
This is a repository copy of Supporting Critical Modes in AirTight.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/140762/

Conference or Workshop Item:
Harbin, James Robert orcid.org/0000-0002-6479-8600, Griffin, David Jack orcid.org/0000-
0002-4077-0005, Burns, Alan orcid.org/0000-0001-5621-8816 et al. (3 more authors) 
(2018) Supporting Critical Modes in AirTight. In: Workshop on Mixed Criticality, 11 Dec 
2018. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Supporting Critical Modes in AirTight

J. Harbin, D. Griffin, A. Burns, I. Bate, R.I. Davis and L.S. Indrusiak

Department of Computer Science, University of York, UK.

Abstract—The AirTight protocol supports mixed criticality
wireless traffic and temporal guarantees based on defined fault
models. In some systems, following a catastrophic failure, it is
necessary to communicate crucial data away from the site of
the failure in order to better understand (post-hoc) the reasons
why it occurred. To support this action it is necessary for a
mode change request to be propagated to all the non-failed
nodes in the system, and for these nodes to switch their
behaviour so that the crucial data is given high priority in its
use of the wireless network. This paper explains how AirTight
can support such a critical mode change. A uni-cast protocol is
utilised to flood the system with mode change messages, each
node then locally prioritizes its use of the available bandwidth
to support the defined UC (Ultra-Criticality) packet flows. An
aircraft engine control scenario is used to motivate the
requirements for the mode change protocol. Protocol-accurate
simulations are then used to illustrate and evaluate the
approach.

I. INTRODUCTION

AirTight [2] is a wireless protocol (built upon the physical

and MAC layers of IEEE 802.15.4) that supports

mixed-criticality real-time traffic between computational

nodes. With any wireless communication it is not realistic to

assume fault-free behaviour. Rather, as in other

considerations of fault tolerance, we require that certain

levels of performance are delivered when the likelihood and

severity of faults is bounded by what is referred to as a fault

model. We assume that the physical layer of the protocol

incorporates the usual methods of increasing resilience (for

example spectrum spreading), AirTight therefore supports

analysis that models the faults that manifest themselves as

unacknowledged frame transmissions at the MAC layer.

Within AirTight the run-time behaviour is controlled via

two-level scheduling. A system-wide slot table determines

when each node can transmit and when each node must be

open to receive (and on which channel). Local to each node

is a fixed-priority scheduler that determines which packets to

transmit when it has a transmission slot. An application

packet (or flow) consists of a small sequence of frames; and

it is assigned a criticality level [3]. As frames are transmitted

each node keeps a count of the number of its transmission

failures. When this number is below a defined limit, frames

are simply resent. But if this limit is reached, a local

critically mode change is made at the node and only the

more critical packets are transmitted.

With a system defined to have two criticality levels, HI

and LO, response-time analysis is used to verify that all

packet deadlines are met if a lower threshold on the number

of faults is satisfied. If this threshold is violated but a higher

threshold is satisfied then the analysis will establish that all

HI-critical packets are delivered by their deadlines. When

there are currently no further frames to transmit then the

node’s failure count is re-set to zero.

In this paper we extend the scope for AirTight by defining

the required behaviour of each node when there are more

faults than the higher threshold specified, or when there is a

functional mode change to the entire system brought about

by a severe failure or attack. Although AirTight is a uni-cast

protocol it uses a flooding scheme to communicate the

requirement for this mode change to all non-failed nodes in

the system. Each of these nodes then switches its local

criticality mode to Ultra-Critical, UC. This will impact the

set of local tasks that are executed and on the set of packets

that are communicated. Within the context of the

experienced failure, these tasks and packets may be ‘new’

(i.e. only occur in this UC mode), be existing HI-criticality

tasks/packets or even be LO-criticality tasks/packets that

have increased significance in the new mode.

