
cases, pairing and the corresponding two projections. There is no arity associated with the
various constants. The terms of APP are just the variables and constants. We write t1t2 ≃ t3
for App(t1, t2, t3).

Formulae are then generated from atomic formulae using the propositional connectives and
the quantifiers.

In order to facilitate the formulation of the axioms, the language of APP is expanded
definitionally with the symbol ≃ and the auxiliary notion of an application term is introduced.
The set of application terms is given by two clauses:

1. all terms of APP are application terms; and

2. if s and t are application terms, then (st) is an application term.

For s and t application terms, we have auxiliary, defined formulae of the form:

s ≃ t := ∀y(s ≃ y ↔ t ≃ y),
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if t is not a variable. Here s ≃ a (for a a free variable) is inductively defined by:

s ≃ a is

{
s = a, if s is a term of APP,
∃x, y[s1 ≃ x ∧ s2 ≃ y ∧ App(x, y, a)] if s is of the form (s1s2).

Some abbreviations are t1t2 . . . tn for ((...(t1t2)...)tn); t ↓ for ∃y(t ≃ y) and φ(t) for ∃y(t ≃
y ∧ φ(y)).

Some further conventions are useful. Systematic notation for n-tuples is introduced as
follows: (t) is t, (s, t) is pst, and (t1, . . . , tn) is defined by ((t1, . . . , tn−1), tn). In this paper,
the logic of APP is assumed to be that of intuitionistic predicate logic with identity. APP’s
non-logical axioms are the following:

Applicative Axioms

1. App(x, y, z1) ∧ App(x, y, z2) → z1 = z2.

2. (kxy) ↓ ∧ kxy ≃ x.

3. (sxy) ↓ ∧ sxyz ≃ xz(yz).

4. (px0x1) ↓ ∧ (p0x) ↓ ∧ (p1x) ↓ ∧ pi(px0x1) ≃ xi for i = 0, 1.

5. N(z1) ∧ N(z2) ∧ z1 = z2 → dxyz1z2 ↓ ∧ dxyz1z2 ≃ x.

6. N(z1) ∧ N(z2) ∧ z1 6= z2 → dxyz1z2 ↓ ∧ dxyz1z2 ≃ y.

7. N(x) →
[
sNx ↓ ∧ sNx 6= 0 ∧ N(sNx)

]
.

8. N(0) and N(x) ∧ x 6= 0 →
[
pNx ↓ ∧ sN (pNx) = x

]
.

9. N(x) → pN (sNx) = x.

10. ϕ(0) ∧ ∀x
[
N(x) ∧ ϕ(x) → ϕ(sNx)

]
→ ∀x

[
N(x) → ϕ(x)

]
.

Let 1 := sN 0. The applicative axioms entail that 1 is an application term that evaluates to an
object falling under N but distinct from 0, i.e., 1 ↓, N(1) and 0 6= 1.

Remark 1.1. The theory APP comprises that basic part of Feferman’s theory of explicit
mathematics (see [11, 12]) which is concerned only with its recursion-theoretic aspects. The
acronym APP is used in [22, 9.3.1] while in [9, VI.6.4] the same theory is called EON. The
fragment of APP (or EON) without the last axiom scheme (10) is referred to by the acronym
PCA+ in [9, VI.6.3]. In [16, Ch. 2, Sec. 2], APP refers to yet another theory which closely
resembles a fragment of Beeson’s PCA+, where the predicate N and the pertaining combinators
sN and pN are omitted but an axiom ∀x∀y pxy 6= 0 is added. As it turns out, all of these
differences are not very important. The common core of these theories is described by the
fragment PCA (see [9, VI.2.1]) which has only the constants k and s and whose axioms are the
first three of APP plus the axiom s 6= k (that is deducible in PCA+ and the theory APP of
[16]). A model of PCA is said to be a partial combinatory algebra (pca). Now, every pca can
be expanded to a model of APP (as well as McCarty’s APP) in a uniform way (see [9, VI.2.9])
(provably so in CZF). Thus one can say that a partial combinatory algebra is already as rich
a structure as an applicative structure.

Employing the axioms for the combinators k and s one can deduce an abstraction lemma
yielding λ-terms of one argument. This can be generalized using n–tuples and projections.
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Lemma 1.2. (cf. [11]) (Abstraction Lemma) For each application term t there is a new
application term t∗ such that the parameters of t∗ are among the parameters of t minus x1, . . . , xn
and such that

APP ⊢ t∗ ↓ ∧ t∗(x1, . . . , xn) ≃ t.

λ(x1, . . . , xn).t is written for t∗.

The most important consequence of the Abstraction Lemma is the Recursion Theorem. It
can be derived in the same way as for the λ–calculus (cf. [11], [12], [9], VI.2.7). Actually, one
can prove a uniform version of the following in APP.

Corollary 1.3. (Recursion Theorem)

∀f∃g∀x1 . . . ∀xn g(x1, . . . , xn) ≃ f(g, x1, . . . , xn).

The “standard” applicative structure isKl in which the universe |Kl| is ω and AppKl(x, y, z)
is Turing machine application:

AppKl(x, y, z) iff {x}(y) ≃ z.

The primitive constants of APP are interpreted over |Kl| in the obvious way.

2 Realizability for intuitionistic set theories

In this section we define a realizability universe V (A) for every applicative structure A and the
pertaining notion of realizability. Our background theory will be CZF. So we will have to make
sure that all definitions can formalized in this theory. For the remainder of this section we fix
an applicative structure A. |A| denotes the carrier set of A but sometimes we will overload
notation and write just A for |A|.

Definition 2.1. Ordinals are transitive sets with transitive elements. Lower case Greek letters
will be used to range over ordinals. Define

V (A)α =
⋃

β∈α

P(| A | ×V (A)β)

V (A) =
⋃

α

V (A)α.

