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Abstract 

Dragonflies and damselflies (the Odonata) are among the most efficient flying insects. 

However, fragmentation of the landscape can increase distance between habitats and affect 

costs of dispersal, thus shaping phenotypic patterns of flight-related traits, such as wing shape, 

wing loading and wing size. Urban landscapes are highly fragmented, which limits dispersal 

among aquatic habitats. Hence, strong selective pressures can act upon urban populations in 

favour of individuals with increased flight performance or may lead to the reduction in 

dispersal traits. Here, we explore differentiation in morphological flight-related traits among 

urban, suburban, and rural populations of the damselfly Ischnura elegans, which is one of the 

most abundant species in both urban and rural ponds in Europe. We sampled 20 sites across 

Leeds and Bradford, UK, in an urban-to-rural gradient from June to August 2014 and 2015 

(Nmales=201, Nfemales=119). We compared wing shape among different land use types using 

geometric morphometrics. Other wing properties analysed were wing aspect ratio, wing 

loading, and wing centroid size. Unexpectedly, no significant effect of urban land use was 

found on wing shape. However, wing shape differed significantly between males and females. 

Additionally, females showed significantly larger wing centroid sizes (P < 0.001), increased 
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wing loading (fore wings: P = 0.007; hind wings: P = 0.002) and aspect ratio (P < 0.001) 

compared to males across all land use types. Possible mechanisms driving these results are 

further discussed. 
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Introduction 

As aerial predators, dragonflies and damselflies (the Odonata) are adapted to fly 

efficiently in order to catch prey in the air, and also use their flight ability to disperse, migrate, 

mate, defend territories, and flee from predators (Marden, 2008). Many morphological traits 

dictate the flight performance in odonates and other insects, such as wing shape and size, 

body size, wing loading (i.e. the ratio of body mass to wing area), and thoracic muscle mass 

(Dudley, 2000; Marden, 2008). Body size and muscle mass influence flight performance 

strongly, since smaller individuals may need less energy to move and show increased agility 

(Serrano-Meneses, Córdoba-Aguilar, Méndez, Layen, & Székely, 2007), although their 

muscle mass and fat reserves are more limited (Marden, 1989; Samejima & Tsubaki, 2010; 

Serrano-Meneses et al., 2007), therefore representing a trade-off between flight performance 

and energetic costs (Serrano-Meneses et al., 2007). However, for this study, we will focus on 

the main functional organs for flight: the wings.  

 

Insect wings operate in a different way to that of vertebrates mainly due to their small 

size. The Reynolds number (a measure used to predict the flow patterns of fluids) of an insect 



wing is relatively low, ranging from 10 to 104 (Wang, 2005). As the Reynolds number 

decreases in a wing, its ability to produce lift also decreases (Cheng & Sun, 2016). Hence, 

larger wings produce more lift and carry heavier loads (Marden, 1987; Wootton, 1992). Wing 

size also determines to a great extent the wing shape in odonates, with larger odonates having 

a larger area concentrated at the wing base, compared to smaller odonates with larger 

concentration of area in the wing apex (David Outomuro, Adams, & Johansson, 2013). 

However, size and shape can function as independent components of wing morphology 

(Debat, Bégin, Legout, & David, 2003). The ratio of wing length to width, known as aspect 

ratio, has also a strong influence on flight performance, although the resulting effect in insects 

can be quite different to that in vertebrates. In vertebrates, higher aspect ratio (i.e. longer, 

narrower wings) decreases the lift-to-drag ratio, which in turn decreases energetic costs and 

facilitates gliding and long-distance dispersal (Norberg, 1989). High aspect ratios have been 

found in a wide range of migratory birds (Mönkkönen, 1995). On the other hand, lower aspect 

ratios (shorter, wider wings) improve manoeuvrability (Norberg, 1989), a trait that is 

particularly important when escaping predators, catching prey, or fighting against a rival 

male. However, studies regarding the role of aspect ratio in insects have found rather 

contrasting results. Firstly, given that insects operate at very low Reynolds numbers, it has 

been proposed that the benefits of higher aspect ratios are in fact reversed in such cases 

(Wootton, 1992) so that long, narrow wings increase manoeuvrability, whereas short, wide 

wings allow long-distance movements with low energetic costs. However, marginal 

populations of Calopteryx splendens and Coenagrion puella – both damselflies with 

expanding range margins – have shown longer, narrower wings, which may suggest that 

higher aspect ratios reduce energetic costs in a similar way to vertebrates, although the costs 

and benefits have not been demonstrated (Hassall, Thompson, & Harvey, 2008, 2009). 