II. ENGINE MALFUNCTION USE CASE

An aircraft engine is a harsh environment for electronics

and wireless communication in that there are a lot of moving

mechanical parts generating both interference and attenuating

radio signals. Nevertheless, wireless sensors have two

distinct advantages: (1) the sensors can be put deep inside

the engine where it is not feasible to have cabling; and (2) it

removes the weight and maintenance of cabling. The

difficulty of maintenance may also mean that the designer

may want to fit a number of replicas so replacement is not

necessary. Current engines have a number of sensors. With a

shift towards more intelligent control and monitoring, this

number will grow. Internal to the engine there are failures

that may affect the wireless communications but also may

affect the requirements of the system. For example, in the

case of a shaft break, there will be a significant amount of

mechanical damage, which may cause nodes to fail and may

lead to large pieces of material (including metal) being in

unanticipated positions.

External to the engine there are a number of controlled

interference sources, e.g. from the rest of the aircraft, and

un-controlled interference sources, e.g. high-intensity

radiated fields including lightning, mobile phones, laptops

etc. This leads to complex fault behaviour that cannot be

fully defined at design time. We therefore utilise a collection

of fault models (one per criticality level) that are, in

themselves, bounded. Finally, a number of parts of the

overall aircraft system (and logistical support equipment on

the ground) may want to use wireless communications and



as such the aircraft engine should be designed to share the

same parts of the spectrum especially as the whole aircraft

could have hundreds if not thousands of sensors.

A good example of the potential deployment of a wireless

communication media is within an aircraft engine for the

purposes of active health monitoring [4]. Figure 1 shows the

communication graph (black lines) for a 25-node wireless

network inspired by a possible engine monitoring system; it

is clear that the topology of this example is a 5-node

subsystem repeated 5 times. Actual data flows are shown as

blue arrows. While this may not entirely represent how

aircraft engines will ultimately use wireless communications,

it is representative. An aircraft engine has a limited amount

of space available to mount wireless sensors. In these places

there are opportunities to use energy harvesting, e.g. using

vibration, to power the nodes. Therefore in these locations

there will be a number of smart sensors (i.e. nodes)

monitoring different properties of the engine which will then

communicate with the rest of the engine via a signal

concentrator. Then, in one central location there will be the

traditional aircraft engine controls system (termed a FADEC

– Full Authority Digital Control system) that takes all the

signals, provides the primary control and monitoring, and

importantly provides the links to the Avionics Full-Duplex

Switched Ethernet (AFDX), i.e. the communications to the

rest of the aircraft.

We have used this 5-node subsystem to illustrate the

analysis associated with AirTight [2], and have validated this

analysis using a prototype network of 5 IEEE 802.15.4

compliant nodes. We also used a protocol-accurate in-house

simulator to evaluate AirTight’s performance and scalability

over the complete 25-node network. In total this network has

55 packet flows mapped to the 25 nodes; 25 of these flows

are defined to be of HI-criticality and 30 of LO-criticality.

In this paper we will use this example to illustrated how

AirTight supports the need for the criticality mode change

that would follow a significant mechanical failure, e.g. a

shaft break. A shaft break (or similar catastrophic failure) is

a very rare but not unknown event1. It is an interesting

example within the context of this work for two reasons.

Firstly, as the engine is effectively damaged beyond repair

then this event is rarely, and certainly not comprehensively,

investigated on a test rig which means if/when it does

happen for real there is a strong desire to get as much

engine data as possible into long-term storage for later

diagnosis and understanding. Secondly, from the point at

which the shaft break is detected, more complex control

algorithms are performed for a limited amount of time but

this extra functionality can be at the expense of some of the

“normal” functionality including that which is normally

HI-criticality. For these reasons, the shaft break mode change

can be modelled as follows: (i) the amount of data being

communicated from the smart sensors to long-term storage is

1An example is reported in https://www.nbcnews.com/storyline/airplane-
mode/faa-orders-a380-engine-inspections-after-midair-failure-emergency-
landing-n810341.

increased by a factor of, perhaps, 5; (ii) the time for which

the best-effort communications must be maintained is, for

example, 20 seconds; (iii) a percentage of nodes will be

randomly lost, e.g. 10%; (iv) as some nodes may be lost,

including those responsible for signal concentration and

communications to the airframe, some signals may need to

be sent to a number of sinks instead of just one; and (v) a

percentage of the “normal” HI-criticality messages will

become LO-criticality, e.g. 50%.