On the face of it, it is not clear whether the definition of V (A) can be formalized in CZF,
since the power set axiom is not among its axioms. That this can be done is shown in [19,
Lemma 3.4]. However, let us point out that the levels V (A)α of this hierarchy are merely
definable classes (uniformly in α,A) in CZF, and in general cannot be shown to be sets in this
theory.

We also have the following result (provably in CZF).

Lemma 2.2. (i) For any β ∈ α V (A)β ⊆ V (A)α.

(ii) For any set U , if U ⊆| A | ×V (A) then U ∈ V (A).

Proof. [19, Lemma 3.5].

Next we define for r ∈| A | what it means for r to realize a set-theoretic sentence φ with
parameters in V (A), which is written as r  φ.

For r ∈| A |, we also write (r)0 instead of p0r and (r)1 instead of p1r. 〈x, y〉 denotes the
usual set-theoretic ordered pair of x and y.
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Definition 2.3. Bounded and unbounded quantifiers are syntactically considered as different
types of quantifiers. If r ∈| A | and a, b ∈ V (A) then r  φ for a sentence φ with parameters in
V(A) is defined inductively on the complexity of φ as follows:

(i) r  a ∈ b ⇐⇒ ∃c[〈(r)0, c〉 ∈ b ∧ (r)1  a = c].

(ii) r  a = b ⇐⇒ ∀g, f [(〈g, f〉 ∈ a→ (r)0g  f ∈ b) ∧ (〈g, f〉 ∈ b→ (r)1g  f ∈ a)].

(iii) r  φ ∧ ψ ⇐⇒ (r)0  φ and (r)1  ψ.

(iv) r  φ ∨ ψ ⇐⇒ [(r)0 = 0 ∧ (r)1  φ] ∨ [(r)0 = 1 ∧ (r)1  ψ].

(v) r  ¬φ ⇐⇒ ∀k ∈| A | ¬k  φ.

(vi) r  φ→ ψ ⇐⇒ ∀k ∈| A | [k  φ→ rk  ψ].

(vii) r  ∀x ∈ aφ ⇐⇒ ∀〈k, h〉 ∈ a rk  φ[x/h].

(viii) r  ∃x ∈ aφ ⇐⇒ ∃h(〈(r)0, h〉 ∈ a ∧ (r)1  φ[x/h]).

(ix) r  ∀xφ(x) ⇐⇒ ∀x ∈ V (A) r  φ(x).

(x) r  ∃xφ(x) ⇐⇒ ∃x ∈ V (A) r  φ(x).

Note that the statement r  φ contains a hidden reference to A. If we want to make this
dependence explicit we shall write r 

A
φ.

Notice that (i) and (ii) are definitions by transfinite recursion. In particular, the (class)
functions

F∈(x, y) = {r ∈ |A| : r  x ∈ y}

G=(x, y) = {r ∈ |A| : r  x = y}

can be (simultaneously) defined on V× V by recursion on the relation

〈c, d〉� 〈a, b〉 ⇔
(
c = a ∧ d ∈ TC(b)

)
∨

(
d = b ∧ c ∈ TC(a)

)

where TC(x) is the transitive closure of a set x. Definitions by transfinite recursion on � are
legitimate in CZF (see [21] Lemma 7.1).

Definition 2.4. More often than not, realizers do not depend on parameters nor on the partic-
ular applicative structure. This uniformity can be nicely expressed with the aid of application
terms. If t is a closed application term we define t  φ to mean that there exists a b ∈ |A| such
that b  φ and A |= ∃x[t ≃ x ∧ x = b]. Note that such b is necessarily unique.

Lemma 2.5. There are closed application terms ir, is, it, i0, i1 that do not depend on A (i.e.
they are the same for all A) such that for all x, y, z ∈ V(A) the following hold.

(i) ir  x = x.

(ii) is  x = y → y = x.

(iii) it  (x = y ∧ y = z) → x = z.

(iv) i0  (x = y ∧ y ∈ z) → x ∈ z.

(v) i1  (x = y ∧ z ∈ x) → z ∈ y.
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Furthermore, for every CZF-formula φ(u, v1, ..., vn) with FV (φ) ⊆ u, v1, ..., vn, there is a closed
application term iφ not depending on A such that:

∀x, y, z1, ..., zn[iφ  φ(x, ~z) ∧ x = y → φ(y, ~z)] where ~z = z1, ..., zn .

Proof. [19, Lemma 4.2] or better [16] chapter 2, sections 5 and 6.

Theorem 2.6. Let P be a proof of a CZF-formula φ(u1, ..., un) (with FV (φ) among u1, ..., un)
in intuitionistic predicate logic with equality. Then, there is a closed application term rP inde-
pendent of A such that:

rP  ∀u1...∀unφ(u1, ..., un).

Proof. First, we find realizers for the following logical principles that relate bounded and un-
bounded quantification:

∀u ∈ aφ(u) ↔ ∀u[u ∈ a→ φ(u)]

∃u ∈ aφ(u) ↔ ∃u[u ∈ a ∧ φ(u)].

We have: r  ∀u[u ∈ a→ φ(u)]

⇔ ∀x ∈ V (A) r  x ∈ a→ φ(x)

⇔ ∀x ∈ V (A) ∀e ∈| A | [e  x ∈ a→ re  φ(x)]

⇔ ∀x ∈ V (A) ∀e ∈| A | [∃c(〈(e)0, c〉 ∈ a ∧ (e)1  x = c) → re  φ(x)]

⇒ ∀c∀e ∈| A | [(〈(e)0, c〉 ∈ a ∧ (e)1  c = c) → re  φ(c)]

⇒ ∀〈f, c〉 ∈ a r(pf ir)  φ(c)

⇒ λf.r(pf ir)  ∀u ∈ aφ(u).

