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Abstract 

Hybrid zone movement may result in substantial unidirectional introgression of selectively neutral 

material from the local to the advancing species, leaving a genetic footprint. This genetic footprint is 

represented by a trail of asymmetric tails and displaced cline centres in the wake of the moving 

hybrid zone. A peak of admixture linkage disequilibrium is predicted to exist ahead of the centre of 

the moving hybrid zone. We test these predictions of the movement hypothesis in a hybrid zone 

between common (Bufo bufo) and spined toads (B. spinosus), using 31 nuclear and one mtDNA SNPs 

along a transect in the northwest of France. Average effective selection in Bufo hybrids is low and 

clines vary in shape and centre. A weak pattern of asymmetric introgression is inferred from cline 

discordance of seven nuclear markers. The dominant direction of gene flow is from B. spinosus to B. 

bufo and is in support of southward movement of the hybrid zone. Conversely, a peak of admixture 

linkage disequilibrium north of the hybrid zone suggests northward movement. These contrasting 

results can be explained by reproductive isolation of the B. spinosus and B. bufo gene pools at the 

southern (B. spinosus) side of the hybrid zone. The joint occurrence of asymmetric introgression and 

admixture linkage disequilibrium can also be explained by the combination of low dispersal and 

random genetic drift due to low effective population sizes. 

 

Key words: Admixture linkage disequilibrium, asymmetric reproductive isolation, Bufo bufo, Bufo 

spinosus, cline coupling, hybrid zone movement 

 

Introduction 

During alloƉĂƚƌŝĐ ƐƉĞĐŝĂƚŝŽŶ͕ Ă ƚĂǆŽŶ͛Ɛ ƌĂŶŐĞ ŝƐ ƐƉůŝƚ ďǇ Ă ƉŚǇƐŝĐĂů ďĂƌƌŝĞƌ͕ ĂŶĚ ƚŚĞ ǀŝĐĂƌŝĂŶƚ 

populations gradually diverge through processes such as mutation, natural selection, and genetic 

drift (Mayr, 1942; Lande, 1980; Wu & Ting, 2004). Diverged taxa may later meet in secondary 

contact and form a hybrid zone, for example when taxa expand their ranges from glacial refugia in 

the postglacial era (Barton & Hewitt, 1985; Hewitt, 1988, 2011). Upon secondary contact the two 
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populations may have established reproductive isolation, inhibiting exchange of genetic material 

(Rice, 1998). Conversely, when the fitness of hybrid populations is equal or increased compared to 

the fitness of parental populations, gene flow is extensive, and the two populations will merge 

(Anderson & Stebbins, 1954; Arnold, 2004; Seehausen, 2004; Hedrick, 2013). In between these 

extremes, a reduced hybrid fitness precludes merging and facilitates limited introgression (Mallet, 

2005). 

When hybrid fitness is reduced independent of the environment, a narrow tension zone exists 

between the two species (Moore, 1977; Barton & Hewitt, 1985). In the classical hybrid zone 

literature such tension zones are thought to stabilise where population density is low, or at an 

ecological barrier to dispersal (Endler, 1977; Barton & Hewitt, 1985). Recent studies suggest that 

hybrid zone movement is more common than previously thought (Arntzen & Wallis, 1991, 1999; 

Buggs, 2007; ‘ŽǇ͕ O͛CŽŶŶŽƌ͕ Θ GƌĞĞŶ͕ ϮϬϭϮ͖ Taylor et al., 2014; Leaché, Grummer, Harris, & 

Breckheimer, 201ϳ͖ WŝĞůƐƚƌĂ͕ BƵƌŬĞ͕ BƵƚůŝŶ͕ Θ AƌŶƚǌĞŶ͕ ϮϬϭϳ͖ WŝĞůƐƚƌĂ͕ BƵƌŬĞ͕ BƵƚůŝŶ͕ AǀĐŦ͕ Ğƚ Ăů͕͘ 