Importantly, aspect ratio is not the only element of wing shape driving flight efficiency. For 

instance, petiolate or narrow-based wings – such as the wings of many zygopterans – are 

associated with slow flight and hovering because the base shows low angular velocity and 

contributes little force, whereas broad-based wings allow a wider range of speeds, from 

gliding to high-speed flight (Wootton & Newman, 2008).  This is particularly true in 

anisopterans, which have wide-based hind wings that permit efficient gliding and fast flight 

(Bomphrey, Nakata, Henningsson, & Lin, 2016; Wootton & Newman, 2008). Wing loading is 

another important factor driving flight performance, it is defined as the ratio of body weight to 

the total wing area (Dudley, 2000). Wing loading influences the amount of thrust generated 

per wing beat (Dudley, 2000) and increases flight speed and lift (Alerstam, Rosén, Bäckman, 

Ericson, & Hellgren, 2007). 

 

Certain species have shown adaptations in these morphological traits to improve flight 

performance in order to disperse to environments of limited access, e.g. Taylor and Merriam 

(1995) show that wing shape of Calopteryx maculata is affected by habitat fragmentation. 

More recently, Outomuro, Dijkstra, & Johansson (2013) show that habitat type influences 

wing shape of Trithemis spp., with long, narrow wings being more abundant in forested areas. 

 

Urban environments represent heavily fragmented habitats, with low vegetation cover 

and frequent barriers such as roads and buildings (Forman, 2014; Grimm et al., 2008), all of 

which may impede dispersal to other aquatic habitats. Population genetic studies have shown 

that urban odonate populations are genetically isolated from rural populations (Sato, 

Kohmatsu, Yuma, & Tsubaki, 2008; Watts, Rouquette, Saccheri, Kemp, & Thompson, 2004). 



Hence, the strong selective pressures acting upon urban odonate populations may drive wing 

patterns in favour of individuals with increased flight performance. Such a result has been 

found in the damselfly Coenagrion puella (Tüzün, Op de Beeck, & Stoks, 2017), although 

this study only analysed phenotypic patterns among urban and rural males. 

 

Here, we study the intraspecific variation in wing size, shape and wing loading of the 

damselfly Ischnura elegans in an urban-to-rural gradient to investigate which wing pattern is 

more successful in urban areas where dispersal may be limited. This species shows slow-

speed flight (Bomphrey et al., 2016) and the mean distance of dispersal is less than 200 m, but 

the females are more likely to disperse and, therefore, more likely to move from their 

breeding site (Conrad et al., 2002).However, it is widely distributed in Europe and is abundant 

in urban and rural wetlands (Goertzen & Suhling, 2013), presumably as a result of being able 

to colonise new habitats and withstand hostile conditions associated with urban environments 

(Villalobos-Jiménez, Dunn, & Hassall, 2016). Considering this species presents heavily 

petiolated wings, which generate considerable lift distally, this species may benefit from 

having longer wings by increasing flight efficiency and reducing energetic costs (Bomphrey 

et al., 2016; Dudley, 2000; Wootton & Newman, 2008). Hence, we hypothesize that large 

wings with high aspect ratios will be more abundant in urban areas to decrease the energetic 

costs of long-distance dispersal, whereas in rural areas, the smaller wings with low aspect 

ratios will be predominant due to the facilitation of movement in the highly vegetated areas. 

Suburban populations will show an intermediate form of wing shape between urban and rural 

populations. 