Conversely, if r  ∀u ∈ aφ(u), then, equivalently ∀〈k, h〉 ∈ a rk  φ(h), and this implies that ∀x ∈
V(A)∀f ∈ |A|[∃c(〈(f)0, c〉 ∈ a ∧ (f)1  x = c) → iφ(p(r(f)0)(f)1)  φ(x)].
Now, let R := p(λr.λf.r(pf ir))(λr.λf.iφ(p(r(f)0)(f)1))).
Then R  ∀~q∀u(∀v ∈ uφ(v) ↔ ∀v[v ∈ u → φ(v)]), where ∀~q quantifies over the remaining
FV (φ). Similarly, one can find R′ such that:
R′

 ∀~q∃u(∃v ∈ uφ(v) ↔ ∃v[v ∈ u ∧ φ(v)]).
We skip the remaining laws of intuitionistic predicate logic.

Theorem 2.7 (The Soundness Theorem for CZF). For each axiom φ of CZF, there is a
closed application term t such that CZF proves that

t 
A
φ

holds for every applicative structure A.

Proof. This is shown in [19, Theorem 5.1].

Definition 2.8. With each natural number n we associate an application term n by letting
0 := 0 and n+ 1 = sNn.

Proposition 2.9. For any n,m ∈ ω we have, PCA+ ⊢ n ↓ ∧ N(n) and

n = m⇐⇒ PCA+ ⊢ n = m.

Proof. PCA+ ⊢ n ↓ ∧ N(n) is obvious by the axioms. To show the second part let n 6= m.
Then either one of them is 0 and the other is a successor or both are successors.
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(i) Suppose that n = 0 and m = k + 1 for some k ∈ ω. Then, n = 0 and m = sNk and thus
(by Axiom (7) of PCA+) PCA+ ⊢ sNk 6= 0. Hence PCA+ ⊢ sNk 6= 0 which implies
that PCA+ ⊢ n 6= m.

(ii) Suppose that n = k + 1 and m = l + 1 for some k, l ∈ ω. By axioms of PCA+ we
have pNn ↓ and pNm ↓, pN (sNk) = k and pN (sN l) = l provably in PCA+, and,
since n 6= m entails k 6= l we can inductively assume that PCA+ ⊢ k 6= l. Therefore,
PCA+ ⊢ n = sNk 6= sN l = m.

This yields what we want.

Definition 2.10 (Representing ω in V(A)). ω is represented in V(A) by ω given by an
injection of ω into V(A) defined as follows:

n := {〈m,m〉 | m ∈ n}

ω := {〈n, n〉 | n ∈ ω}.

Strictly speaking, by n above we mean the interpretation of the application term n in A. Note
also that therefore the sets n and ω depend on A.

The rationale for this representation of ω in V(A) is of course that it provides the right
witness for the existential quantifier in the axiom of infinity to render it realizable.

To verify that ω ∈ V(A) note that ω ⊆ |A| × V(A), which implies that ω ∈ V(A) by (2.2).
We shall sometimes write V (A) |= φ to convey that there exists a ∈ |A| such that a ⊢

A
φ.

The actual realizer a can always be retrieved from the proofs.

Proposition 2.11. Membership and equality on ω are realizably absolute. In other words, for
all n,m ∈ ω we have:

(i) n = m ⇐⇒ V (A) |= n = m.

(ii) n ∈ m ⇐⇒ V (A) |= n ∈ m.

Proof. We prove (i) and (ii) simultaneously by induction on n+m (also exhibiting the realizers).

(i) If n = m then ir  n = m. Now, suppose that r  n = m. Then we have:

∀f, d[(〈f, d〉 ∈ n→ (r)0f  d ∈ m )(1)

∧ (〈f, d〉 ∈ m→ (r)1f  d ∈ n )].

Since 〈k, k〉 ∈ n holds for all k ∈ n, applying the induction hypothesis to (1) we get
∀k ∈ n k ∈ m. By symmetry we also deduce ∀i ∈ m i ∈ n. Hence n = m.

(ii) If n ∈ m, then 〈n, n 〉 ∈ m, and hence pnir  n ∈ m.

Now, suppose that e  n ∈ m. Then there exists c such that 〈e0, c〉 ∈ m ∧ e1  n = c.
This implies that c = k for some k ∈ m. So the induction hypothesis from part (i) yields
n = k, and therefore n ∈ m.
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2.1 Absoluteness Properties

An important notion that we need to represent in V (A) is that of an ordered pair of its elements.
We need to internalize this basic part of set theory in V (A). This will be done in such a way
that the crucial properties of the ordered pair become realizable (for further explanations see
[16, p. 104-105] or [19, Section 8]).

Definition 2.12. For a, b ∈ V (A), define {a, b}A := {〈0, a〉, 〈1, b〉} and let

〈a, b〉A := {〈0, {a, a}A〉, 〈1, {a, b}A〉}.

Lemma 2.13 (Internal Pairing in V (A)). If a, b, x ∈ V (A) then:

(i) V(A) |= x ∈ {a, b}A ↔ x = a ∨ x = b.

(ii) V(A) |= x ∈ 〈a, b〉A ↔ x = {a, a}A ∨ x = {a, b}A.

Proof. (i): e  x ∈ {a, b}A. Then there exists c such that 〈(e)0, c〉 ∈ {a, b}A and (e)1  x = c.
But, 〈(e)0, c〉 ∈ {a, b}A implies that 〈(e)0, c〉 = 〈0, a〉 or 〈(e)0, c〉 = 〈1, b〉, and hence we obtain:

[(e)0 = 0 ∧ (e)1  x = a] ∨ [(e)0 = 1 ∧ (e)1  x = b].