2017; Ryan et al., 2018). Hybrid zone movement occurs when one parent species has a higher fitness 

than the other, such as through a competitive advantage, asymmetric hybrid fitness effects, or 

environmental change (Buggs, 2007). Introgression caused by hybrid zone movement is thought to 

affect selectively neutral markers distributed randomly across the genome, resulting in genetic 

traces of the displaced species in populations of the advancing species (Moran, 1981; Currat, Ruedi, 

Petit, & Excoffier, 2008). In contrast, under adaptive introgression, alleles from one species with a 

positive effect in the other species may introgress through the hybrid zone, regardless of whether 

the zone is stable or moving (Seehausen, 2004; Mallet, 2005; Hedrick, 2013; Schmickl, Marburger, 

Bray, & Yant, 2017). Adaptive introgression affects only the selected marker and markers that are 

nearby on the chromosome (physical linkage), or markers that interact functionally with the marker 

under selection (functional linkage; Barton & Hewitt, 1985; Baird, 2015; Sedghifar, Brandvain, & 

Ralph, 2016). Only a fraction of the genome is involved in adaptive introgression, whereas hybrid 
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zone movement results in genome-wide introgression (Currat et al., 2008; Wielstra, Burke, Butlin, 

AǀĐŦ͕ Ğƚ Ăů͕͘ ϮϬϭϳͿ. 

The transition from one species to the other through the hybrid zone can be described by a set 

of allele frequency gradients, i.e. geographical clines (Schmickl et al., 2017). The positions and 

shapes of geographical clines are indicative of evolutionary processes involved in hybrid zone 

formation (Barton & Hewitt, 1985). Two types of cline variation are distinguished based on cline 

position (coincident or displaced) and cline shape (concordant or discordant). Coincident clines share 

the same cline centre, whereas displaced clines have a cline centre away from the majority of the 

clines for other loci. Concordant clines are similar in shape (described by e.g. width and tail shape; 

Szymura & Barton, 1991), whereas discordant clines have a shape divergent from the majority of the 

clines. Coincident clines are considered evidence of a hybrid zone in a stable position over time 

(Abbott et al., 2013). Concordant and narrow clines (steep at the centre and with distinct tails) 

suggest that the hybrid zone is maintained by a balance between strong selection and dispersal, as 

opposed to displaced and wide clines indicating that selection against hybrids is low (shallow slope 

without distinct tails; Barton & Gale, 1993). Displaced and discordant clines exist in many species, 

both for nuclear and mitochondrial markers, and may be caused by sex-biased gene flow or by 

adaptive introgression (Mallet, 2005; Excoffier, Foll, & Petit, 2009; Toews & Brelsford, 2012; While et 

al., 2015; Sloan, Havird, & Sharbrough, 2016; Bonnet, Leblois, Rousset, & Crochet, 2017). However, 

displaced and discordant clines may also be caused by hybrid zone movement, when a trail of 

genetic material from the overtaken species remains present in the overtaking species (Rohwer, 

Bermingham, & Wood, 2001; Gay, Crochet, Bell, & Lenormand, 2008; Excoffier et al., 2009; Arntzen, 

de Vries, Canestrelli, & Martínez-SŽůĂŶŽ͕ ϮϬϭϳ͖ WŝĞůƐƚƌĂ͕ BƵƌŬĞ͕ BƵƚůŝŶ͕ AǀĐŦ͕ Ğƚ Ăl., 2017). 

Whether or not markers reflect past or ongoing demographic processes, including hybrid zone 

movement and adaptive introgression, is dependent on factors such as the number and genomic 

distribution of barrier loci, mutation rate, and recombination (reviewed in Ravinet et al., 2017). 

Barrier loci are genes which inhibit the merging of two diverged populations (Abbott et al., 2013; 
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Barton, 2013). A stronger overall barrier to gene flow is established when multiple barrier effects 

become coincident by processes summarised as coupling (reviewed in Butlin & Smadja, 2017). If 

genome-wide coupling of barrier effects occurs, the geographic clines for markers are expected to 

be coincident even if they are not physically or functionally linked to a barrier gene (Barton, 1983; 

Barton & Gale, 1993; Bierne, Welch, Loire, Bonhomme, & David, 2011; Vines et al., 2016). To 

overcome the coupling effect of multiple barrier genes and so to cause gene flow across the hybrid 

zone, the positive selection on a single gene will have to be disproportionally strong (e.g. Vines et al., 

2016).  