 



Materials and methods 

 

Field survey 

We surveyed 20 ponds across Leeds and Bradford (Table 1; Figure 1) in an urban to 

rural gradient from June to August 2014 and 2015. Classification of sampling sites was 

according to the proportion of urbanisation within 1 Km around each pond, which was 

calculated using the 25m Land Cover Map 2007 (Centre for Ecology & Hydrology, 

www.ceh.ac.uk/services/land-cover-map-2007) in ArcGIS 10.1 (ESRI, 2011). The LCM2007 

data categorises land use into 23 classes, including two different classes for urban and 

suburban land types. Because morphometric traits have shown small-scale spatial variation 

(D. Outomuro et al., 2013; Taylor & Merriam, 1995), sites were classified in three categories: 

urban, suburban, and rural. Sites with an urban cover of >45% in a 1 Km buffer were 

classified as urban; sites with a suburban cover of >45% in a 1 Km buffer were classified as 

suburban, and sites with an urban and suburban cover of <45% in a 1 Km buffer were 

classified as rural. Urban areas are typically heavily fragmented (Grimm et al., 2008), 

therefore sites classified as “urban” in this study are expected to be strongly fragmented 

compared to the “suburban” areas (moderately fragmented) and the “rural” areas (low 

fragmentation). However, the configuration of the landscape (i.e. fragmented vs continuous) 

was not directly assessed in this study. A total of 320 specimens of Ischnura elegans 

(Nmales=201, Nfemales=119) were collected with a net, which were then fixed with 70% ethanol. 

 

Geomorphometric analysis 

http://www.ceh.ac.uk/services/land-cover-map-2007


Wings were dissected from the body as close to the thorax as possible and mounted on 

matte adhesive tape. Wings were scanned using the slide scanner on a Canon CanoScan LiDE 

25 flatbed scanner with fixed exposure at 1200dpi. Left wings were reflected so that both left 

and right wings had the same orientation. After dissecting the wings, the specimens were 

weighted to the nearest 0.1 mg to obtain body mass.  

 

In order to analyse wing shape, we used geometric morphometrics, which uses a 

multivariate approach to estimate the qualitative properties of wing shape and transform them 

to a quantitative measure (Bookstein, 1991). We digitised nine type 1 landmarks (Bookstein, 

1991) defined as the intersection between the main veins (Figure 2) according to 

Arambourou, Sanmartín-Villar, & Stoks (2017) using the geomorph package (Adams & 

Otárola-Castillo, 2013) in R 3.4.0 (R Core Team, 2013). As a proxy of wing size, the wing 

centroid sizes were calculated as the square root of the summed squared distances from each 

landmark to the geometric centre of each wing (Bookstein, 1991). We also quantified (1) 

wing area as the area of the polygon defined by the landmarks 1–8, and (2) wing length as the 

distance between landmarks 1 and 4 (Arambourou et al., 2017). Wing loading was calculated 

as body mass/wing area and wing aspect ratio was calculated as wing length2/wing area 

(Berwaerts, Van Dyck, & Aerts, 2002; Gilchrist, Azevedo, Partridge, & O’Higgins, 2000). 

Body mass was calculated after removing the wings, therefore wing loadings here did not 

include wing mass. Both wing length (r = 0.99, P < 0.001) and area (r = 0.96, P < 0.001) were 

highly correlated with wing centroid size. 

 



Wing shape was estimated using the landmarks previously digitised, with any 

differences among wing configurations other than shape differences (i.e., position, orientation 

and size) removed using the generalized Procrustes superimposition method (Rohlf & Slice, 

1990). To confirm that wing shape is independent of wing size, or in other words, that there 

were no allometric effects, we calculated a linear regression with the Procrustes coordinates 

as the response variables and wing centroids as the explanatory variable. To assess the 

significance of this relationship, 100 permutations were conducted by randomly reassigning 

observations for Procrustes coordinates to observations for centroid sizes. We found a 

significant allometric effect (F1, 1224 = 141.7, P = 0.009), as has been observed previously in 

insect wings (Debat et al., 2003; Gilchrist et al., 2000). Because the shape variables were 

strongly dependent on wing centroids, the residuals of this regression were used as the non-

allometric shape component. Principal components analysis (PCA) was then carried out on 

the non-allometric landmarks to obtain the shape variables as principal components scores. 

Considering the first three PC scores accounted for 83.51% of the overall variation (PC1: 

60.58%, PC2: 12.11%, PC3: 10.82%), we used only these as a measure of wing shape. 