Thus, e  x = a ∨ x = b.
Conversely, suppose that e  x = a∨ x = b. Then retracing the steps of the foregoing proof

backwards shows that e  x ∈ {a, b}A. And therefore p(λx.x)(λx.x) provides a realizer for (i).

(ii): First assume that e  x ∈ 〈a, b〉A. Then there exists c such that 〈(e)0, c〉 ∈ 〈a, b〉A and
(e)1  x = c]. But 〈(e)0, c〉 ∈ 〈a, b〉A implies that either 〈(e)0, c〉 = 〈0, {a, a}A〉 or 〈(e)0, c〉 =
〈1, {a, b}A〉, and hence:

[(e)0 = 0 ∧ (e)1  x = {a, a}A] ∨ [(e)0 = 1 ∧ (e)1  x = {a, b}A].

Thus, e  x = {a, a}A ∨ x = {a, b}A.
Conversely, if e  x = {a, a}A ∨ x = {a, b}A, then we have

[(e)0 = 0 ∧ (e)1  x = {a, a}A] ∨ [(e)0 = 1 ∧ (e)1  x = {a, b}A].

Thus, 〈(e)0, c〉 ∈ 〈a, b〉A ∧ (e)1  x = c for some c ∈ V (A). So, e  x ∈ 〈a, b〉A.
Therefore p(λx.x)(λx.x) is also a realizer for (ii).

2.2 Axioms of choice and V (A)

It follows from [16] and [19] that arguing in CZF, the principles DC, RDC, and PAx hold in
V (K1) assuming their validity in the background universe V . Moreover, ACω,ω holds in V (K1)
regardless of whether it holds in V . Here we show that K1 can actually be replaced by any
applicative structure A.

Theorem 2.14. Let A be any applicative structure. Then:

(i) (CZF) V (A) |= ACω,ω.

(ii) (CZF+ACω) V (A) |= ACω.

(iii) (CZF+DC) V (A) |= DC.

(iv) (CZF+RDC) V (A) |= RDC.
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(v) (CZF+PAx) V (A) |= PAx.

Proof. (i) Suppose that
e  ∀i ∈ ω̄∃j ∈ ω̄ θ(i, j).

Then, ∀〈a, x〉 ∈ ω̄ ea  ∃j ∈ ω̄ θ(x, j), and hence

∀〈a, x〉 ∈ ω̄ ∃y [〈(ea)0, y〉 ∈ ω̄ ∧ (ea)1  θ(x, y)].

Now, because for 〈r, s〉 ∈ ω̄, s is uniquely determined by r, the above entails that there
exists a function f : ω → ω such that for all n ∈ ω,

〈(en)0, f(n) 〉 ∈ ω̄ and (en)1  θ(n, f(n) ).(2)

Now define
g := {〈n, 〈n, f(n) 〉A〉 | n ∈ ω}.

Clearly, g ∈ V (A). We first prove that g picks the right things and care about its func-
tionality later. As

pnir  〈n, f(n) 〉A ∈ g(3)

it follows from (2) and (3) that with

h := λu.p(p(p((eu)0ir),puir), (eu)1)

we have for all n ∈ ω that

hn  ∃y [y ∈ ω̄ ∧ 〈n, y〉A ∈ g ∧ θ(n, y)].(4)

As for functionality of g, assume that x, y, z ∈ V (A) and

d  〈x, y〉A ∈ g ∧ 〈x, z〉A ∈ g.

Then there exist y′, z′ ∈ A such that 〈d0,0, y
′〉 ∈ g, 〈d1,0, z

′〉 ∈ g, and

d0,1  y′ = 〈x, y〉A ∧ d1,1  z′ = 〈x, z〉A.(5)

Moreover, there exist n,m ∈ ω such that y′ = 〈n, f(n) 〉A and z′ = 〈m, f(m) 〉A. Thus it
follows from Lemma 2.13 that V (A) |= n = m, and therefore n = m by Lemma 2.11. As a
result, one can effectively construct a realizer d′ ∈ A from d such that d′  y = z, showing
functionality of g.

(ii) Validating ACω in V (A) is very similar to the proof of (i). Suppose that

e  ∀i ∈ ω̄∃y θ(i, y).

Then, ∀〈a, x〉 ∈ ω̄ ea  ∃y θ(x, y), and hence

∀〈a, x〉 ∈ ω̄ ∃z ∈ V (A) ea  θ(x, z)].

Now, invoking ACω in V that there exists a function F : ω → V (A) such that for all
n ∈ ω,

en  θ(n, F (n)).(6)

Now define
G := {〈n, 〈n, F (n)〉A〉 | n ∈ ω}.

Clearly, G ∈ V (A). The rest of the proof proceeds similarly as in (i).
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(iii) Let t, u ∈ V (A), and suppose the following:

(7) e  ∀x ∈ t ∃y ∈ t φ(x, y)

and

(8) e∗  u ∈ t

Then, (by the definition of realizability) (7) is equivalent to:

∀〈a, x〉 ∈ t ∃y[〈(ea)0, y〉 ∈ t ∧ (ea)1  φ(x, y)].

Thus, for all a ∈ |A| and for all z in V (A), if 〈a, z〉 ∈ t, then ea ↓ and there is a q′ in V (A)
such that 〈(ea)0, q

′〉 ∈ t ∧ (ea)1  φ(z, q′).

From (8) we conclude that there exists u0 such that

〈(e∗)0, u0〉 ∈ t ∧ (e∗)1  u = u0.

Externally, define φ by:

φ(〈a, z〉, 〈b, q〉) ⇔ b = (ea)0 ∧ (ea)1  φ(z, q).

By the validity of DC in V , there exists a function F : ω −→ t with:

F (0) = 〈(e∗)0, u0〉 and for each n ∈ ω, φ(F (n), F (n+ 1)).