In addition to physical and functional linkage, associations between markers in hybrid zones can 

be caused by common descent. This is reflected by an increase in admixture linkage disequilibrium in 

the hybrid zone as alleles originating from the same parent species tend to be found together within 

the genomes of early generations of hybrid offspring. Recombination during subsequent 

backcrossing breaks down admixture linkage disequilibrium (Barton & Gale, 1993; Baird, 2015). 

However, when the hybrid zone is moving, the peak of admixture linkage disequilibrium is predicted 

to be positioned just ahead of the hybrid zone centre, where individuals with little history of 

recombination are involved in reproduction (Gay et al., 2008; Wang et al., 2011). This allows us to 

make predictions based on the hypothesis of hybrid zone movement: there will be a tail of 

introgression in the wake of the moving zone combined with a shift of the peak in admixture linkage 

disequilibrium ahead of the movement. This contrasts with the predictions for a stable situation, 

where clines are symmetric and the peak of admixture linkage disequilibrium appears in the centre 

of the hybrid zone (Fig. 1). 

We test for a genetic footprint of movement in a hybrid zone in northwest France between two 

morphologically similar but genetically distinct species of toad, the common, Bufo bufo (Linnaeus, 

1758) and the spined toad B. spinosus Daudin, 1803 (Recuero et al., 2012; Arntzen, Recuero, 

Canestrelli, & Martínez-Solano, 2013; Trujillo, Gutiérrez-Rodríguez, Arntzen, & Martínez-Solano, 

2017). While B. bufo survived the last glacial maximum in Italy and the Balkans, B. spinosus survived 
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in southern France and Spain (Arntzen et al., 2017). Based on four nuclear gene coding markers, 

twelve microsatellites, and two mitochondrial SNP markers, the width of the hybrid zone (30 km) 

compared to the dispersal distance (1.3 km generation-1) suggested that selection against hybrids 

restricts gene flow through the hybrid zone (Arntzen et al., 2016). In the southeast of France, the 

Bufo hybrid zone was hypothesised to move southwards based on traces of introgression of one 

nuclear gene coding marker (of four tested), and discordance between nuclear, mtDNA, and 

morphologic clines (Arntzen et al., 2017). In the northwest of France, a similar dataset including 

microsatellite data, showed introgression towards the north in two nuclear markers out of four, but 

was not analysed from the perspective of hybrid zone movement at the time (Arntzen et al., 2016). 

This scenario provides the opportunity to test for the hypothesis of hybrid zone movement in the 

northwest of France. We improve the resolution using 31 gene coding markers and one mtDNA 

marker to interpret interspecific gene flow in the light of the average effective selection on a locus, 

and place our findings in the context of results from the literature. 

 

Materials and Methods 

Sample collection and preparation 

All DNA extracts were available from previous studies (Arntzen, Wilkinson, Butôt, & Martínez-

Solano, 2014; Arntzen et al., 2016, 2017; Arntzen, McAtear, Butôt, & Martínez-Solano, 2018). Eight 

individuals from four B. bufo reference populations and twelve individuals from seven B. spinosus 

reference populations, all positioned > 500 km away from the centre of the hybrid zone (blue and 

red circles in Fig. 2 a, b), served to identify species diagnostic single nucleotide polymorphisms 

(SNPs) in a test run. Another 268 individuals from 29 populations, including transect populations 

(grey circles in Fig. 2 a, b) and additional samples from the reference populations were genotyped 

and included in the dataset, to a total of 306 individuals. Distances between transect populations 

were measured in a straight line, which follows the direction of the transect in Arntzen et al. (2016), 
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using a custom R script. Distances for reference populations were measured with Google Earth Pro 

v.7.3.0 (Table 1 and Table S.1). 