 

Statistical analysis 

To test the effect of land use on flight related traits, we used a linear mixed model 

using the lme4 package (Bates, Maechler, Bolker, & Walker, 2014) with each of the flight-

related traits as dependent variables (PC1, PC2, PC3, aspect ratio, wing loading, and wing 

centroids); sex and types of land use (urban, suburban, rural) were the grouping explanatory 

variables, and the location was added as a random effect to account for spatial variation. Even 

though flight-related traits have been shown to vary with time (Gyulavári et al., 2017; Stewart 

& Vodopich, 2018), we could not analyse temporal differences due to low sample sizes (see 



Table 1), all data from 2014 and 2015 was pooled for this study. Before running the analyses, 

we compared the flight-related traits (PC1, PC2, PC3, aspect ratio, wing loading, and wing 

centroids) among types of wing (left and right, fore and hind wings) using a MANOVA to test 

whether all wings could be pooled together for the analysis. The results suggested fore and 

hind wings had significantly different flight-related traits (Wilk’s Ȝ= 0.161, dfN= 6, dfD= 1160, 

approximate F= 1005.8, P < 0.001), but no significant differences were found among left and 

right wings (left and right fore wings: Wilk’s Ȝ= 0.99, dfN= 6, dfD= 574, approximate F= 

0.814, P= 0.56; left and right hind wings: Wilk’s Ȝ= 0.99, dfN= 6, dfD= 579, approximate F= 

0.966, P= 0.45). Therefore, only the left wings were used for the analyses, separated by fore 

wings and hind wings. The P-values were obtained using the Satterthwaite approximation to 

calculate denominator degrees of freedom. Variation Inflation Factors (VIF) were calculated 

to account for multicollinearity (see Table S1 in Supplementary Information), and the 

resulting P-values from the linear mixed models were transformed using the False Discovery 

Rate (FDR) to account for multiple testing.  

 

Results 

 

Aspect ratio was significantly higher in females than males for both fore and hind 

wings (Table 2; Figure 3), but no significant differences were observed among land use types 

(Table 2; Figure 3). Wing loading was also significantly larger in fore and hind wings of 

females compared to wings of males (Table 2; Figure 3), although wing loadings were not 

significantly different across land use types (Table 2; Figure 3). Wing centroid size was also 

significantly larger in fore and hind wings of females than males (Table 2; Figure 3). 



 

Regarding the wing shape variables, all PC scores represented subtle changes in the 

wing planform (see Figure 4), with very little shape variation (ı2 = 0.001). All PC scores were 

significantly correlated with aspect ratio, although the strength of the correlation was weak 

except for PC3 (PC1, fore wings: r = -0.242, P < 0.001; PC1, hind wings: r = -0.293, P < 

0.001; PC2, fore wing: r = -0.292, P < 0.001; PC2, hind wing: r = -0.296, P < 0.001; PC3, 

fore wing: r = -0.654, P < 0.001; PC3, hind wing: r = -0.625, P < 0.001). PC1 showed 

significant differences between sexes (Table 2), with females showing larger PC1 values in 

both fore (Figure 4; Figure 5) and hind wings (Figure 4(e)). Females also exhibited 

significantly larger PC2 values than males, but only in hind wings (Table 2; Figure 4; Figure 

5). PC3 was not significantly different among sexes (Table 2). No significant effect of land 

use was found in any of the shape variables (Table 2). 

 

Discussion 

 

In this study, we found no evidence of differentiation of flight-related morphological 

traits in I. elegans due to urbanisation. Instead, there were subtle, but significant differences 

between males and females (see Figure 4 and Figure 5), particularly females having larger 

wing centroid sizes in fore and hind wings, higher aspect ratios in fore and hind wings, 

increased wing loadings in fore and hind wings, higher PC1 values in fore and hind wings, 

which is associated with an increased distance between the pterostigma and the nodus (see 

Figure 4), and higher PC2 values in hind wings, which represents a shorter distance between 



the nodus and the radial section (Figure 4). In the following text, we will suggest plausible 

mechanisms driving these responses. 

 

Urban areas can be heavily fragmented (Grimm et al., 2008) and fragmented habitats 

can affect morphological flight-related traits in odonates (D. Outomuro et al., 2013; Taylor & 

Merriam, 1995). However, in this study there were no significant differences found in 

morphological traits associated with flight performance and dispersal among urban, suburban, 

and rural populations. This result is unexpected since it contrasts with other studies, 

particularly with Tüzün et al (2017) which found  significant differences in flight-related traits 

in odonate populations due to urbanisation. However, this study only found such differences 

in flight endurance and in one shape variable (relative warp 3) which only contributed to ca. 

