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We study the wave propagation on a magnetohydrodynamic contact discontinuity. Using the

Laplace transform, we obtain the solution to the initial value problem describing the evolution of a

perturbation of the discontinuity. We use this solution to study the leaky modes that determine the

asymptotic behaviour of the solution for large time. We find the approximate expressions

describing the leaky modes for a small inclination angle of the magnetic field. We also discuss the

transition to the tangential discontinuity as the inclination angle tends to zero. We show that there

is no continuous transition from the leaky modes on a contact discontinuity to the surface modes on

a tangential discontinuity. However, such a transition exists if we take the average quantities

describing the leaky modes. Published by AIP Publishing. https://doi.org/10.1063/1.5050591

I. INTRODUCTION

Observations on board space satellites as early as the

Skylab mission clearly showed that the solar atmosphere is

highly inhomogeneous and dynamic. The results of these

observations were presented in numerous reviews.1–9 In par-

ticular, the magnetic field in the photosphere and lower part

of chromosphere is concentrated in magnetic flux tubes

where it has the magnitude up to a few kilogauss. Typical

examples of such magnetic flux concentrations are sun spots.

In the higher parts of the solar atmosphere (the upper part

of the chromosphere and the corona), the magnetic pressure

strongly dominates the plasma pressure. This prevents the

strong concentration of the magnetic flux. However, the plasma

density in the upper part of the solar atmosphere is highly inho-

mogeneous, which results in the existence of narrow layers

with fast variation of the Alfv�en speed. Plasmas with highly

variable Alfv�en speed are called magnetically structured.10

The discovery of magnetic structuring of the solar atmo-

sphere boosted the interest of theorists in studying waves in

magnetically structured plasmas. It was further enhanced by

the discovery of the ubiquitous presence of waves and oscilla-

tions in the solar atmosphere made on board of space missions

over the last two decades.11–24 A new branch of solar physics

called solar atmospheric seismology started to emerge fast.25–35

The simplest magnetic structure is a single magnetic

interface, which is a particular case of tangential magnetohy-

drodynamic (MHD) discontinuity with the zero plasma

velocity at both sides. Recall that in tangential MHD discon-

tinuity, the magnetic field is parallel to the surface of the dis-

continuity at both sides. The wave propagation on a

magnetic interface was extensively studied in both the lin-

ear10,36–38 and nonlinear39–44 regimes.

However, in the solar atmosphere, there are discontinu-

ities with the magnetic field not parallel to their surfaces.

These are contact MHD discontinuities with the properties

very much different from those of tangential MHD disconti-

nuities. The only two quantities that are allowed to have

jumps at a contact MHD discontinuity are the density and

temperature. Contact MHD discontinuities can be considered

as simplified models of, for example, sunspot penumbra,

solar prominences, and transition region.

The wave propagation at contact discontinuities was

studied by Malara et al.45 However, these authors considered

the interaction of waves incoming to a contact discontinuity

from infinity and calculated the coefficients of transmission

and reflection. Recently, the MHD wave propagation along a

contact discontinuity has been studied by Vickers et al.46

using an eigenmode technique. It was found that because of

the inclination of the magnetic field, only leaky waves are

supported by the interface, so surface waves are attenuated

without any damping mechanism present. In this paper, we

study the temporal development of propagating surface

waves on MHD contact discontinuities, after an initial per-

turbation of the interface.

This paper is organised as follows. In Sec. II, we formu-

late the problem and present the governing equations and

boundary conditions. In Sec. III, we use the Laplace transform

to obtain the solution to the initial value problem describing

the evolution of the discontinuity perturbation. In Sec. IV, we

calculate the leaky modes describing the asymptotic behaviour

of the solution to the initial value problem at large time. In

Sec. V, we consider the case of small inclination angle and

study the transition to the tangential discontinuity as the incli-

nation angle tends to zero. The time evolution of initial pertur-

bations is investigated in Sec. VI. Section VII contains the

summary of the obtained results and our conclusions.

II. PROBLEM FORMULATION AND GOVERNING
EQUATIONS

We consider surface waves on a contact magnetohydro-

dynamic discontinuity in an incompressible ideal plasma. Ina)E-mail: M.S.Ruderman@sheffield.ac.uk
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the equilibrium state, the plasma is at rest and the magnetic

field is unidirectional and has constant magnitude. In

Cartesian coordinates x, y, z, the magnetic field is defined by

B ¼ Bðcos h; 0; sin hÞ. Without loss of generality, we can

assume that h > 0. The density is piece-wise constant and

equal to q1 in z< 0 and q2 in z> 0. The plasma motion is

described by the system of linearised ideal MHD equations

r � v ¼ 0; (1)

q
@v

@t
¼ �rPþ 1

l0
ðB � rÞb; (2)

@b

@t
¼ ðB � rÞv; r � b ¼ 0; (3)

where v is the velocity, b is the magnetic field perturbation,

l0 is the magnetic permeability of free space, P ¼ p

þB � b=l0 is the total pressure perturbation, and p is the

perturbation of plasma pressure. Taking the divergence of

Eq. (2), we obtain

r2P ¼ 0: (4)

The variables v, b, and P must be continuous at z¼ 0. Below

we consider a planar problem and assume that the perturba-

tions are independent of y, and the y-components of the

velocity and magnetic field perturbation are zero, so v ¼ (u,

0, w) and b ¼ (bx, 0, bz).

It is worth noting that the approximation of incompress-

ible plasma is definitely not applicable to waves in the chro-

mosphere and corona where the plasma-beta is either

moderate or small. It only can be applied, with some reserva-

tions, to waves in the solar photosphere. However, the aim of

this article is not to obtain results directly applicable to solar

physics, but rather to study the main properties of waves

propagating on a contact MHD discontinuity, and also to

clarify similarities and differences in properties of waves

propagating on contact and tangential MHD discontinuities.

III. SOLUTION TO THE INITIALVALUE PROBLEM

Since the domain where we consider the wave propaga-

tion is unbounded in the x-direction, and the equilibrium

quantities are independent of x, we can take the perturbations

of all quantities proportional to exp ðikxÞ, where k is real and
positive. Then, the system of Eqs. (1)–(4) reduces to

q
@w

@t
¼ � @P

@z
þ B

l0

@bz
@z

sin hþ ikbz cos h

� �

; (5)

@w

@z
þ iku ¼ 0; (6)

@bz
@t

¼ B
@w

@z
sin hþ ikw cos h

� �

; (7)

@bz
@z

þ ikbx ¼ 0; (8)

@2P

@z2
� k2P ¼ 0: (9)

We introduce the Laplace transform with respect to time

f̂ ðxÞ ¼
ð1

0

f ðtÞeixtdt: (10)

It is defined in the upper half of the complex x-plane.