Next, we need to internalize F and show that it provides the function required for the
validity of DC in V (A). If x is an ordered pair 〈u, v〉, we use (x)s0 and (x)s1 to denote its
standard set-theoretic projections, i.e., (x)s0 = u and (x)s1 = v.

Let F (the internalization of F ) be defined as follows:

F := {〈p(n, (F (n))s0), 〈n, (F (n))
s
1〉A〉 : n ∈ ω}.

Clearly, F ∈ V (A) as p(n, (F (n))s0) ∈ |A| and 〈n, (F (n))s1〉A ∈ V (A) (by internal pairing
properties).
Now, we need to check that F is internally a function from ω to t.
Firstly, we show that V (A) thinks that F is a binary relation with domain ω and range a
subset of t using properties of internal pairing in V (A).
To prove that F is realizably functional, suppose that:

(9) h  〈n, x〉A ∈ F

and

(10) k  〈n, y〉A ∈ F .

Then, (9) is equivalent to the existence of an element c ∈ V (A) such that:

〈(h)0, c〉 ∈ F ∧ (h)1  〈n, x〉A = c.(11)

〈(h)0, c〉 ∈ F yields that (h)0 must have the form p(m, (F (m))s0) and c be of the form
〈m, (F (m))s1〉A for some m ∈ ω. But (11) entails that V (A) |= n = m using (2.13) and
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hence n = m by Lemma 2.11. Hence, h00 = n and c = 〈n, (F (n))s1〉A, where h00 is an
abbreviation for ((h)0)0. Thus,

(h)1  〈n, x〉A = 〈n, (F (n))s1〉A.(12)

Likewise (10) yields

(k)1  〈n, y〉A = 〈n, (F (n))s1〉A.(13)

Using Lemma 2.13 it follows from (12) and (13) that we get a realizer e′ such that e′  x = y
and e′ can be computably obtained from e, h, k, showing that F is realizably functional.

Next, to verify that V (A) |= F ⊆ ω × t, suppose that h  〈x, y〉A ∈ F . Then, using
arguments as before:

(h)1  〈x, y〉A = 〈n, (F (n))s1〉A

where h00 = n. with h00 = n. We also have p(h00, ir)  n ∈ ω̄ and, thanks to the
definition of F , p(h01, ir)  (F (n))s1 ∈ t. Thus we can computably obtain h∗ from h such
that h∗  x ∈ ω̄ ∧ y ∈ t.

Finally, we need to show the realizability of F (0) = u (where 0 stands for the empty
set in the sense of V (A) which really can be taken to be the empty set) and of ∀u ∈
ωφ(F (u), F (u+ 1)).
As for the realizability of F (0) = u, suppose r  〈0, u0〉A ∈ F . Then, there exists c
such that 〈(r)0, c〉 ∈ F ∧ (r)1  〈0, u0〉A = c. 〈(r)0, c〉 ∈ F entails that (r)0 has the form
p(n, (F (n))s0) and c has the form 〈n, (F (n))s1〉A. Hence, (r)1  〈0, u0〉A = 〈n, (F (n))s1〉A.
As the latter implies V(A) |= 0 = n by the internal pairing properties, this forces n = 0
by (2.11), and hence V(A) |= u0 = (F (0))s1, so that (r)1 = ir and p(p(0, (e∗)0), ir) 

〈0, u0〉A ∈ F i.e.  F (0) = u0 and since (e∗)1  u = u0, there is a realizer e′ that can be computably
obtained from r and e∗ such that e′  F (0) = u.
Next, we deal with the realizability of ∀u ∈ ω φ(F (u), F (u + 1)). Since for all n ∈ ω we
have [φ(F (n), F (n+ 1))],

(14) ((F (n+ 1))s0 = (e(F (n))s0)0 and

(15) (e(F (n))s0)1  φ((F (n))s1, (F (n+ 1))s1).

Using the recursion theorem for applicative structures, we computably obtain ρ ∈ |A| from
e, e∗ such that

ρ0 = (e∗)0 and ρ(n+ 1) = (eρ(n))0.

Using induction on n, it follows that ρn = (F (n))s0 for all n ∈ ω. Further, by induction on
n, it can be shown that:

(a) p(p(n, ρn), ir)  〈n, (F (n))s1〉A ∈ F .

(b) (e(ρn))1  φ((F (n))s1, (F (n+ 1))s1).

To verify this, first let n = 0. We have

(i) p(p(0)(ρ(0)))(ir)  〈0, (F (0))s1〉A ∈ F , i.e p(p(0)((e∗))0)(ir)  〈0, u0〉A ∈ F by the
above argument.
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(ii) That (eρ(0))1  φ((F (0))s1, (F (1))
s
1), i.e (e(e

∗)0))1  φ(u0, (F (1))
s
1) holds can be seen

as follows. Since ∀n ∈ ω[φ(F (n), F (n+ 1))], we have:

(e(F (n))s0)1  φ((F (n))s1, (F (n+ 1))s1)

(e(F (0))s0)1  φ((F (0))s1, (F (1))
s
1)

(e(e∗)0)1  φ(u0, (F (1))
s
1)

Next, we do the induction step, so assume the result for n and we have to verify that:

(1) p(p(n+ 1)(ρ(n+ 1)))(ir)  〈n+ 1, (F (n+ 1))s1〉A ∈ F .
To show this, assume that r  〈n+ 1, (F (n+ 1))s1〉A ∈ F . Then,

r  〈n+ 1, (F (n+ 1))s1〉A ∈ F ⇔ ∃c[〈(r)0, c〉 ∈ F ∧ (r)1  〈n+ 1, (F (n+ 1))s1〉A = c]

and hence, (r)0 must have the form (m, (F (m))s0) and cmust have the form 〈m, (F (m))s1〉A
for some m ∈ ω. So, (r)1  〈n+ 1, (F (n+1))s1〉A = 〈m, (F (m))s1〉A which implies that
a realizer r̂ can be calculated such that r̂  n+ 1 = m which, by (2.11), yields that
n + 1 = m and by (2.9) we obtain that n+ 1 = m. So, by the induction hypothesis
we have p(p(n+ 1)(ρ(n+ 1)))(ir)  〈n+ 1, (F (n+ 1))s1〉A ∈ F .