9% of variation, the rest of the shape variables did not show significant differences among 

urban and rural populations. Tüzün et al (2017) reported higher flight endurance in urban 

males of Coenagrion puella, though females were not assessed. However, C. puella is more 

likely to disperse to other ponds compared to I. elegans (Conrad et al., 2002), which may 

explain why the former species showed differences in flight-related traits between urban and 

rural populations, and the latter did not. Moreover, in this study, we only focused on the 

morphological differences in flight-related traits, we did not measure flight endurance, flight 

muscle mass, fat content, metabolic rate, or account for genetic variation, all of which 

influence flight performance and dispersal (Marden, 2008). Petiolated wings, as mentioned, 

do not allow gliding, therefore large energy storage and higher flight endurance could be 

advantageous for long-distance dispersal. Despite the fact that no differentiation was found in 

the phenotypic traits of I. elegans associated to flight, strong genetic differentiation was found 

among urban and rural populations of other Ischnura species, namely I. senegalensis and I. 



asiatica, which suggests dispersal is indeed limited in the urban landscape, thus isolating 

urban populations (Sato et al., 2008). Even though the genetic differentiation of urban and 

rural populations of I. elegans has not been investigated, urban populations are expected to be 

heavily isolated due to increased habitat fragmentation in cities and the low mobility of this 

species. Further studies are encouraged to explore the intraspecific variation of flight 

performance, dispersal, and genetic diversity within an urban landscape in I. elegans and 

other species, particularly linking flight morphology and function. 

 

 Another plausible reason why we did not find any significant differences in flight-

related traits could be due to the increased temperature found in urban areas, known as the 

urban heat island (UHI) effect (Grimm et al., 2008). Increased temperatures can facilitate 

dispersal (Boyle, Schwanz, Hone, & Georges, 2016; Chen, Hill, Ohlemuller, Roy, & Thomas, 

2011; Lett, Ayata, Huret, & Irisson, 2010; Travis et al., 2013), particularly in odonates given 

their tropical evolutionary origin (Hassall & Thompson, 2008; Pritchard & Leggott, 1987). As 

temperature increases, so does the lift force (Samejima & Tsubaki, 2010), wingstroke 

frequency (May, 1981) and power output of insect flight muscles (Stevenson & Josephson, 

1990). This may counteract the negative impacts of fragmentation in urban areas and, 

therefore, urbanisation overall may not have any considerable impacts on flight performance 

and dispersal. However, the effects of temperature on dispersal are far more complex. Firstly, 

not all species benefit from increased temperature since many species have adapted to more 

temperate conditions (Jaeschke, Bittner, Reineking, & Beierkuhnlein, 2013; Travis et al., 

2013). Moreover, temperature interferes with many other factors such as body size 

(McCauley, Hammond, Frances, & Mabry, 2015) and wing shape, even in the same study 

species, I. elegans (Arambourou et al., 2017), which can affect flight performance. Therefore, 



increased temperature does not always have a positive impact. Further research is needed to 

analyse the effect of dispersal on odonates linking fragmentation and increased temperatures 

in urban areas. 

 

One of the main findings in this study is the conspicuous distinction of flight-related 

traits among males and females of I. elegans (Figure 5). Sexual wing dimorphism has been 

reported previously in I. elegans (Arambourou et al., 2017), and can be attributed to the 

difference in selection pressures to which males and females are subject to. Both males and 

females disperse away from their native water body after emerging to feed until they reach 

sexual maturity (Corbet, 1999). However, after becoming sexually mature, females only 

return to breeding sites when they are receptive (Corbet, 1999) and undergo stronger selective 

pressure to forage (Anholt, 1992), whereas males tend to stay close to breeding sites in order 

to find a mate (Beirinckx, Van Gossum, Lajeunesse, & Forbes, 2006; Corbet, 1999), therefore 

females may need to be more dispersive than males (Beirinckx et al., 2006). Moreover, 

females can also show impaired locomotor performance once they become gravid (Carlson, 

McGinley, & Rowe, 2014; Olsson, Shine, & Bak-Olsson, 2000; Samietz & Köhler, 2012; 

Shine, 2003) and in flying organisms, pregnancy has shown to affect take-off negatively 

(Almbro & Kullberg, 2012; Lee, Witter, Cuthill, & Goldsmith, 1996; Veasey, Houston, & 

Metcalfe, 2001). In such case, the larger, longer, and narrower wing pattern found in females 

could be of aid for long-distance dispersal, since the angular velocity increases towards the 

wing tip in flapping wings, notably in petiolated wings where the velocity gradient from base 

to tip is more pronounced (Bomphrey et al., 2016; Dudley, 2000), thus providing more lift per 

wingbeat (Bomphrey et al., 2016). The increased wing loadings found in females also 

promote dispersal by increasing the thrust generated per wingbeat (Dudley, 2000). 