Applying the Laplace transform to Eqs. (5)–(9) yields

ixŵ ¼ 1

q

@P̂

@z
� V2

A

B

@b̂z
@z

sin hþ ikb̂z cos h

� �

� w0; (11)

@ŵ

@z
þ ikû ¼ 0; (12)

ixb̂z ¼ �B
@ŵ

@z
sin hþ ikŵ cos h

� �

� bz0; (13)

@b̂z
@z

þ ikb̂x ¼ 0; (14)

@2P̂

@z2
� k2P̂ ¼ 0; (15)

where VA ¼ B=
ffiffiffiffiffiffiffiffi

l0q
p

is the Alfv�en speed, and w0(z) and

bz0(z) are the values of w and bz at t¼ 0. Note that q1V
2
A1

¼ q2V
2
A2 ¼ qV2

A, where the subscripts 1 and 2 indicate that

the quantity is calculated in z< 0 and z> 0, respectively.

The solution to the system of Eqs. (11)–(15) must vanish as

jzj ! 1.

Eliminating bz from Eqs. (11) and (13) yields

V2
A

@2ŵ

@z2
sin2 hþ ikV2

A

@ŵ

@z
sin 2hþ ðx2 � k2V2

A cos
2 hÞŵ

¼ ixw0 � V2
AFðzÞ �

ix

q

dP̂

dz
; (16)

FðzÞ ¼ 1

B

@bz0
@z

sin hþ ikbz0 cos h

� �

: (17)

To simplify the analysis, we take bz0(z) ¼ 0, so F(z) ¼ 0.

The solution to Eq. (15) vanishing at infinity and contin-

uous at z¼ 0 is

P̂ ¼ AðxÞ ekz; z < 0;

e�kz; z > 0;

(

(18)

where A(x) is an arbitrary function. Now, we look for the

solution to Eq. (16). This solution must be continuous at

z¼ 0. Moreover, since u must be continuous at z¼ 0, it fol-

lows from Eq. (12) that @ŵ=@z also must be continuous at

z¼ 0. Using Eq. (18) and the method of variation of arbitrary

constants, we obtain the general solution to Eq. (16)

ŵ ¼ 1

2VA sin h

ðz

0

w0ðz0Þ eikþðz�z0Þ � eik�ðz�z0Þð Þdz0

þAþe
ikþz þ A�e

ik�z7
ikxAe6kz

qðx2 � k2V2
Ae
72ihÞ ; (19)

where Aþ(x) and A�(x) are arbitrary functions, the upper

and lower signs correspond to z< 0 and z> 0, respectively,

and
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k6 ¼ �kVA cos h6x

VA sin h
: (20)

Since we assume that x is in the upper part of the x-plane, it

follows that <ðikþÞ < 0 and <ðik�Þ > 0, where < indicates

the real part of a quantity.

Now, we use the condition that ŵ ! 0 as jzj ! 1.

For simplicity, we assume that w0(z) has finite support

meaning that there is such zm that w0(z) ¼ 0 for jzj � zm.

This condition guarantees the convergence of the integral

in Eq. (19). When z< 0, the asymptotic behaviour of ŵ for

large jzj is

ŵ � eik1þz A1þ � 1

2VA1 sin h

ð0

�1
w0ðzÞe�ik1þzdz

 !

: (21)

It follows from this result that, in order to have ŵ ! 0 as z

! –1, we must take

A1þ ¼ 1

2VA1 sin h

ð0

�1
w0ðzÞe�ik1þzdz: (22)

In a similar way, using the condition that ŵ ! 0 as z ! 1,

we obtain

A2� ¼ 1

2VA2 sin h

ð1

0

w0ðzÞe�ik2�zdz: (23)

It follows from Eqs. (19), (22), and (23) that

ŵ ¼ eik1�z A1� � 1

2VA1 sin h

ðz

0

w0ðz0Þe�ik1�z0dz0
� �

� eik1þz

2VA1 sin h

ðz

�1
w0ðz0Þe�ik1þz0dz0

� ikxAekz

q1ðx2 � k2V2
A1e

�2ihÞ (24)

for z< 0, and

ŵ ¼ eik2þz A2þ þ 1

2VA2 sin h

ðz

0

w0ðz0Þe�ik2þz0dz0
� �

þ eik2�z

2VA2 sin h

ð1

z

w0ðz0Þe�ik2�z0dz0

þ ikxAe�kz

q2ðx2 � k2V2
A2e

2ihÞ (25)

for z> 0. Using the condition that w and @w/@z must be con-

tinuous at z¼ 0, and Eqs. (24) and (25) yield

A2þ þ ikxA

q2ðx2 � k2V2
A2e

2ihÞ þ
1

VA2 sin h

ð1

0

w0ðzÞe�ik2�z dz

¼ A1� � ikxA

q1ðx2 � k2V2
A1e

�2ihÞ

þ 1

2VA1 sin h

ð0

�1
w0ðzÞe�ik1þz dz; (26)

k2þA2þ � k2xA

q2ðx2 � k2V2
A2e

2ihÞ

þ k2�
2VA2 sin h

ð1

0

w0ðzÞe�ik2�z dz

¼ k1�A1� � k2xA

q1ðx2 � k2V2
A1e

�2ihÞ

þ k1þ
2VA1 sin h

ð0

�1
w0ðzÞe�ik1þz dz: (27)

Equations (26) and (27) constitute a system of linear alge-

braic equations for A� and Aþ. Solving this system, we

obtain

A1� ¼ kAVA1VA2 sin h

VA1 þ VA2

�

ik2þ þ k

q2ðx2 � k2V2
A2e

2ihÞ

þ ik2þ � k

q1ðx2 � k2V2
A1e

�2ihÞ

�

þ 1

ðVA1 þ VA2Þ sin h

�

VA1

VA2

ð1

0

w0ðzÞe�ik2�z dz

þVA2 � VA1

2VA1

ð0

�1
w0ðzÞe�ik1þz dz

�

; (28)

A2þ ¼ kAVA1VA2 sin h

VA1 þ VA2

�

ik1� þ k

q2ðx2 � k2V2
A2e

2ihÞ

þ ik1� � k

q1ðx2 � k2V2
A1e

�2ihÞ

�

þ 1

ðVA2 þ VA1Þ sin h

�

VA2

VA1

ð0

�1
w0ðzÞe�ik1þz dz

þVA1 � VA2

2VA2

ð1

0

w0ðzÞe�ik2�z dz

�

: (29)

We still must satisfy the condition that the magnetic field per-

turbation is continuous at z¼ 0. Since both w and @w/@z are
continuous at z¼ 0, it follows from Eq. (7) that bz is continu-

ous at z¼ 0. Then, since bx is continuous at z¼ 0, it follows

from Eq. (8) that @bz/@z is continuous at z¼ 0. Using Eqs.