(2) We claim that (eρ(n+ 1))1  φ((F (n+ 1))s1, (F (n+ 2))s1). We know by (15) that

(e(F (n+ 1))s0)1  φ((F (n+ 1))s1, (F (n+ 2))s1)

holds. Note that:

ρ(0) = (e∗)0 = (F (0))s0

ρ(1) = (e(F (0))s0)0

ρ(2) = (e(e(F (0))s0)0)0

ρ(n+ 1) = (e(e...(e
︸ ︷︷ ︸

n-times

(F (0))s0)0)0)0

and

(F (1))10 = (e(F (0))s0)0

(F (2))10 = (e(e(F (0))s0)0)0

(F (3))10 = (e(e(e(F (0))s0)0)0)0

(F (n+ 1))10 = (e(e...(e
︸ ︷︷ ︸

n-times

(F (0))s0)0)0)0

Thus, clearly ρ(n+ 1) = (F (n+ 1))10. Therefore,

(e(ρ(n+ 1)))1  φ((F (n+ 1))s1, (F (n+ 2))s1).

(iv) Given part (iii) of this theorem, working in CZF+RDC, it is enough to find a realizer
for the following schema:

∀x(φ(x) → ∃y[φ(y) ∧ ψ(x, y)]) ∧ φ(a0) −→ ∃s(a0 ∈ s ∧ ∀x ∈ s∃y ∈ s[φ(y) ∧ ψ(x, y)]).

So, let a0 ∈ V (A) and suppose the following hold:

(16) e  ∀x(φ(x) → ∃y[φ(y) ∧ ψ(x, y)]) and
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(17) r  φ(a0)

Now, we have:

(16) ⇔ ∀x ∈ V (A) e  φ(x) → ∃y[φ(y) ∧ ψ(x, y)].

⇔ ∀f ∈| A | ∀x ∈ V (A)[f  φ(x) → ef  ∃y(φ(y) ∧ ψ(x, y))].

⇔ ∀f ∈| A | ∀x ∈ V (A)[f  φ(x) → ∃y ∈ V (A)ef  φ(y) ∧ ψ(x, y)].

Thus, for all f in | A | and for all x ∈ V (A) we have

f  φ(x) → ∃y ∈ V (A) [(ef)0  φ(y) ∧ (ef)1  ψ(x, y)].

Let N = {n | n ∈ ω}. By applying RDC to the above, we conclude that there are
functions i : N −→ A, j : N −→ A and l : ω −→ V (A) with i(0) = r, l(0) = a0 and for all
n in ω, we have:

i(n)  φ(l(n)) and j(n)  ψ(l(n), l(n+ 1)),

i(n+ 1) = (ei(n))0 and j(n) = (ei(n))1.

Using the recursion theorem for A, one can explicitly calculate ti, tj ∈ |A| from e and r
such for all n ∈ ω, i(n) = tin and j(n) = tjn. And thus the function h : N −→ A defined
by h(n) = p(n,p(i(n), j(n))) for some n ∈ ω is representable in |A| via an element th
computable from e and r as well, i.e., h(n) = thn for all n ∈ ω.

Now, set
B := {〈h(n), l(n)〉 : n ∈ ω}.

B ∈ V (A), since h(n) ∈| A | and l(n) ∈ V (A).
Now, we need to find a realizer e∗ such that:

(18) e∗  a0 ∈ B.

As
e∗  a0 ∈ B ⇔ ∃c[〈(e∗)0, c〉 ∈ B ∧ (e∗)1  a0 = c]

and 〈(e∗)0, c〉 ∈ B iff 〈(e∗)0, c〉 = 〈h(n), l(n)〉, we arrive at (e∗)0 = h(n) and c = l(n) = a0.
Since l is a function, n must be 0 and thus e∗ = p(h(0), ir). So, (h(0), ir)  a0 ∈ B.
Furthermore, for 〈k, u〉 ∈ B we have k = h(n) for some n ∈ ω. Consequently, (h(n))0 =
n = (k)0 and u = l((k)0), hence 〈h(SN((k)0)), l((k)0 + 1)〉 ∈ B. Moreover, since (k)1 =
p(i(n), j(n)) we have k1,0 = i(n), thus k1,0  φ(l(n)), so k1,0  φ(u) and k1,1 = j(n) which
implies k1,1  ψ(u, l((k)0 + 1)).
Therefore,

(19) ∀〈k, u〉 ∈ B ∃v [〈h(SN((k)0)), v〉 ∈ B ∧ k1,0  φ(u) ∧ k1,1  ψ(u, v)].

From (18) and (19), it is clear that there exists a realizer è computed from e and r such
that:

è  a0 ∈ B ∧ ∀x ∈ B∃y ∈ B[φ(x) ∧ ψ(x, y)]

and hence,
è  ∃s(a0 ∈ s ∧ ∀x ∈ s∃y ∈ s[φ(x) ∧ ψ(x, y)])

which completes the proof of (iv).
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(v) Let s ∈ V (A). We are aiming to find a set B∗ ∈ V (A) such that V (A) believes that B∗ is
a base that maps onto s.
Since PAx holds in the background model V , we can choose a base B and a surjective
map j : B −→ s. As s is a set of ordered pairs, we may define:

j0 : B −→ A and j1 : B −→ V (A)

by
j0(u) = 1st(j(u)) and j1(u) = 2nd(j(u))

where these functions denote the standard projections of ordered pairs in set theory. Using
transfinite recursion, for any set x, we define:

xst = {〈0, yst〉 : y ∈ x}.

xst ∈ V (A) is straightforwardly proved by ∈-induction as follows:
Inductively assume that yst ∈ V (A) for all y ∈ x. As 0 ∈ A this implies that

{〈0, yst〉 | y ∈ x} ⊆ |A| × V (A)

and thus xst ∈ V (A) by (2.2) part (ii).
To complete the proof we need the following facts.

