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1. Introduction

Depression causes significant physical and psychosocial morbidity, and is associated 

with poorer quality of life (Sivertsen et al., 2015). Interventions targeted at high-risk 

populations may reduce the burden of depression (van Zoonen et al., 2014). 

Therefore, the ability to predict persistent symptoms is desirable. Subthreshold 

depression refers to the presence of depressive symptoms that do not satisfy 

diagnostic criteria for clinical depression (Rowe & Rapaport, 2006). It is common 

amongst older adults and is a risk factor for major depression (Judd et al., 1998)

Machine learning (ML) is a rapidly emerging field that has allowed the exploitation of 

large, often routinely arising, datasets to generate predictive models. In ‘supervised 

learning’ machines develop ways of linking a target outcome from a set of predictors 

(‘features’) in existing data. Such models may generalize to novel predictor data. In 

contrast to traditional statistical approaches, ML focuses on prediction rather than 

explanation, often producing non-interpretable models.

Prior research has demonstrated that it is possible to predict the likelihood of 

individuals developing depression (King et al., 2008). However, the utility of ML 

methods for depression prediction has not been widely explored, as most studies use 

conventional statistical methods, such as logistic regression (LR). In addition, the 

efficacy of predictive algorithms has not been evaluated in older individuals, who are 

often excluded from analyses. Therefore, this research aims to compare the efficacy 

of LR and a ML approach (‘extreme gradient boosting’) in predicting persistent 

depressive symptoms at 12 months in older adults with ‘subthreshold depression’ at 

baseline.

2. Methods

2.1 Data 

Data were acquired from a previous randomised controlled trial evaluating the 

effectiveness of collaborative care for sub-threshold depression in older people 

(Gilbody et al., 2017). Data were potentially available for 361 participants (139 males, 

222 females) aged 65 years and older, who were randomised to the control arm 

(usual primary care) in the original CASPER trial. All participants were recruited from 

primary care practices in the Northern England. Patients were considered for 

inclusion if they screened positive for the Whooley questions (Whooley et al., 1997) 

and reported sub-threshold depressive symptoms according DSM-IV criteria using 



the Mini International Neuropsychiatric Interview (MINI) (Sheehan et al., 1998). 

Patients were visited at baseline, 4 months, and 12 months by clinical studies 

officers, who administered the questionnaires.  Further details are available in the 

CASPER trial report (Gilbody et al., 2017). The study comprised a secondary 

analysis of de-identified data from the CASPER trial and fell within the remit of 

original ethical approval. 

77 participants (21%) were missing primary outcome data at 12 month follow up, and 

these participants were excluded from the analysis. Of the remaining 284 participants 

(100 male, 184 female) the mean age was 77.7 (SD: 6.9). The mean PHQ-9 score 

was 7.7 (SD: 4.6) at baseline, and 7.2 (SD: 5.0) at 12-month follow up. For those with 

a primary outcome reported there were very few missing data on predictor variables: 

only six participants (2%) had missing data on one or more of the baseline 

questionnaires. 

2.2 Predictors and outcome

Baseline demographic data included age, sex, and prior education status. 

Psychometric data were available from: Patient Health Questionnaire (PHQ-9) 

(Kroenke et al., 2001); MINI (Sheehan et al., 1998); Whooley questions (Whooley et 

al., 1997); Generalised Anxiety Disorder Assessment (GAD-7) (Spitzer et al., 2006); 

Short Form Survey 12 (SF-12) (Gandek et al., 1998); Patient Health Questionnaire 

15 (PHQ-15) (Kroenke & Spitzer, 2002); Connor-Davidson Resilience Scale 2 (CD-

RISC2) (Vaishnavi et al., 2007); and the EuroQol-5D (EQ-5D) (Balestroni & 

Bertolotti, 2012). Information regarding current medication and physical health 

conditions were also available. A PHQ-9 score ≥10 was used to define the outcome 

of this study, significant depressive symptoms at 12 months. It has been extensively 

validated as a screening cut-off for major depressive disorder, with an estimated 

sensitivity of 0.85, a specificity of 0.89 (Manea et al., 2012), and a relatively high 

internal consistency (Cronbach’s alpha 0.89) (Kroenke et al., 2001).

2.3 Data preprocessing

Missing values for predictor variables were imputed via the Amelia II package for R, 

which uses an Expectation-Maximization Bootstrap-based (EBM) algorithm (Honaker 

et al., 2011). Continuous variables were placed on a similar scale (‘Feature scaling’) 

via normalization. For each run of model building and testing the data were split in a 

60:40 ratio to form a training set to develop the predictive algorithm, and a test (‘held 



back’) set to validate the algorithm. Stratified random sampling was used to ensure 

equal distribution of the outcome (PHQ-9 score ≥10) between sets.