(24) and (25), we obtain from Eq. (13) the expressions for bz

b̂z ¼
ibz0

x
þ ik2BAekz�ih

q1ðx2 � k2V2
A1e

�2ihÞ þ
Beik1�z

VA1

� A� � 1

2VA1 sin h

ðz

0

w0ðz0Þe�ik1�z0dz0
� �

� Beik1þz

2V2
A1 sin h

ðz

�1
w0ðz0Þe�ik1þz0dz0; (30)

when z< 0, and

b̂z ¼
ibz0

x
� ik2BAe�kzþih

q2ðx2 � k2V2
A2e

2ihÞ �
Beik2þz

VA2

� Aþ þ 1

2VA2 sin h

ðz

0

w0ðz0Þe�ik2þz0dz0
� �

þ Beik2�z

2V2
A2 sin h

ð1

z

w0ðz0Þe�ik2�z0dz0; (31)

when z> 0. Then, the condition of continuity of @bz/@z at

z¼ 0 is written as
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k1�A1�
VA1

þ k2þA2þ
VA2

þ k3A

�

e�ih

q1ðx2 � k2V2
A1e

�2ihÞ

� eih

q2ðx2 � k2V2
A2e

2ihÞ

�

þ iw0ð0Þ
sin h

1

V2
A2

� 1

V2
A1

� �

¼ 1

2 sin h

�

k1þ
V2
A1

ð0

�1
w0ðzÞe�ik1þz dz

þ k2�
V2
A2

ð1

0

w0ðzÞe�ik2�z dz

�

: (32)

Using Eqs. (28) and (29), we obtain from this equation

AðxÞ ¼ HðxÞGðxÞ
kDðxÞ ; (33)

where

DðxÞ ¼ ðq1 þ q2Þx2 þ 2ikxðq1VA1 þ q2VA2Þ sinh� 2qV2
Ak

2;

(34)

HðxÞ ¼ q1q2ðVA2 � VA1Þ � ðx� kVA1e
�ihÞðxþ kVA2e

ihÞ;
(35)

GðxÞ ¼ ix

sin h

ð0

�1

w0ðzÞ
V2
A1

e�ik1þz dzþ
ð1

0

w0ðzÞ
V2
A2

e�ik2�z dz

 !

þ w0ð0Þ
1

VA1

þ 1

VA2

� �

: (36)

We introduce the notation Q(t) ¼ P(t, z¼ 0). It follows from

Eq. (18) that A(x) is the Laplace transform of Q(t). Then

QðtÞ ¼ 1

2p

ði1þ1

i1�1

HðxÞGðxÞ
kDðxÞ e�ixtdx; (37)

where 1 is chosen in such a way that the integration line is

above all singularities of the integrand. Using Eqs. (12)–(14)

and (19), we can calculate the Laplace transforms of the

velocity and magnetic field perturbations and determine their

dependence on time.

IV. SURFACE AND LEAKY WAVES

In this section, we study the asymptotic behaviour of the

solution for large t. Since we assume that w0(z) is a function

with finite support, it follows that A(x) is defined on the

whole complex x-plane. It is a meromorphic function that

has two poles coinciding with the zeros of D(x). These zeros

are equal to x6 ¼ 6xr � ic, where

xr ¼
q1=2kVA

q1 þ q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
1=2
1 � q

1=2
2

� �2

þ q
1=2
1 þ q

1=2
2

� �2

cos2h

r

;

(38)

c ¼ kðq1VA1 þ q2VA2Þ sin h
q1 þ q2

: (39)

Hence, we must take 1 > �c, for example, 1 ¼ � 1
2
c.

It is shown in Appendix A that

QðtÞ ¼ e�ct Sþe
�ixr t � S�e

ixr t
� �

when t � tm; (40)

where

S6 ¼ � iHðx6ÞGðx6Þ
2kxrðq1 þ q2Þ

; (41)

tm ¼ zm

sin h
max

1

VA1

;
1

VA2

� �

: (42)

Recalling that perturbations of all quantities are proportional

to eikx, we see that the first and second terms in the brackets

on the right-hand side of Eq. (40) describe the waves propa-

gating with the phase speed xr/k in the positive and negative

x-directions, respectively. We also see that the perturbations

damp with the decrement c.

The expression for w is obtained in Appendix B. It reads

w ¼ ws þ wl; (43)

where

ws ¼ e�ct
ekzðe�ixr tU1þ � eixr tU1�Þ; z < 0;

e�kzðe�ixr tU2þ � eixr tU2�Þ; z > 0;

(

(44)

wlðt; zÞ ¼ e�ct

�
	

e�ixr tW1þ exp � cþ iðkVA1 cos hþ xrÞ½ �z
VA1 sin h

� �

�eixr tW1� exp � cþ iðkVA1 cos h� xrÞ½ �z
VA1 sin h

� �


(45)

for z< 0, and

wlðt; zÞ ¼ e�ct

�
	

e�ixr tW2þ exp
c� iðkVA2 cos h� xrÞ½ �z

VA2 sin h

� �

�eixr tW2� exp
c� iðkVA2 cos hþ xrÞ½ �z

VA2 sin h

� �


(46)

for z> 0, where U16, W16, U26, and W26 are given by Eqs.

(B17), (B18), (B20), and (B21), respectively.

We note that ws decays exponentially as jzj ! 1, which

implies that it corresponds to surface waves. If we restore

the x-dependence, we can see that the terms proportional to

U1þ and U2þ describe the wave propagating in the positive

x-direction, while the terms proportional to U1– and U2–

describe the wave propagating in the negative x-direction.

Equation (45) is only valid when

t � tm and z � �tVA1 sin h; (47)

while Eq. (46) is only valid when

t � tm and z � tVA2 sin h: (48)

We note that the terms proportional to W1þ and W1– grow

exponentially as jzj increases. This is a typical behaviour for
leaky modes.

Recalling that the perturbations of all quantities are pro-

portional to eikx, we conclude that the terms proportional to
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U1þ and U1– in Eq. (45) describe the waves propagating in

the positive and negative x-directions, respectively.