Proposition 2.15.

(i)
x = y iff V (A) |= xst = yst.

(ii)
x ∈ y iff V (A) |= xst ∈ yst.

Proof. We show (i) and (ii) simultaneously by ∈-induction as follows:

(i): The implication from left to right is immediate. As for the other direction, suppose
that e  xst = yst. Then,

∀〈f, u〉 ∈ xst ((e)0f  u ∈ yst) ∧ ∀〈f, u〉 ∈ yst ((e)1f  u ∈ xst).

If z ∈ x then 〈0, zst〉 ∈ xst, thus V (A) |= zst ∈ yst and thus inductively z ∈ y. By a
symmetric argument, z ∈ y yields z ∈ x. Hence x = y.

(ii): Again the left to right direction is obvious. Suppose V (A) |= xst ∈ yst. Then there
exists z ∈ y such that V (A) |= xst = zst, and therefore inductively x = z, and hence x ∈ y.

As a result, the map taking x to xst is an injection from V to V (A).
Next, let

B∗ := {〈j0(u), 〈(j0(u))
st, ust〉A〉 : u ∈ B}.

Note that the map u 7−→ 〈j0(u), 〈(j0(u))
st, ust〉A〉 injects B onto B∗ and hence B∗ is a

base (in the sense of the ground universe).
Define

l : B −→ V (A)
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such that l(u) = 〈(j0(u))
st, ust〉A and let

j∗ := {〈j0(u), 〈l(u), j1(u)〉A〉 : u ∈ B}.

As j0(u) ∈ A and l(u), j1(u) ∈ V (A), it follows that j∗ ∈ V (A). Now, we claim that:

(20) V (A) |= j∗ maps B∗ onto s.

Firstly, we verify that V (A) |= j∗ ⊆ B∗×s. Towards this goal, assume that e  〈b, c〉A ∈ j∗.
Then there exists f such that 〈(e)0, f〉 ∈ j∗ and (e)1  〈b, c〉A = f .
However, 〈(e)0, f〉 ∈ j∗ means that there exists u ∈ B with (e)0 = j0(u) and f =
〈l(u), j1(u)〉A, and hence (e)1  〈b, c〉A = 〈l(u), j1(u)〉A.
So, we need to find realizers r  l(u) ∈ B∗ and r∗  j1(u) ∈ s.
Well, r  l(u) ∈ B∗ ⇔ ∃c[〈(r)0, c〉 ∈ B∗ ∧ (r)1  l(u) = c]. However, 〈(r)0, c〉 ∈ B∗

implies (r)0 = j0(u) and c = 〈(j0(u))
st, ust〉A = l(u) for some u ∈ B, and hence letting

r := p(j0(u), ir) we get get r  l(u) ∈ B∗.
r∗  j1(u) ∈ s is equivalent to the existence of a c such that 〈(r∗)0, c〉 ∈ s ∧ (r∗)1 

j1(u) = c. It follows from 〈(r∗)0, c〉 ∈ s that (r∗)0 = j0(u) and c = j1(u) and hence, with
r∗ := p(j0(u), ir) we have r∗  j1(u) ∈ s.
Therefore, a realizer e∗ can be computed from e such that

e∗  b ∈ B∗ ∧ c ∈ s

which shows that V (A) |= j∗ ⊆ B∗ × s.
To verify that j∗ is realizably total on B∗, assume e  〈c, d〉A ∈ B∗. Then there ex-
ists f such that 〈(e)0, f〉 ∈ B∗ ∧ (e)1  〈c, d〉A = f . But 〈(e)0, f〉 ∈ B∗ has the form
〈j0(u), 〈(j0(u))

st, ust〉A〉 for some u ∈ B. So, (e)0 = j0(u) and f = 〈(j0(u))
st, ust〉A = l(u)

for some u ∈ B. Thus, for some u ∈ B we have, (e)0 = j0(u) and (e)1  〈c, d〉A = l(u).
Since p(j0(u), ir)  j1(u) ∈ s and

(21) p(j0(u), ir)  〈l(u), j1(u)〉A ∈ j∗

a realizer ê can be computed from e such that:

ê  〈c, d〉A is in the domain of j∗.

To verify (21) let r  〈l(u), j1(u)〉A ∈ j∗. Then,
r  〈l(u), j1(u)〉A ∈ j∗ ⇔ ∃c[〈(r)0, c〉 ∈ j∗ ∧ (r)1  〈l(u), j1(u)〉A = c].
From 〈(r)0, c〉 ∈ j∗, it follows that (r)0 = j0(u) and c = 〈l(u), j1(u)〉A for some u ∈ B, and
hence p(j0(u), ir)  〈l(u), j1(u)〉A ∈ j∗.
Hence, since we have already verified that V (A) |= j∗ ⊆ B∗× s, we can infer that V (A) |=
B∗ is the domain of j∗.
Next, we need to show that j∗ is realizably functional. To this end, assume that:

(22) f  〈b, c〉A ∈ j∗

(23) h  〈b, d〉A ∈ j∗.