0

1

2

3

4

10

11

12

13

14

15

17

16

19

18

5

8

9

6

7

20

24

23

22

21

Fig. 1. Communication Graph of a 25 node Health Monitoring System

III. OVERVIEW OF AIRTIGHT

We assume a distributed system of nodes that can each

perform any combination of executing tasks, producing/

consuming data from sensors/tasks, writing to actuators and

relaying data packets to and from other nodes. The AirTight

protocol has the following basic properties (most of them

inherited from the parent standard IEEE 802.15.4):

• Peer-to-peer packet-switching communication between

tasks/nodes is the normal use of the network. Packets

are sent as one or more frames. Each successful frame

transmission is always acknowledged by the receiver

through the transmission of a short ACK frame.

• Multi-hop routing is required due to the limited

transmission range of each node.

• Buffers exist on each node to store frames in transit

(the size of the buffers required on each node can be

determined during the offline schedulability analysis).

• Nodes have line power or local harvesting, so energy

efficiency/battery life is not a limiting concern.

• Multiple frequency bands (channels) are available in

IEEE 802.15.4 (up to 16 in the 2.4GHz band) but a

node can only use one channel at a time.

• Node communications are represented by two graphs: the

communications graph and the interference graph:

– The communications graph C: if there is an edge

from A → B in C, then the two nodes can

communicate directly. This is required to be a

symmetric graph due to the necessity for an

acknowledgement to be returned to the sender, so

A → B implies B → A.

– The interference graph I: if there is an edge from

A → B in I, then a transmission from A will prevent

B from receiving a frame from any node other than

A on that channel at that time.



Note C is a subgraph of I: if A → B is in C then it will also

be in I.

It is assumed that the packets to be communicated have tight

timing constraints (i.e. deadlines). We also require that the

system supports applications of different levels of criticality.

AirTight is designed to balance efficiency and flexibility.

At the system level, its media access control is table-driven,

but at the node level it uses criticality-aware priority-based

frame scheduling. The protocol is based around the repeated

application of the slot tables which, in time, define the

activities of each node – either transmission or reception on

that channel, or null meaning no usage. The slot (or

scheduling) table (ST) consists of a series of slots. Each slot

is assigned to a node and can be used by that node to send a

single data frame on a designated channel. The slot also

accommodates the ACK frame of the respective receiver.

At each node, local scheduling decisions are made to

manage the use of the node’s slot allocation. We employ a

fixed-priority scheme. A set of FIFO queues (buffers), one

per priority level, are used to hold the frames that need to be

transmitted. Each normal flow has a unique priority and

hence a specific buffer. The frames from the same flow are

stored in the buffer in FIFO order. Whenever the node has a

slot available, it transmits the first frame in the highest

priority non-empty buffer. If an ACK is received the frame is

removed from the buffer; if no ACK is received, then the

frame remains in the buffer and is a candidate for

re-transmission when the next available slot for that node

becomes available.

AirTight is thus a two level protocol. A collection of slot

tables defines the usage of the wireless media. Each slot in a

table defines whether the node can transmit in that slot (and on

which channel if more than one channel is used), or whether

it should listen in that slot (and on which channel), or whether

it is off-duty. The collection of tables reflects the properties

of the communication and interference graphs.

The fundamental time unit of AirTight is the duration (S)

of a slot – the time it takes to communicate a single frame

of data and receive an ACK for that frame. In our prototype

implementation [2] a slot length of 10ms has been achieved.

All parameters of the application, the communication media

and the environment (e.g. the usual Ti, Ci, Di, table length,

fault models, etc.) are expressed as an integer number of slot

times.