Restoring the x-dependence, we can write the term propor-

tional to W1þ as

W1þ exp �c tþ z

VA1 sin h

� �

� iðxr � kxx� kzzÞ
	 


; (49)

where

kx ¼ k; kz ¼ � kVA1 cos hþ xr

VA1 sin h
: (50)

Hence, the expression given by Eq. (49) describes a wave

propagating in both the x and z-directions. It follows from

Eq. (50) that the dispersion equation for this wave is

xr ¼ �VA1ðkx cos hþ kz sin hÞ: (51)

Then, the group velocity of this wave is vg ¼ �VA1B/B that

is anti-parallel to the equilibrium magnetic field. Since the

wave energy propagates with the group velocity, we con-

clude that it propagates in the direction anti-parallel to the

equilibrium magnetic field, which is away from the interface

as it should be expected. In a similar way, we can show that

the term proportional to W1– also describes the wave with

the energy propagating away from the interface. Since cz

< 0, it follows that the absolute values of the terms propor-

tional to W1þ and W1– grow exponentially as jzj ! 1.

Repeating this analysis, we show that the terms propor-

tional to U2þ and U2– describe the waves propagating in the

positive and negative x-directions, respectively. The absolute

values of the terms proportional to W2þ and W2– grow expo-

nentially when z increases. They describe two waves propa-

gating in both the x and z-directions. Their group velocity is

parallel to B meaning that the wave energy propagates away

from the interface as it should be.

Let us take t 	 c�1. The increment of wl with respect to

z is c=VA sin h. Since ws is exponentially small for t 	 c�1,

practically the whole wave energy is stored in the leaky

waves, and, in turn, in the leaky waves it is concentrated in

the regions defined by VAðt� c�1Þ sin h� jzj � tVA sin h. We

do not write the indices 1 and 2 because this analysis is valid

for both z< 0 and z> 0. It follows from Eqs. (45) and (46)

that the wave amplitude does not change in these regions

with time. Since the wave energy is proportional to the wave

amplitude squared, we conclude that the wave energy propa-

gates without damping along the magnetic field lines away

from the interface.

V. THE LIMIT OF SMALL h

We now assume that h 
 1. Then, it follows from Eqs.

(38) and (39) that

xr ¼ kCk þOðh2Þ; c ¼ kChþOðh3Þ; (52)

where

C2
k ¼

2qV2
A

q1 þ q2
; C ¼ q1VA1 þ q2VA2

q1 þ q2
: (53)

It is shown in Appendix C that

GðxÞ ¼ � k2w0ð0ÞðVA1 þ VA2Þ
ðx� kVA1Þðxþ kVA2Þ

þ OðhÞ: (54)

Using Eqs. (52), (53), and (54), we reduce Eqs. (B17),

(B18), (B20), and (B21) to

U16 ¼ U26 ¼ 6 1

2
w0ð0Þ þ OðhÞ; (55)

W27 ¼ W16 ¼ ihw0ð0ÞCkðVA2 � VA1Þ
2ðCk6VA1ÞðCk6VA2Þ

þ Oðh2Þ: (56)

Substituting Eqs. (55) and (56) in Eqs. (45) and (46), we

obtain in the leading order approximation with respect to h

w ¼ e�ctw0ð0Þ cos ðkCktÞ
ekz; z < 0;

e�kz; z > 0:

(

(57)

Next, we obtain the expression for u. Using Eqs. (6), (45),

(46), (55), and (56) yields

u ¼ ~u þ �u; (58)

where

~u ¼ ie�ctw0ð0Þ cos ðkCktÞ
ekz; z < 0;

�e�kz; z > 0;

(

(59)

while �u is given by

�u ¼ iw0ð0ÞCkðVA2 � VA1Þ exp �ct� kzðC=VA1 þ i=hÞ½ �
2VA1

� exp �ikCkðtþ z=hVA1Þ½ �
Ck þ VA2

þ exp ikCkðtþ z=hVA1Þ½ �
Ck � VA2

� �

(60)

for z< 0, and by

�u ¼ iw0ð0ÞCkðVA2 � VA1Þ exp �ctþ kzðC=VA2 � i=hÞ½ �
2VA2

� exp �ikCkðt� z=hVA2Þ½ �
Ck � VA1

þ exp ikCkðt� z=hVA2Þ½ �
Ck þ VA1

� �

(61)

for z> 0. Now, using Eqs. (6), (7), and (57) we obtain the

similar expressions for the components of the magnetic field.

They are given by Eqs. (C3)–(C7).

We now compare the expressions for the leaky modes

and those for surface waves propagating on a tangential dis-

continuity. We obtain this tangential discontinuity by taking

h ! 0. Below we use the subscript “t” to indicate quantities

corresponding to the surface wave on the tangential disconti-

nuity. It is straightforward to show that

wt ¼ lim
h!0

w; bzt ¼ lim
h!0

bz; ut ¼ lim
h!0

~u; bxt ¼ lim
h!0

~bx: (62)

Since �u =! 0 and �bx =! 0 as h ! 0, we conclude that

u =! ut and bx =! bxt as h ! 0. Hence, only w and bz
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tend to the corresponding quantities in a tangential dis-

continuity, while u and bx do not. This implies that there

is no continuous transition from the leaky mode on the

contact discontinuity to the surface wave on the tangen-

tial discontinuity.

We now introduce a different definition of continuous

transition. When h 
 1, the z-dependence of u and bz is

highly oscillatory with the oscillation periods equal to

L1þ ¼ 2phVA1

kðCk þ VA1Þ
; L1� ¼ 2phVA1

kjCk � VA1j
(63)

for z< 0, and

L2þ ¼ 2phVA2

kðCk þ VA2Þ
; L2� ¼ 2phVA2

kjCk � VA2j
(64)

for z> 0. We introduce the average value of function f(z) as

hf i ¼ k

2h1=2

ðzþk�1h1=2

z�k�1h1=2
f ðz0Þ dz0: (65)

The choice of the averaging interval equal to k�1h1/2 is

somewhat arbitrary. Instead of h1/2, we can choose any quan-

tity that is much smaller than unity and much larger than h

when h 
 1. It is straightforward to obtain in the leading

order approximation

h~ui ¼ ie�ctw0ð0Þ cos ðkCktÞ
ekz; kz < �h1=2;

�h�1=2kz; kjzj � h1=2;

�e�kz; kz > h1=2:

8

>

>

<

>

>

:

(66)

After long but straightforward calculation we also obtain

again in the leading order approximation

h�ui ¼ 1

4
h1=2e�ctw0ð0ÞCkðVA2 � VA1Þ

!1; kz < �h1=2;

!t; kjzj � h1=2;

!2; kz > h1=2:

8

>

>

<

>

>

:

(67)

The quantities !1, !2, and !t are given in Appendix C. It

follows from this equation that, for any value of z, h�ui ! 0

as h ! 0. However, it also follows from the expressions for

!1 and !2 that maxzjh�uij ! 1 as jzj ! 1 while h is fixed.