2.4 Predictive Model Building

For the LR modelling a backwards stepwise approach was used to select predictor 

variables. The model starts with all potential predictors and sequentially removes 

variables based on Mallow’s Cp. ‘Extreme Gradient Boosting’, as implemented in the 

XGBoost R package (Chen et al., 2015) was selected as the ML approach, as 

gradient boosting has been shown to often outperform other ML methods for binary 

classification tasks (Caruana & Niculescu-Mizil, 2006). XGBoost uses both gradient 

boosting and ‘ensembling’ to maximise its predictive capacity. ‘Ensembling’ is the 

process of combining numerous models, in this case decision trees, and averaging 

or voting on the final predicted value. Gradient boosting refers to the algorithm’s 

ability to successfully model the relationship between the predictor and outcome, first 

on the initial data, and subsequently on the ‘residuals’ or ‘errors’ from the previous 

modelling attempt. This ensures the algorithm successively focuses on observations 

where the outcome is increasingly difficult to predict.

The LR and ML classification models were developed to predict the likelihood of 

participants having persistent depressive symptoms (PHQ-9 ≥10) at 12 months on 

the training dataset. Each model, developed using the training dataset, was then 

applied to the previously unseen test dataset. Due to the stochastic nature of 

developing the models (e.g. dataset splitting, imputation etc.) the entire process was 

repeated 1000 times. The performance of the models on the unseen test dataset was 

evaluated by computing the mean accuracy metrics (e.g. sensitivity, specificity etc.) 

over the 1000 iterations. An unpaired t-test was used to formally compare the overall 

predictive performance of LR and ML, using the AUC values.

It was not possible to meaningfully recombine the coefficients from the 1000 LR 

models built in order to derive interpretable results. This was because they varied, to 

some extent, in the number of predictors retained in the final models. Therefore, in 

order to clearly illustrate the main predictors of persistent depressive symptoms, a 

separate LR model was developed using the entire dataset with present outcomes 

(N=284). This used a backwards stepwise approach to predictor selection, 

sequentially excluding variables where the regression coefficient had an associated p 

value greater than 0.05. 

 



3. Results 

The ability of the models to predict depressive symptoms (PHQ-9 ≥10) at 12 months 

is shown in Table 1. 

Table 1. Predictive ability of logistic regression and extreme gradient boosting 

models in the test (validation) datasets according to mean accuracy metrics. 

Footnotes to Table 1: AUC – Area Under the Receiver Operative Characteristic Curve; PPV – Positive 

Predictive Value; NPV – Negative Predictive Value.

On average, in terms of Positive Predictive Value (PPV) value, 89% of those 

predicted by machine learning to have PHQ-9 scores above threshold at 12 months, 

actually did, compared to 78% using LR. Conversely, on average, the Negative 

Predictive Value (NPV) was superior for the LR approach (45% vs. 35%). However, 

the AUC values, an overall metric of the potential utility as a screening method, were 

statistically significantly higher for the ML approach compared to LR (p<0.0001). 

The XGBoosting process did not yield interpretable models as such. However, the 

output for each modelling run produced ‘importance’ metrics for the predictors. These 

provided an indication of the relative importance of the baseline variables in allowing 

the algorithm to predict the outcomes. The baseline SF-12 and PHQ-15 scale scores 

frequently featured in the top five variables ranked for importance. In contrast, the 

interpretable results of the LR built on the entire dataset with available outcomes 

(N=284) are shown in Table 2. Five variables at baseline had an independent, 

statistically significant (p<0.05) ability to predict persistence of depressive symptoms 

at 12 months. These included the reported degree of limitation of daily activities, as 

indicated by the response to item 3 of the EQ-5D. For every point scored on this 

question at baseline, the odds of persistent depressive symptoms, on average, 

almost quadrupled. Likewise, reporting the previous presence of feelings of guilt or 

worthlessness (MINI item ‘3e’) roughly more than tripled the odds of persistent 

Logistic Regression             
(95% confidence interval)

Extreme Gradient Boosting 
(95% confidence interval)

Accuracy 69% (68 -69%) 74% (74-74%)

AUC 0.67 (0.67 – 0.68) 0.72 (0.71 – 0.72)

Sensitivity 0.79 (0.79 – 0.79) 0.78 (0.78 – 0.79)

Specificity 0.43 (0.43 – 0.44) 0.56 (0.55 – 0.56)

PPV 0.78 (0.77 – 0.78) 0.89 (0.89 – 0.89)

NPV 0.45 (0.44 – 0.45) 0.35 (0.34 – 0.35)



depressive symptoms at one year follow-up. These effects were independent of the 

value of other predictor variables. 