A schedulable AirTight network supporting mode changes

is intended to support the following requirements:

• If there are no faults experienced by the system then all

packets will meet their deadlines.

• If the faults experienced by the system are no worse than

that implied by the LO-criticality fault model then all

packets will meet their deadlines. This is defined to be

the LO-criticality mode.

• If the faults experienced by the system are no worse

than that implied by the HI-criticality fault model then

all HI-criticality packets will meet their deadlines. This

is defined to be the HI-criticality mode.

• If the faults experienced by the system are worse than that

implied by the HI-criticality fault model then we assume

that this level of faults implies a permanent degradation

to the network and/or the control system it is supporting.

This is defined to be the Ultra-Critical (UC) mode, and

is the focus of this paper.

For this mixed-criticality behaviour response-time analysis

has been developed [2] that can be used to verify an

application. This analysis is itself based upon the approach

developed for mixed criticality task scheduling [1]; it is not

repeated here due to space limitations.

The application’s characteristics, together with the per

channel interference and communication graphs, and the

analysis developed for AirTight, are the inputs required to

construct the per channel slot tables. The simplest slot table

is one that has a single slot per node (with some slots being

used by more than one node if they are not linked in the

interference graph). More complex slot tables can be

constructed, via search techniques such as the use of Genetic

Algorithms that also take task placement and routing into

account. The use of these techniques to construct optimal, or

near optimal, slot tables forms part of future work and is not

considered further here.

IV. SUPPORTING CRITICAL MODE CHANGES

For ease of presentation we will assume that our system is

multi-hop and multi-domain, but single channel.

In the LO- or HI-criticality (i.e. not UC) mode of

operations each node (ni) will have a set of other nodes that

it sends messages to. Let this set be represented by Pi (for

partners). Clearly each member of Pi is linked to ni in the

communication graph, C. Let the larger set of nodes that ni

could communicate with be denoted by P
+

i . So P
+

i contains

all the partners of ni in C.

A mode change is triggered within ni by either an

application task that has identified a severe physical failure,

or attack, or the AirTight protocol stack having monitored

more frame communication failures than can be tolerated in

the HI-criticality mode; let this value be represented by

GHI . Node ni also undergoes a mode change if it receives

an authenticated ‘mode-change’ packet from another node.

This packet is then passed on to all members of P+

i .

In the protocol described in this paper, the slot table does

not change when the node switches to the UC mode. It is

possible to envisage a protocol in which a different slot table

becomes more appropriate in the UC mode. But to

coordinate the simultaneous switching of all nodes to a new

table is not without considerable difficulty. We therefore

explore in this work the expressive power of an approach

that retains the same slot table in this UC mode. This has

the advantage that the mode change can be communicated

across the system without the need for coordination. Of

course the initial (offline) construction of the slot table could

take into account the needs of the UC mode. For example, a

node that does not transmit any packets under normal

operation, and hence does not require a slot in the table,



could be assigned a slot so that it could contribute to the

communication of the critical mode change request.

Having recognised the need for a system-wide mode change

the node follows the following (initial phase) protocol:

• A single ‘mode-change’ packet of the highest local

priority is queued (buffered) ready to be sent to all

members of P
+

i . A distribution queue is initialised,

containing the members of P
+

i . This distribution queue

may optionally be sorted in such a way as to direct the

mode change message more quickly in a specific

direction.

• When transmitting the packet, its next-hop destination is

set to the node at the head of the distribution queue. If

the transmission is acknowledged successfully, the entry

at the head of the distribution queue is removed. If the

distribution queue is empty, then all peers have been

informed of the mode change, and the mode change

packet is deleted from its buffer.

• If a frame from one of these packets fails to be

acknowledged then the associated packet is not removed

from the buffer – this is the usual behaviour for

AirTight.