Hence, the convergence of h�ui to zero is non-uniform with

respect to z. In the same way, it can be shown that hbxi ! bxt
as h ! 0, and again the convergence is non-uniform with

respect to z.

It follows from Eq. (66) that h~ui ¼ ~u ¼ ut for kz � h1/2.

Hence, hui ¼ h~ui þ h�ui ! ut as h ! 0 and z 6¼ 0.

Summarising, we can state that the difference between hui
and ut is on the order of h1/2 except for a transitional layer of

thickness on the order of h1/2 when h 
 1 and z is suffi-

ciently small. It follows from the expressions for !1 and !2

that the latter condition is equivalent to kjzj 
 1. Hence,

hui � ut for h
1=2
�kjzj 
 1.

In Fig. 1, the real and imaginary parts of u (solid lines)

and hui (dashed lines) are shown for h ¼ 0.001, q1/q2 ¼ 0.5,

and kCkt¼ 50p. For this moment of time, we have

cos ðkCktÞ ¼ 1. As we have already pointed out, u involves

two oscillation periods given by Eqs. (63) and (64). For the

particular parameters chosen to calculate u, we obtain

kL1þ � 0:00346; kL1� � 0:0342; kL2þ � 0:00290, and kL2–
� 0.0378. Since L1þ 
 L1– and L2þ 
 L2–, it follows that

the graphs of the real and imaginary parts of u contain short

and long period oscillations. The dashed curves for z< 0 do

not show strong oscillations with the short period, while

such oscillations have relatively large amplitude for z> 0.

This behaviour is related to the fact that, for the particular

FIG. 1. The real and imaginary parts

of u and hui for h ¼ 0.001, q1/q2 ¼
0.5, and kCt ¼ 50p. The solid lines

show hui and the dashed lines u. The

dotted lines show ut. The vertical solid

lines show the boundaries of the transi-

tional layer defined by kz ¼ 6h1/2.
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parameters chosen to calculate the dependences shown in

Fig. 1, the amplitude of short-period oscillations is much

smaller than that of the long-period oscillations for z< 0,

while the two amplitudes are on the same order for z> 0.

The dotted lines in the lower panel show the dependence of

=ðutÞ on z. There are no dotted lines in the upper panel

because <ðutÞ ¼ 0. We can see that hui is very close to ut
outside the transitional layer, that is, for kjzj > h1=2.

VI. TIME EVOLUTION OF INITIAL PERTURBATIONS

In order to find how solutions vary in the direction of the

wave propagation, we must perform an inverse Fourier trans-

form of the velocities. Since w(x, z, t) is real, we know that

w(–k, z, t) ¼ w*(k, z, t), where the asterisk denotes the complex

conjugate. By splitting the integral into positive and negative

ranges for k, we may rewrite the inverse Fourier transform as

wðx; z; tÞ ¼ 1

2p

ð1

0

eikxwðk; z; tÞ þ e�ikxw�ðk; z; tÞ
� �

dk: (68)

We consider the initial kink in the form of Lorentz function

and take at z ¼ 0

w0ðxÞ ¼
al

x2 þ l2
; (69)

where a> 0 and l> 0. The Fourier transform of this function is

w0ðkÞ ¼ pae�lk: (70)

Then, it follows from Eq. (57) that in the leading order with

respect to h

wðk; z; tÞ ¼ pa cos ðkCktÞ exp �kðjzj þ lþ hCtÞ½ �: (71)

After the straightforward calculation, we obtain

wðx; z; tÞ ¼ a

2
ðChtþ jzj þ lÞ

�
	

1

ðChtþ jzj þ lÞ2 þ ðCkt� xÞ2

þ 1

ðChtþ jzj þ lÞ2 þ ðCktþ xÞ2



: (72)

We see that, in contrast to the leaky modes, the solution to

the initial value problem decays as jzj ! 1, as it should be.

It is a superposition of two perturbations propagating in the

opposite directions with the phase speed Ck. Finally, the

solution decays with time as t�1. When l ! 0, we obtain l/

(x2 þ l2) ! pd(x), that is the initial condition in the form of

a concentrated pulse. In this case, the solution to the initial

value problem is given by

wðx; z; tÞ ¼ a

2
ðChtþ jzjÞ

	

1

ðChtþ jzjÞ2 þ ðCkt� xÞ2

þ 1

ðChtþ jzjÞ2 þ ðCktþ xÞ2



: (73)

Finally, we point out that to derive Eqs. (72) and (73),

we used Eq. (57) that is only valid when the conditions given

by Eqs. (47) and (48) are satisfied. Taking into account that

Eq. (57) is derived for h 
 1, we conclude that Eqs. (72) and

(73) are only valid for

t � zm

h
max

1

VA1

;
1

VA2

� �

; �thVA1 � z � thVA2: (74)

We recall that zm is determined by the condition that w0(z) ¼ 0

for jzj � zm, while there is such z 2 (–zm, zm) that w0(z) 6¼ 0.

VII. SUMMARYAND CONCLUSIONS

We studied the propagation of surface waves on a mag-

netohydrodynamic contact discontinuity in an incompress-

ible plasma. We assumed that at the initial moment of time

the surface is perturbed and then we solved the initial value

problem describing the evolution of this perturbation in time.

The solution was obtained using the Laplace transform with

respect to time and expressed in terms of the Bromwich

integral.

We calculated the asymptotics of the solution valid for

large time. In the case of tangential MHD discontinuity, the

asymptotics of an initial perturbation consists of two surface

waves with constant amplitudes propagating in the opposite

directions. These waves are eigenmodes of ideal MHD. In

contrast, in the case of contact discontinuity, the asymptotics

of the initial perturbation consists of two leaky modes. The

amplitudes of these modes exponentially decay with time

and exponentially increase with the distance from the contact

discontinuity, so they are not eigenmodes of ideal MHD.

Moreover, these modes only determine the asymptotics of

the solution to the initial value problem on a bounded inter-

vals z 2 (–tvA1, 0) below the discontinuity and z 2 (0, tvA2)

above the discontinuity. The properties of leaky modes are

similar to those of leaky modes related to kink oscillations of

a magnetic tube with the internal plasma density smaller

than that in the surrounding plasma.47

We obtained relatively simple approximate expressions

for the leaky modes in the case of small inclination angle h.

Using these expressions, we studied the limit h ! 0. We

found that the z-components of the velocity and magnetic

field perturbation tend to the corresponding expressions for

surface waves on tangential discontinuity. However, the x-

components of the velocity and magnetic field perturbation

do not tend to the corresponding expressions for surface

waves on tangential discontinuity. Hence, there is no contin-

uous transition from leaky waves on a contact discontinuity

to surface waves on a tangential discontinuity.