So by (22) there is a q such that 〈(f)0, q〉 ∈ j∗ ∧ (f)1  〈b, c〉A = q which entails that
(f)0 has the form j0(u) and q has the form 〈l(u), j1(u)〉A for some u in B, so that (f)1 
〈b, c〉A = 〈l(u), j1(u)〉A.
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And from (23) we get that there is a q′ such that 〈(h)0, q
′〉 ∈ j∗ ∧ (h)1  〈b, d〉A = q′, and

similarly we obtain that (h)0 has the form j0(v) and q
′ has the form 〈l(v), j1(v)〉A for some

v ∈ B and hence, (h)1  〈b, d〉A = 〈l(v), j1(v)〉A.
Therefore a realizer r can be extracted such that r  l(u) = l(v), so V (A) |= l(u) = l(v).
By the definition of l, we have:

V (A) |= l(u) = l(v)

V (A) |= 〈(j0(u))
st, ust〉A = 〈(j0(v))

st, vst〉A

⇔ V(A) |= ust = vst

⇔ u = v by (2.15).

Therefore, there is a realizer è computable from f , h such that è  c = d.

Next, we need to show that j∗ is realizably surjective. To this end, suppose that e  x ∈ s.
Then there exists a c such that 〈(e)0, c〉 ∈ s ∧ (e)1  x = c.
〈(e)0, c〉 ∈ s implies that 〈(e)0, c〉 has the form 〈j0(u), j1(u)〉 for some u ∈ B because
j : B −→ s maps B onto s. Furthermore, since p(j0(u), ir)  l(u) ∈ B∗ and p(j0(u), ir) 
〈l(u), j1(u)〉A ∈ j∗, it follows that a realizer ẽ can be calculated such that

ẽ  x in the range of j∗.

This completes the proof of (20).

Finally, we need to verify that V (A) believes that B∗ is a base. To verify this, suppose
that:

(24) e  ∀x ∈ B∗∃yφ(x, y) for some formula φ.

Now, we are aiming to compute a realizer e∗∗ calculable from e satisfying:

(25) e∗∗  ∃H[Fun(H) ∧ dom(H) = B∗ ∧ ∀x ∈ B∗φ(x,H(x))]

Note that e  ∀x ∈ B∗∃yφ(x, y) ⇔ ∀〈q, c〉 ∈ B∗ eq  ∃yφ(c, y)

⇔ ∀〈q, c〉 ∈ B∗∃d ∈ V (A) eq  φ(c, d).

Hence, from (24) it follows that:

∀〈q, c〉 ∈ B∗∃y ∈ V (A) eq  φ(c, y).

Now, because B∗ is a base in the ground universe, there is a function

F : B∗ −→ V (A)

such that
∀〈q, c〉 ∈ B∗ eq  φ(c, F (〈q, c〉)).

Next, we need an internalization of F namely F̃ , defined by:

F̃ := {〈p(eq, q), 〈c, F (〈q, c〉)〉A〉 : 〈q, c〉 ∈ B∗}.

Since, eq ∈ A, p(eq, q) ∈ A, c ∈ V (A), 〈q, c〉 ∈ B∗ ∈ V (A) and also F (〈q, c〉) ∈ V (A), we
can deduce that F̃ ∈ V (A).
First, we need to show that V (A) |= dom(F̃ ) = B∗. Towards this goal, suppose that
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h  x ∈ B∗. Then there exist c such that 〈(h)0, c〉 ∈ B∗ and (h)1  x = c. 〈(h)0, c〉 ∈ B∗

yields that
p(p(e(h)0, (h)0), ir)  〈c, F (〈(h)0, c〉)〉A ∈ F̃ ,

from which we can effectively construct a realizer ĥ such that ĥ  x ∈ dom(F̃ ).

Conversely, assume that d  〈x, y〉A ∈ F̃ . Then there exists 〈q, c〉 ∈ B∗ such that
〈(d)0, 〈c, F (〈q, c〉)〉A〉 ∈ F̃ where q = ((d)0)1 and (d)1  〈x, y〉A = 〈c, F (〈q, c〉)〉A. Conse-
quently, p(((d)0)1, ir)  c ∈ B∗. Therefore we can calculate an index d∗ from d such that
d∗  x ∈ B∗.

Finally, we have all the pieces to construct ê from e such that

ê  dom(F̃ ) = B∗.

Next, it remains to show that F̃ is realizably functional. To this end, suppose:

(26) f  〈b, c〉A ∈ F̃

(27) h  〈b, d〉A ∈ F̃ .

(26) and (27) provide 〈q, x〉, 〈q′, y〉 ∈ B∗ such that ((f)0)1 = q, ((h)0)1 = q′, and

(f)1  〈b, c〉A = 〈x, F (〈q, x〉)〉A ∧ (h)1  〈b, d〉A = 〈y, F (〈q′, y〉)〉A.(28)

The latter yields V (A)|=x = y. Since 〈q, x〉, 〈q′, y〉 ∈ B∗ there exist u, v ∈ B satisfying

x = 〈(j0(u))
st, ust〉A and q = j0(u)

as well as
y = 〈(j0(v))

st, vst〉A and q′ = j0(v).

As V (A)|=x = y, the above implies

V (A) |= qst = (q′)st ∧ ust = vst,

and so by Proposition 2.15, we arrive at q = q′ and u = v, which also yields x = y and
F (〈q, x〉) = F (〈q′, y〉). Thus, also taking (28) into account, we can construct a realizer ν
such that νfh  c = d. This verifies the functionality of F̃ , so V (A)|=F̃ is a function.

In sum, taking all the foregoing together, we can calculate in A a realizer e∗∗ from e such
that (25) holds.

This completes the proof.

The upshot of the preceding proofs is that there exist uniform realizers for the choice prin-
ciples discussed in this paper in that a closed application term can be exhibited for each choice
principle P such that its interpretation in any applicative structure A furnishes a realizer in A
for P in the universe V (A). Preservation of these choice principles was first shown for the first
Kleene algebra where realizers are codes for partial recursive functions. This paper shows that
no particular properties of partial recursive functions are required.
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