Table 2. The results from a logistic regression predicting persistent depressive 

symptoms (PHQ ≥10) at 12 month follow-up from baseline characteristics in the 

CASPER control group participants with an outcome recorded (N=284).

Odds 
ratio

95% confidence 
interval

p 
value

Baseline GAD-7 total score 2.34 1.39 – 3.93 0.001

Baseline PHQ-9 total score 1.15 1.03 – 1.28 0.009

Baseline anhedonia 2.58 1.00 – 6.70 0.051

Previous ‘guilty’ or ‘worthless’ feelings (MINI 
item 3e)

3.33 1.45 – 7.65 0.005

Degree of problems with usual activities at 
baseline (EQ-5D item 3)

3.74 1.53 – 9.14 0.004

Footnote to Table 2: GAD-7 – Generalised Anxiety Disorder Assessment; PHQ-9 – Patient Health 

Questionnaire; MINI – Mini International Neuropsychiatric Interview; EQ-5D – EuroQol-5D. McFadden’s 

pseudo R2 for the model = 0.315.

Discussion

We observed that the predictive performance of the ML approach (mean AUC 0.72) 

was modestly superior to that of LR (mean AUC 0.67). Notably, the PPV for ML was 

considerably higher than LR, though at the expense of NPV. Prior research using the 

conventional approach of LR has developed predictive algorithms with AUCs 

between 0.71 – 0.79 (King et al., 2008). The average predictive performance using 

machine learning in this study was comparable to these previous models, despite 

being developed using a substantially smaller sample; 5000 patients in the prior 

research compared to fewer than 200 in the ‘training’ datasets used in this study.

This is the first study to predict persistent depression in older adults using a ML 

approach. A key strength was the use of demographic and ‘paper and pencil’ 

questionnaire data that could be collected in routine practice. In addition, the LR and 

ML-based predictive models were built and evaluated upon the same training and 

test datasets, ensuring a fair comparison between the approaches.



The key limitation was the use of the PHQ-9 scores as an indicator of persistent 

depressive symptoms, and whilst well validated (Kroenke et al, 2001), a clinical 

interview would have been preferable. The predictive performance of ML may have 

been improved using other approaches such as ‘deep learning’, which would have 

been more appropriate with larger datasets. In addition, despite the greater predictive 

ability of ML, it produces non-interpretable models and therefore LR is more 

appropriate to investigate the contribution of individual risk factors in depression. 

According to the results from the LR model built on the total dataset there were a 

number of key variables that significantly and independently predicted the likelihood 

of participants having significant depressive symptoms at 12 months. These included 

baseline anxiety and depressive symptoms, as well as reported functioning in 

relation to activities of daily living. The predictors used by the XGB machine learning 

models differed slightly, most commonly using the baseline health related quality of 

life (SF-12 PCS, SF-12 MCS), and baseline somatoform symptoms (PHQ-15). This is 

somewhat unsurprising as the methods use very different approaches to model 

building. Moreover, the overall LR model presented only included variables with 

independent and statistically significant predictive ability.  

The models were developed using baseline demographic data, and questionnaire 

data from a previous RCT that are not currently routinely collected in clinical practice. 

However, the XGB machine learning model consistently used scores from a relative 

small number of baseline characteristics, notably the SF-12 and PHQ-15. Moreover, 

single items, such as the presence of anhedonia or previous feelings of guilt or 

worthlessness were independent and relatively strong predictors of the outcome in 

their own right. This suggests that the quantity of data that would need to be 

collected in actual clinical practice in order to routinely implement such a predictive 

approach would be relatively modest. This may consist of four or five relatively short 

symptom questions and some key additional items, conceivably amounting to around 

20 minutes of completion time. In addition, the PPV value associated with the ML 

approach suggests that the ‘false positive’ rate would be only around 11% in this 

population. Depending on the specific service context this may or may not be 

acceptable. Nevertheless, our findings demonstrate that a ML approach to prediction 

may be superior to classical statistical methods even using relatively modestly sized 

datasets. The acceptability and utility of such algorithms in practice should be 

evaluated in future research. In particular it would be important to assess to what 



extent clinicians and patients acted on the predictions produced from such models, in 

order to impact outcomes. Certainly further research evaluating the feasibility and 

acceptability of such an approach is warranted by these findings.
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