The leaky modes are characterised by highly oscillatory

behaviour in the z-direction that is orthogonal to the disconti-

nuity. The characteristic scale of this oscillation is hL, where

L is the wavelength in the direction parallel to the disconti-

nuity. We introduced quantities averaged with respect to z

over an interval of length 2k�1h1/2, where k¼ 2p/L. We

showed that the average quantities tend to corresponding

quantities in surface waves on a tangential discontinuity as h

! 0.

The solutions obtained in Secs. IV and V correspond to

the harmonic initial perturbation. We also found the solution
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describing the time evolution of an initial perturbation

described by the Lorentz function. It constitutes two counter-

propagating wave pulses. Their amplitudes decay both in

time and with the distance from the interface.

Finally we make a comment. We studied the one-

dimensional problem and assumed that the perturbations are

independent of the y-coordinate in Cartesian coordinates x,

y, z, and the y-components of the velocity and magnetic field

perturbation are zero. If we relax the latter assumption then,

in addition to the system of Eqs. (5)–(9) we obtain two equa-

tions for the y-components of the velocity and magnetic field

perturbation. These two equations are separated from the

system of Eqs. (5)–(9). Hence, the solution to this system of

equations remains the same, while the equations describing

the y-components of the velocity and magnetic field pertur-

bation can be solved separately. The solution to these equa-

tions is very simple. It describes the propagation of Alfv�en

waves along the magnetic field lines.

The situation is more involved when the perturbations

depend on y. In this case, the system of Eqs. (5)–(9) and the

equations describing the y-components of the velocity and

magnetic field perturbation are related through the solenoi-

dality conditions for the velocity and magnetic field, respec-

tively. We plan to study this problem in the future.
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APPENDIX A: DERIVATION OF EXPRESSION FOR Q(T)

In this appendix, we derive the expression for Q(t) valid

for sufficiently large t. Using the integration by parts, we

transform Eq. (36) to

GðxÞ ¼ G1ðxÞ þ
G2ðxÞ
sin h

; (A1)

where

G1ðxÞ ¼
kw0ð0Þ cos h

xþ kVA2 cos h
� kw0ð0Þ cos h
x� kVA1 cos h

þ ix

sin h

1

V2
A1k

2
1þ

� 1

V2
A2k

2
2�

 !

dw0

dz













z¼0

; (A2)

G2ðxÞ ¼ x
1

V2
A1k

3
1þ

� 1

V2
A2k

3
2�

 !

d2w0

dz2













z¼0

�eixt
�

x

V2
A1k

3
1þ

ð0

�1

d3w0

dz3
eij1z dz

� x

V2
A2k

3
2�

ð1

0

d3w0

dz3
eij2z dz

�

; (A3)

j1 ¼ �ðxtþ k1þzÞ ¼ kz cot h� x tþ z

VA1 sin h

� �

; (A4)

j2 ¼ �ðxtþ k2�zÞ ¼ kz cot h� x t� z

VA2 sin h

� �

: (A5)

We now consider a closed contour in the complex x-plane

shown in Fig. 2. We choose the radius R of the half-circle so

large that the zeros of D(x) are inside the contour. Using the

residual theorem, we obtain that the integral of the integrant

in Eq. (37) over this contour is equal to the sum of residuals

at the zeros of D times �2pi

ð

C
þ
ði1þR

i1�R

 !

HðxÞGðxÞ
kDðxÞ e�ixtdx

¼ �2pi

	

resx�
HðxÞGðxÞ
kDðxÞ e�ixt

� �

þ resxþ
HðxÞGðxÞ
kDðxÞ e�ixt

� �


; (A6)

where C stays for the half-circle. The residues in Eq. (A6)

are given by

resx6
HðxÞGðxÞ
kDðxÞ e�ixt

� �

¼ lim
x!x6

ðx� x6ÞHðxÞGðxÞ
kDðxÞ e�ixt

¼ 6iS6e
�ðc6ixrÞt; (A7)

where

S6 ¼ � iHðx6ÞGðx6Þ
2kxrðq1 þ q2Þ

:

Now, we calculate the limit of the integral over C in Eq. (A6)

as R! 1. Using the integration by parts yields

ð

C

HðxÞG1ðxÞ
DðxÞ e�ixtdx ¼ iHðxÞG1ðxÞe�ixt

tDðxÞ













i1þR

i1�R

� i

t

ð

C

d

dx

HðxÞG1ðxÞ
DðxÞ

� �

e�ixtdx:

(A8)

It is straightforward to see that G1ðxÞ ¼ OðR�1Þ and the

integrand in the integral on the right-hand side of this equa-

tion is on the order of R�2 for R	 1 and x 2 C. In addition,

FIG. 2. Sketch of contour in the complex x-plane used to derive Eq. (A6).

122107-8 Ruderman et al. Phys. Plasmas 25, 122107 (2018)



we have the estimates DðxÞ ¼ OðR2Þ and DðxÞ ¼ OðR2Þ
for R	 1 and x 2 C. Then, since je�ixtj � 1 it follows that

the left-hand side of Eq. (A8) tends to zero as R! 1.

Next, we consider the quantities j1 and j2. We recall

that w0(z) is assumed to be a function with the finite support

and w0(z) ¼ 0 when jzj � zm. On the other hand, w0(z) 6¼ 0 at

least at some points in the interval (�zm, zm). Since C is in

the lower half of the complex x-plane, <ðij1Þ � 0 for �zm
� z< 0 and <ðij2Þ � 0 for 0< z � zm simultaneously if and

only if

t � tm 
 zm

sin h
max

1

VA1

;
1

VA2

� �

:

When this inequality is satisfied, the two integrals on

the right-hand side of Eq. (A3) are bounded, G2ðxÞe�ixt

¼ OðR�2Þ for x 2 C, and
ð

C

HðxÞG2ðxÞ
DðxÞ e�ixtdx ! 0 as R ! 1:

Hence, summarising we obtain that
ð

C

HðxÞG2ðxÞ
kDðxÞ e�ixtdx ! 0 as R ! 1 and t � tm:

(A9)

Then, taking R ! 1 in Eq. (A6), using Eq. (A8), and notic-

ing that

ði1þR

i1�R

HðxÞGðxÞ
kDðxÞ e�ixtdx ! QðtÞ as R ! 1;

we eventually obtain Eq. (40)