• If any frame fails to be sent to the same next-hop

destination GHI times (determined by the lack of an

acknowledgement), the next-hop destination is removed

from the distribution queue – the wireless link or

designated node is assumed to be permanently broken

as a result of the primary cause of the mode change.

• If node ni receives a ‘mode-change’ packet from nj

while it is already distributing its mode change, then nj

is removed from the distribution queue (if it is currently

present) – clearly nj does not need to be informed of

the mode change.

The above flooding behaviour ensures that all non-failed nodes

receive the mode change request within a bounded period of

time. The analysis developed for AirTight [2] can be used to

compute this value for various system failure scenarios (an

example is provided in the Evaluation section).

In the second phase of the protocol the packets associated

with the UC mode are queued and transmitted. These packets

arise from:

• Packets that are only sent in the UC mode (perhaps

emanating from local tasks that only execute in the UC

mode).

• HI-criticality packets that are relevant to UC mode;

perhaps with an increased number of frames and/or

alternative routes.

• LO-criticality packets that are relevant to UC mode;

perhaps with an increased number of frames and/or

alternative routes.

• UC packets that originate from other nodes and are being

routed through this node.

All UC packets are transmitted with a priority higher than

those used for the usual HI-criticality and LO-critically traffic.

It is assumed that there is a finite number of packets to be

communicated within the UC mode. Perhaps a single packet

per originating task (i.e. these tasks are single-shot rather than

recurrent). Analysis can again be used to determine how long

it will take for such flows to reach their destinations when

there are parts of the network unavailable and faults being

experienced in the operational parts. Of course if the network

is partitioned then it will not be possible to deliver the UC

packets unless each partition has a relevant sink.

In the UC mode if there are currently no UC packets to

transmit then other HI-criticality packets can be sent. They

would have lower priority and hence would not interfere

with newly arrived UC packets (from either the host node or

being forwarded from other nodes); in general they would

not however be guaranteed to arrive before their deadlines. It

is assumed that LO-criticality packets, other than those

promoted to UC, are not transmitted in the UC mode.

V. EVALUATION

In this section, we consider the evaluation of the AirTight

ultra-criticality mode change via simulation. The simulator is a

discrete event simulation which allows analysis of the latencies

of packet flows, and transmission of the mode change. It allows

various faults to be defined with different probabilities and

locations affected, and individual nodes to be disabled during

simulation. The simulator also supports GUI visualisation of

the network in the process of simulation, indicating the status

of the nodes and their transmission buffers.

In order to evaluate the performance of the protocol, it is

important to consider the length of time taken to deliver the

UC mode change packet throughout the network, and the UC

packets. In addition, we can also assess the impact upon the

delivery rates and deadlines of the originally present HI-critical

and LO-critical packets.

The case study described in Section II and our previous

AirTight work [2] is used for the evaluation.

The slot table size used in this example case study is 30,

which is equivalent to 5 copies of the 6-slot table used in

[2]. The example topology is shown in Figure 1. The

topology has been modified from that used in [2] by the

addition of a number of additional links from nodes 9 to 4,

14 to 2, 19 to 1 and 24 to 3 (and since links are symmetric,

the reverse). This provides additional redundancy which is

required for providing fault tolerance in the event of a shaft

break failure disconnecting the original primary wireless link.

The fault case selected for the experimental case study

models a shaft break event occurring in the upper right

section of the topology. Its effects upon the network are as

illustrated in Figure 2. Nodes 8 and 6 fail permanently and

the link from node 9 to node 3 is permanently disconnected.

This loss of nodes fits with the requirements for the mode

change in the aircraft case, in that a small proportion of the

network nodes and connection links are lost as a result of

the failure. The transmission of the UC mode change is

initiated by node 5, which is informed of the shaft break by

a reading from one of its directly connected sensors. Upon

entering UC mode, nodes 5, 7, 10, 15 and 20 begin



3

5

8

9

6

700to

4to

3

5

8

9

6

700to

4to

Normal Operation After Shaft Break

Fig. 2. Effects of the fault on the network (only the affected section shown)

executing a special processing task to gather logging data

about the shaft break failure. When this task completes,

these nodes transmit UC traffic – a data flow destined for

node 0 for the central module to convey the logged data.