Interestingly, PC3 showed no statistically significant differences among males and females, 

even though in Figure 4 there is a consistent sex-dependent pattern. Additionally, PC3 and 

aspect ratio were strongly correlated, so significant differences would be expected. Perhaps 

this is due to the fact that overall wing shape showed very little variation (ı2 = 0.001), and 

PC3 represents only little over 10% of this variation, therefore the changes represented by 

PC3 may be too subtle to affect dispersal. However, more studies are needed to confirm the 

effect of increased aspect ratio in the flight performance of I. elegans. 

 

Urbanisation is one of the main drivers of ecosystem change (Faeth, Bang, & Saari, 

2011; Grimm et al., 2008; McKinney, 2008), and the resulting fragmentation of the landscape 

can shape phenotypic patterns to facilitate dispersal (e.g. Tüzün et al., 2017). However, I. 

elegans is a widespread species and one of the most abundant damselflies in Europe (Dijkstra 

& Lewington, 2006; Dow, 2010), which can tolerate a wide range of stressors (Dow, 2010). 

The results of this study suggest that this species’ wing morphology is not affected by 

increased fragmentation in the urban landscape at the scale studied and may also explain why 

this species thrives in urban ponds (Goertzen & Suhling, 2013). However, more studies are 

needed to analyse intraspecific and interspecific variation of other flight-related traits, such as 

flight endurance, flight performance, fat content and, ultimately, dispersal success in order to 

disentangle the effects of urbanisation at a population and community level. This, in turn, will 

allow a better understanding of which species are more susceptible to land use change and 

how organisms and communities respond to novel environments. 
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Tables 

Table 1. Sampling site locations, land use classification of each site, percentage of urban (URB), suburban (SUBURB), woodland (WOOD), and 
grassland (GRASS) cover in a 1 Km buffer around the sampling sites, and sample sizes of fore wings (NFW) and hind wings (NHW) of males and 
females of Ischnura elegans per site and per year. 

                2014   2015 

        Females   Males  Females   Males 

Location Latitude Longitude Land use URB SUBURB  WOOD  GRASS NFW NHW   NFW NHW   NFW NHW   NFW NHW 

ASD metal services 53.767975° N 1.512972° W urban 45.80 23.55 4.25 10.47 0 0  0 0  10 9  17 17 
FGH Ltd Listerhills 
Warehouse 53.797836° N 1.772692° W urban 62.79 35.09 0.00 2.12 0 0  0 0  9 9  13 11 

Kemira Chemicals UK 53.778672° N 1.746394° W urban 45.35 43.09 3.39 8.17 0 0  0 0  26 24  23 23 
Skelton Grange 
Environment Centre 53.776439° N 1.499625° W urban 49.02 14.06 4.47 17.31 0 0  0 0  6 8  4 3 
University of Bradford 
Main Campus 53.793328° N 1.764911° W urban 64.78 33.05 0.00 2.16 0 0  0 0  4 4  2 3 

Harold Park 53.7581° N 1.773817° W suburban 11.47 67.87 0.15 18.72 6 5  11 12  4 4  4 4 

Hollin Lane 53.828492° N 1.571503° W suburban 7.60 64.08 10.38 13.85 0 0  8 8  2 2  17 18 

Horton Bank Country Park 53.774464° N 1.810864° W suburban 7.62 66.07 2.95 22.22 0 0  0 0  21 20  23 23 

Primrose Valley Park 53.802242° N 1.46535° W suburban 12.34 62.43 2.54 22.32 15 14  18 17  2 1  4 4 

Reevy Mill Dam 53.764944° N 1.790764° W suburban 10.95 80.29 0.00 8.76 0 0  0 0  2 2  6 6 

Bierley Hall Wood 53.759392° N 1.737078° W rural 13.43 25.12 5.17 52.48 7 8  16 16  3 3  2 1 
Farnley Hall Fish Local 
Nature Reserve 53.788094° N 1.622917° W rural 8.16 28.72 11.66 33.08 6 6  6 6  0 0  1 2 