APPENDIX B: DERIVATION OF EXPRESSION FOR w

In this appendix, we derive the expression for w valid

for large t. Using Eqs. (24), (25), (28), (29), and (33), we

obtain that

ŵðxÞ ¼ XjðxÞ
DðxÞ þ

YjðxÞ
sin h

; (B1)

where j¼ 1 and j¼ 2 refer to quantities in z< 0 and z> 0,

respectively, and

X1ðxÞ ¼ iGðxÞðVA2 � VA1Þ
	

q1VA1e
ik1�zðx� kVA1e

�ihÞ
VA1 þ VA2

þq2ðxþ kVA2e
ihÞ xðeik1�z � ekzÞ

xþ kVA1e�ih
� VA2e

ik1�z

VA1 þ VA2

� �



;

(B2)

Y1ðxÞ ¼
eik1�z

VA1 þ VA2

�

VA1

VA2

ð1

0

w0ðzÞe�ik2�zdz

þVA2 � VA1

2VA1

ð0

�1
w0ðzÞe�ik1þzdz

�

þ eik1�z

2VA1

ð0

z

w0ðz0Þe�ik1�z0dz0

þ eik1þz

2VA1

ðz

�1
w0ðz0Þe�ik1þz0dz0; (B3)

X2ðxÞ ¼ iGðxÞðVA1�VA2Þ
	

q2VA2e
ik2þzðxþ kVA2e

ihÞ
VA1þVA2

þq1ðx� kVA1e
�ihÞ xðeik2þz� e�kzÞ

x� kVA2eih
� VA1e

ik2þz

VA1þVA2

� �



;

(B4)

Y2ðxÞ ¼
eik2þz

VA1 þ VA2

�

VA2

VA1

ð0

�1
w0ðzÞe�ik2þzdz

þVA1 � VA2

2VA2

ð1

0

w0ðzÞe�ik1�zdz

�

þ eik2þz

2VA2

ðz

0

w0ðz0Þe�ik2þz0dz0

þ eik2�z

2VA2

ð1

z

w0ðz0Þe�ik2�z0dz0: (B5)

It is obvious that Y1(x) and Y2(x) are holomorphic functions

in the whole complex plane. Taking into account that ik1–
¼ k when x ¼ �kVA1e

–ih and ik2þ ¼ –k when x ¼ kVA2e
ih,

we conclude that X1(x) and X2(x) are also holomorphic

functions in the whole complex plane. Then it follows that

ŵðxÞ is a meromorphic function in the whole complex plane

with the simple poles at xþ and x�.
Now, we use the same closed contour shown in Fig. 2 as

before and obtain

ð

C

þ
ði1þR

i1�R

 !

ŵðxÞe�ixtdx ¼ �2pi

	

resx�

XjðxÞ
DðxÞ e

�ixt

� �

þ resxþ

XjðxÞ
DðxÞ e

�ixt

� �


:

(B6)

We again take t� tm. Then, in accordance with Eqs. (A1)–(A3),

e�ixtGðxÞ¼OðR�1Þ and, consequently, e�ixtXjðxÞ ¼Oð1Þ
when R	1 and x2C. In addition, when =ðxÞ<0;<ðik1�z
�ixtÞ�0 for z��VA1 sinh and <ðik2þz� ixtÞ�0 for

z�VA2 sinh. Now, taking into account that DðxÞ¼OðR2Þ, we
obtain that

ð

C

XjðxÞ
DðxÞ e

�ixtdx ! 0 as R ! 1 and t � tjðzÞ; (B7)

where

tjðzÞ ¼
jzj

VAj sin h
: (B8)

Using the integration by parts after some algebra, we trans-

form Eq. (B3) to

Y1ðxÞ ¼ Y11ðxÞ þ Y12ðxÞ þ Y13ðxÞ; (B9)

where

Y11ðxÞ ¼
ixw0ðzÞ sin h

x2 � k2V2
A1 cos

2h
; (B10)
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Y12ðxÞl ¼
2kxV2

A1 sin
2h cos h

ðx2 � k2V2
A1 cos

2hÞ2
dw0

dz

þ iVA1ðVA2 � VA1Þw0ð0Þk2eik1�z sin h cos2h
ðxþ kVA2 cos hÞðx2 � k2V2

A1 cos
2hÞ

� eik1þz

2VA1k
2
1þ

ðz

�1

d2w0

dz02 e�ik1þz0dz0; (B11)

Y13ðxÞ ¼
eik1�z

2VA1

	

VA1ðVA2 � VA1Þðx2 þ k2V2
A1 cos

2hÞ
ðVA1 þ VA2Þðx2 � k2V2

A1 cos
2hÞ2

� sin 2h
dw0

dz













z¼0

� 1

k21�

ð1

0

d2w0

dz2
e�ik1�zdz

� 2V2
A1

k22�VA2ðVA1 þ VA2Þ

ð1

0

d2w0

dz2
e�ik2�zdz

� VA2 � VA1

k21þðVA1 þ VA2Þ

ð1

0

d2w0

dz2
e�ik1þzdz




:

(B12)

We again take t � tm, which guaranties that the product of

every integral in Eqs. (B11) and (B12) and e–ixt is bounded

when x 2 C and R ! 1. Using the integration by parts, we

obtain

ð

C
Y11ðxÞ e�ixtdx ¼ i

t
Y11ðxÞ: e�ixtji1þR

i1�R �
sin h

t

�
ð

C

w0ðzÞðx2 þ k2V2
A1 cos

2hÞ
ðx2 � k2V2

A1 cos
2hÞ2

� e�ixtdx ! 0 (B13)

as R ! 1. Since <ðik1þÞ > 0 and <ð�ik1�Þ > 0, it follows

that Y12ðxÞ ¼ OðR�2Þ for x 2 C and R	 1. Hence, we con-

clude that

ð

C
Y12ðxÞ e�ixtdx ! 0 as R ! 1: (B14)

Finally, it follows from Eq. (B12) and the condition t � tm
that Y13ðxÞe�iðk1�zþxtÞ ¼ OðR�2Þ for x 2 C and R	 1. Then

it is obvious that Y13(x) decays as R ! 1 only if the condi-

tion t � t1(z) is satisfied. Hence, we obtain that

ð

C
Y13ðxÞ e�ixtdx ! 0 (B15)

as R !1 and t � max½tm; t1ðzÞ�.
Let us calculate the residues in Eq. (B6)

resx6
X1ðxÞ
DðxÞ e

�ixt

� �

¼ lim
x!x6

ðx�x6ÞX1ðxÞ
DðxÞ e�ixt

¼6ie�ðc6ixrÞt
"

U16e
kzþW16

� exp � cþ iðkVA1 cosh6xrÞ½ �z
VA1 sinh

!