In an emergency situation, it is important for the mode

change to be propagated across the network rapidly. The

time taken from the mode change event occurring to the

notification propagating across the network is considered in

this section. For each case, two metrics are used: the time

for the central node which has the wired link to the rest of

the network (identified as node 0) to be notified, and the

time for every node in the network to be notified. During the

flood propagation, the network is subject to different levels

of unrelated ‘normal’ faults, which manifest in a given

probability of a transmission failing. This probability is

uniform across the network, regardless of location. The

length of these fault bursts is increased in the series of

experiments performed.

The role of the simulator is to enable different scenarios

and fault models to be explored. Clearly this is much easier

to do with a simulator than a test-bed. One of the options

available with the simulator is to either simulate worst-case

fault behaviour, or to model fault arrivals via various

stochastic processes. Another choice is whether to assume

that each ‘link’ in the wireless network has dependent or

independent faults. For dependent behaviour a fault hits all

links at the same time - thus a routed message will perhaps

only suffer interference from faults on one of its hops. With

independent faults each hop could suffer this interference.

In the following examples of runs of the simulator we first

force the faults to occur at the ‘worst possible time’ but

assume faults are dependent. We then consider independent

but stochastically modeled faults.

Figure 3 demonstrates the increasing time taken for the

distribution of the mode change with increasing length of

transient faults. In all experiments time is measured in

numbers of slots.

For this experiment, the probability of transmitted data

packets being interfered with during the fault interval is

100% - it is assumed, for a worst case, that the transient

fault is completely destructive of ongoing traffic. Obviously,

the time taken to inform the central node 0 is lower than the

time taken to inform every node within the network. It is

notable that as the fault length is increased, several

discontinuities occur in which the elapsed time required to

propagate the mode change increases suddenly. These occur

as a result of the interaction between the periodic scheduling

table of AirTight and the fault definition.

In this experiment the distribution queues which control

the order for transmission of the mode change messages are

setup to direct the mode change messages towards the

central node 0. We found that this static property almost

halved the delivery time by comparison with an arbitrary

ordering of the distribution queues.

0 20 40 60 80 100 120
0

100

200

300

400

500

Fault length in slots (periodic every 500 slots)

T
im

e
 r

e
q
u
ir
e
d
 i
n
 s

lo
ts

Timing in slots to propagate the ultra-HI crit. mode change throughout the CPS - SORTING

Mode change reaching node 0

Mode change reaching all nodes

Fig. 3. Timing with ordered queues

Assuming the mode change in this case study represents

an aircraft engine shaft break, a number of actions would be

required in order to respond to the mode change. Firstly, we

would assume that the network node detecting and signalling

the mode change would have to perform some processing to

determine the nature and effects of the fault that triggered

the mode change. Then it would communicate with its

coordinator node 0, transmitting some UC traffic in order to

transmit additional data via a multi-hop route. Also, the

other central nodes from each of the functional regions

illustrated in Figure 1 (nodes 10, 15 and 20) would, on

receiving the communicated mode change, determine the

control effects which are necessary and then transmit the

relevant data back to node 0. Given that these

communication data flows could involve instructions to other

engines that detail how they would have to respond to

compensate, this would be transmitted at the highest priority

after the mode change itself.

We now consider the latencies involved in the transmission

of this ultra-criticality (UC) data traffic. Five UC data flows

are activated, referred to as UC1 to UC5.

Figure 4 shows the latencies experienced for the 5 UC data

flows, indicating the time following their injection into the

network for the complete packets to reach their destination at

node 0. It is assumed in Figure 4 that the processing delay to

generate UC traffic is very short, effectively less than a single

table, so the packets are ready to be transmitted and present in

the buffer the next time the source node has a transmission slot.