Ledston Luck 53.774514° N 1.348325° W rural 1.04 3.83 3.94 15.71 8 10  8 8  0 0  0 0 
Letchmire Pastures Nature 
Reserve 53.740858° N 1.357344° W rural 5.33 5.93 4.97 26.32 6 6  13 12  0 0  0 0 

Middleton Park 53.7543° N 1.546175° W rural 2.18 31.46 28.36 31.66 6 6  28 34  31 28  41 38 

None Go Bye Farm 53.871872° N 1.64115° W rural 2.10 6.97 5.29 75.06 6 6  12 12  0 0  4 3 

Paul's pond 53.866856° N 1.603722° W rural 0.28 12.80 9.36 71.97 6 6  23 23  3 3  14 17 

Roundhay Park 53.840606° N 1.497186° W rural 4.20 21.54 17.23 39.46 2 2  4 8  11 12  23 25 

Swillington Organic Farm 53.757781° N 1.4336° W rural 2.64 10.29 16.55 33.79 12 12  13 14  0 0  0 0 

Woodhall Lake 53.807097° N 1.695217° W rural 8.43 37.10 5.27 43.36 2 1   7 7   0 0   0 0 



Table 1. Results of the linear mixed-effects models testing the effect of land use and sex on the 
PC scores, wing aspect ratio, wing loading, and wing size of fore and hind wings. P-values were 
obtained using the Satterthwaite approximation to calculate denominator degrees of freedom. P-
values presented here have been adjusted for multiple testing using the FDR correction. 
Significant differences are in bold. 

    Fore wings   Hind wings 

 NumDF DenDF F P   DenDF F P 
PC1         

Sex 1 275.82 90.083 <0.001  286.38 103.179 <0.001 
Land use 2 11.41 1.562 0.335  12.04 1.635 0.332 

PC2         
Sex 1 277.83 3.149 0.154  285.15 17.613 <0.001 
Land use 2 15.85 4.498 0.068  12.74 1.935 0.277 

PC3         
Sex 1 277.02 2.061 0.277  285.06 1.801 0.277 
Land use 2 15.66 1.120 0.407  17.98 0.028 0.972 

Wing aspect ratio         
Sex 1 277.77 82.614 <0.001  286.31 65.776 <0.001 
Land use 2 15.07 3.119 0.154  11.06 1.406 0.361 

Wing loading         
Sex 1 266.35 9.202 0.007  275.40 11.439 0.002 
Land use 2 15.23 1.106 0.407  15.18 1.021 0.419 

Wing size         
Sex 1 268.23 394.155 <0.001  278.27 316.301 <0.001 
Land use 2 14.90 2.025 0.277   15.26 0.893 0.448 

  



Figures 

 

 

Figure 1. Map of the sampling sites for the morphometric analysis in Leeds (right) and Bradford 
(left), indicating the degree of urbanisation and classification of the sampling sites. 

  



 

Figure 2. Localization of the nine landmarks digitised on the wings of Ischnura elegans 
according to Arambourou et al. (2017). 

 

  



 
Figure 3. Mean wing aspect ratio (left panel), wing loading (middle panel) and wing centroid 
size (right panel) of males (triangle) and females (circle) from the urban, suburban, and rural 
populations sampled. Fore wings are represented on the top panel, hind wings on the bottom 
panel. Annotations represent significant differences. Error bars represent ±1 SE. 

 

  



 

Figure 4. Results of the geometric morphometric analysis showing mean scores of PC1 (top 
panel), PC2 (horizontal middle panel) and PC3 (bottom panel) by males (triangle) and females 
(circle) from the urban, suburban, and rural populations sampled. On the left panel, the 
deformation grids showing the changes in mean shape represented by the maximum and 
minimum values of the PC scores. The PC scores in fore wings are depicted on the vertical 
middle panel, and on the right panel, the PC scores in hind wings. Annotations represent 
significant differences. Error bars represent ±1 SE. To better visualize shape variations on the 
deformation grids, an amplification factor of 2 was applied. 

  



 

 

 

Figure 5. Deformation grids showing the mean wing shape of males and females in urban, 
suburban, and rural populations. To better visualize shape variations, an amplification factor of 5 
was applied. 

 