0

@

3

5;

(B16)

where

U16 ¼ q2x6Gðx6ÞðVA1 � VA2Þðx6 þ kVA2e
ihÞ

2xrðq1 þ q2Þðx6 þ kVA1e�ihÞ ; (B17)

W16 ¼ Gðx6ÞVA1ðVA2 � VA1Þ
2xrðq1 þ q2ÞðVA1 þ VA2Þðx6 þ kVA1e�ihÞ
� ½ðq1 þ q2Þx2

6
þ 2ikx6q2VA2 sin h

�2k2qV2
Ae

�ih cos h�: (B18)

Then, taking R ! 1, we obtain from Eq. (B6) the expres-

sion for w valid for z< 0 that is given by Eqs. (43)–(45).

Recall that this expression is only valid for z � �tVA1 sin h.

In the same way as it was done for z< 0, we prove that

ð

C
ŵðxÞ e�ixtdx ! 0 (B19)

as R! 1, z> 0, and t � max½tm; t2ðzÞ�. Continuing, we obtain
the expression for w valid for t � tm and 0 < z � tVA2 sin h that

is given by Eqs. (43), (44), and (46), where

U26 ¼ q1x6Gðx6ÞðVA2 � VA1Þðx6 � kVA1e
�ihÞ

2xrðq1 þ q2Þðx6 � kVA2eihÞ
; (B20)

W26 ¼ Gðx6ÞVA2ðVA2 � VA1Þ
2xrðq1 þ q2ÞðVA1 þ VA2Þðx6 � kVA2eihÞ
� ½ðq1 þ q2Þx2

6
þ 2ikx6q1VA1 sin h

�2k2qV2
Ae

ih cos h�: (B21)

APPENDIX C: STUDYING THE LIMIT OF SMALL h

We start from deriving the asymptotic expression for

G(x). Using the integration by parts, we obtain

ð0

�1

w0ðzÞ
V2
A1

e�ik1þz dz ¼ iw0ð0Þ
k1þV2

A1

þ 1

k21þV
2
A1

dw0

dz













z¼0

� 1

k21þV
2
A1

ð0

�1

d2w0

dz2
e�ik1þz dz; (C1)

ð1

0

w0ðzÞ
V2
A2

e�ik2�z dz ¼ � iw0ð0Þ
k2�V2

A2

� 1

k22�V
2
A2

dw0

dz













z¼0

� 1

k22�V
2
A2

ð1

0

d2w0

dz2
e�ik2�z dz: (C2)

It follows from Eq. (20) that k1þ ¼ Oðh�1Þ and k2� ¼ Oðh�1Þ.
Then, using Eqs. (C1) and (C2), we reduce Eqs. (36) to Eq. (54).

The asymptotic expressions for the magnetic field simi-

lar to the expressions for the velocity are given by

bz ¼
iBw0ð0Þ

Ck

e�ct sin ðkCktÞ
ekz; z < 0;

e�kz; z > 0:

(

(C3)

When deriving this expression, we took into account that bz
¼ 0 at t¼ 0.

Finally, we obtain the expression for bx. Using Eqs.

(6)–(8), (45), (46), (52), (53), (55), (56), (60), (61), and (C3)

yields
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bx ¼ ~bx þ �bx; (C4)

where

~bx ¼
Bw0ð0Þ
Ck

e�ct sin ðkCktÞ
�ekz; z < 0;

e�kz; z > 0;

(

(C5)

while �bx is given by

�bx ¼
iw0ð0ÞBCkðq1 � q2Þ exp �ct� kzðC=VA1 þ i=hÞ½ �

2q2ðVA1 þ VA2Þ

	

exp ð�ikCktÞ � 1

Ck þ VA2

exp � ikCkz

hVA1

� �

þ exp ðikCktÞ � 1

Ck � VA2

exp
ikCkz

hVA1

� �


(C6)

for z< 0, and by

�bx ¼
iw0ð0ÞBCkðq2 � q1Þ exp �ctþ kzðC=VA2 � i=hÞ½ �

2q1ðVA1 þ VA2Þ

	

exp ð�ikCktÞ � 1

Ck � VA1

exp
ikCkz

hVA2

� �

þ exp ðikCktÞ � 1

Ck þ VA1

exp � ikCkz

hVA2

� �


(C7)

for z> 0.

The expressions for !1, !2, and !t are given by

!1 ¼ exp �kz
C

vA1

þ i

h

� �	 


(

exp �ikCkðtþ z=hvA1Þ½ �
ðCk þ v1ÞðCk þ vA2Þ

exp
C
ffiffiffi

h
p

vA1

þ ið1þ Ck=vA1Þ
ffiffiffi

h
p

 !

� exp �C
ffiffiffi

h
p

vA1

� ið1þ Ck=vA1Þ
ffiffiffi

h
p

 !" #

� exp ikCkðtþ z=hvA1Þ½ �
ðCk � vA1ÞðCk � vA2Þ

exp
C
ffiffiffi

h
p

vA1

þ ið1� Ck=vA1Þ
ffiffiffi

h
p

 !

�exp �C
ffiffiffi

h
p

vA1

� ið1� Ck=vA1Þ
ffiffiffi

h
p

 !" #
)

; (C8)

!2 ¼ exp kz
C

vA2

� i

h

� �	 


(

exp �ikCkðt� z=hvA2Þ½ �
ðCk � vA1ÞðCk � vA2Þ

exp
C
ffiffiffi

h
p

vA2

� ið1� Ck=vA2Þ
ffiffiffi

h
p

 !

� exp �C
ffiffiffi

h
p

vA2

þ ið1� Ck=vA2Þ
ffiffiffi

h
p

 !" #

� exp ikCkðt� z=hvA2Þ½ �
ðCk þ vA1ÞðCk þ vA2Þ

exp
C
ffiffiffi

h
p

vA2

� ið1þ Ck=vA2Þ
ffiffiffi

h
p

 !

�exp �C
ffiffiffi

h
p

vA2

þ ið1þ Ck=vA2Þ
ffiffiffi

h
p

 !" #
)

; (C9)

!t ¼
4iðC2

k þ vA1vA2Þ sin ðkCktÞ
ðC2

k � v12ÞðC2
k � v

2
A2Þ

þ e�ikz=h exp r1þ � ikCkt½ � � exp r2� þ ikCkt½ �
ðCk þ vA1ÞðCk þ vA2Þ

� exp r1� þ ikCkt½ � � exp r2þ � ikCkt½ �
ðCk � vA1ÞðCk � vA2Þ

� �

;

(C10)

where

r16 ¼
ffiffiffi

h
p

� kz

vA1

C6
iCk

h

� �

þ i
ffiffiffi

h
p ; r26 ¼

ffiffiffi

h
p

þ kz

vA2

C7
iCk

h

� �

� i
ffiffiffi

h
p : (C11)
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