0 10 20 30 40 50 60
0

200

400

600

800

Fault length in slots (periodic every 500 slots)

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 o

f 
c
o
m

p
le

te
 m

e
s
s
a
g
e

Timing in slots to transmit UC traffic to node 0 - SORTING

End-to-end latency for UC1

End-to-end latency for UC2

End-to-end latency for UC3

End-to-end latency for UC4

End-to-end latency for UC5

Fig. 4. Latencies for UC data transmission

However, since UC flood packets (with the highest priority)

are present in the network, the generated UC data will not be

immediately transmitted.

The data series for the latency values is generated by

varying the transient fault length which occurs in the

network. These faults are assumed to begin immediately

upon the mode change, i.e. upon the injection of the UC

data traffic. The period of the faults is 500 slots, and the

faults are assumed to recur at the beginning of this interval,

network-wide (that is, all links in the network are affected

simultaneously).

Since flows UC1 and UC2 share a majority of the same

route, it is as expected that UC2 has a higher latency than

UC1. UC3 and UC4 have disjoint routes, so they do not

mutually interfere with each other, and achieve broadly the

same latency even though they have different injection times.

UC5 experiences the highest latencies since it may receive

interference from UC1 and UC2 (due to their requirement to

route via node 4).

We now show a result from simulating independent faults

that arrive stochastically. Clearly many different arrival

patterns can be experimented with. Faults hitting each link of

a routed message are likely to be rare; but should

nevertheless be investigated. In the following experiment

each link experiences a fault that arrives randomly between

the arrival of the UH mode change packet and that time plus

the table length. So this packet can potentially propagate

through the network without interference from faults but the

probability of it suffering multiple faults is not negligible.

Figure 5 shows a set of box plot results for increasing

durations of faults. For each fault duration 1000 simulations

were undertaken. Also shown on this figure is the analytical

upper bound calculated using the analysis reported in

previous work on AirTight [2]. Note, as expected, the

longest propagation time observed in the simulation

experiments is less than this bound.

10 20 30 40 50 60 70 80 90
Fault length in slots

0

50

100

150

200

250

300

350

400

Tr
an
sm

iss
io
n 
la
te
nc
y 
in
 sl
ot
s t
o

 d
el
iv
er
 U
C 
m
od
e 
ch
an
ge
 to

 n
od
e 
0

Simulation results (as boxplots)
Analytic bounds for fault length

Fig. 5. Latencies for UC Mode Change Message

VI. CONCLUSION

In a CPS system, a permanent fault may occur in such a way

as to require a different protocol response from those normally

assumed in the case of transient faults, such as retransmission

and alternative routes. Specifically, it may require a functional

mode change to be signalled throughout the network in order

to inform the entire system of an emergency situation, as well

as triggering the dropping of LO-criticality work. This paper

has demonstrated the modification of the AirTight protocol in

order to support these more challenging fault scenarios, with

only a minor modification of the logic for data distribution

at the highest priority level. The timing characteristics of this

mode change data and associated logging traffic have been

investigated via simulation to demonstrate its performance in

the presence of a variety of fault intensities.

Acknowledgements

The research described in this paper is funded, in part, by

the EPSRC grants MCCps (EP/P003664/1). No new primary

data were created during this study.

REFERENCES

[1] S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In Proc. IEEE Real-Time Systems Symposium (RTSS),
pages 34–43, 2011.

[2] A. Burns, J. Harbin, L.S. Indrusiak, I. Bate, R.I. Davis, and D. Griffin.
Airtight – a resilient wireless communication protocol for mixed-
criticality systems. In Proc. RTCSA, 2018.

[3] S. Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proc. of the IEEE Real-Time

Systems Symposium (RTSS), pages 239–243, 2007.
[4] X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, and J.L

Rose. Active health monitoring of an aircraft wing with embedded
piezoelectric sensor/actuator network: I. defect detection, localization and
growth monitoring. Smart Materials and Structures, 16(4):1208, 2007.