 

SNP design based on transcriptome data 

Two transcriptomes from liver tissue of a B. bufo individual from population 6 (Audresselles, France), 

and a B. spinosus individual from population 18 (Jublains, France) were sequenced commercially by 

ZF Screens, Leiden, on the Illumina HiSeq 2000 platform. The data were filtered with Trimmomatic 

v.0.35 software (Bolger, Lohse, & Usadel, 2014), and assembled with Trinity v.2.1.1 (Grabherr et al., 

2011; Haas et al., 2013). When using exons from transcriptome data for SNP design in expressed 

genes, paralogs (gene copies) should be excluded to avoid interpreting SNPs between paralogs as 

SNPs within orthologues (e.g. Ryynänen & Primmer, 2006). Exon boundaries need to be taken into 

account, as primers designed across exon boundaries are the main cause of genotyping assay failure 

(Wang et al., 2008). First, a BLAST search (Altschul, Gish, Miller, Myers, & Lipman, 1990) was used to 

identify paralogs within the B. bufo transcriptome assembly. Next, a pipeline for exon boundary 

identification (Niedzicka, Fijarczyk, Dudek, Stuglik, & Babik, 2016) was used, employing the well-

annotated Xenopus tropicalis (Gray, 1864) genome (genome version JGI4.2). The X. tropicalis 

genome was also used to annotate markers (after testing for diagnostic differences between the two 

species, 30 of 31 markers eventually used were annotated, one remained unidentified and was 

named exon_1). Finally, a second BLAST of the selected exons against the transcriptome of B. 

spinosus was used to exclude potentially undetected paralogs and to identify SNPs. A detailed 

description of the SNP design from transcriptome data is presented in the Supplemental Information 

text. 

 

SNP validation 

Fluorescence-based genotyping (Semagn, Babu, Hearne, & Olsen, 2014) was used in the Kompetitive 

Allele-Specific PCR (KASP) genotyping system at the SNP genotyping facility of the Institute of 
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Biology, Leiden University. Primer design, PCR setup, and data visualisation followed Arntzen et al. 

(2016). For 96 exon sequences, primers were designed with the Kraken software (LGC genomics, 

UK). After a first run, three SNPs were excluded as they failed for all individuals of one species, 

presumably due to a mutation at a primer binding site. Markers were initially considered diagnostic 

if they showed species-specific alleles in the test dataset. This resulted in 32 nuclear DNA SNPs 

(Table S.2). Because of limitations due to plate dimensions in the KASP system, the remainder of the 

samples was analysed with 31 SNPs (by excluding the least well performing marker in the test 

dataset, scaf4, for which 6 out of 20 reference individuals had missing data) and we added one 

previously published diagnostic mtDNA SNP (16S; Arntzen et al., 2016). We excluded five individuals 

from the final dataset with more than ten SNPs missing (presumably because of low quality DNA). 

After assessment of the final dataset of 306 individuals, 29 of 31 nuclear SNPs were considered 

species-diagnostic, defined by minor allele frequencies of < 5.0 % in reference populations in the 

final dataset (Table S.3). Missing data amounted to 5.2% (Table S.4). 

 

Hardy-Weinberg proportions and marker linkage 

Because SNPs in genes are more prone to be under direct or indirect selection than non-coding DNA, 

we were cautious to exclude any markers showing outlier behaviour. Signals of non-random mating 

or survival were tested for by calculating the Hardy-Weinberg proportions (heterozygote deficit and 

excess) with the R package genepop based on the program GENEPOP v.1.0.5 (Rousset, 2008). As the 

Bonferroni correction (Rice, 1989) can be overly conservative (e.g. Narum, 2006), we chose to 

account for independence of tests within markers (Pc for N = 31). Deviations from Hardy-Weinberg 

proportions by heterozygote excess were not significant (Pc > 0.05; Table S.5). Deviations by 

heterozygote deficit were significant for the marker egflam in five populations (Pc < 0.05), hence this 

marker was excluded in the HZAR cline fitting analysis and admixture linkage disequilibrium 

calculations (see below). 
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To infer independence of introgression, close physical or functional linkage of markers should be 

investigated. As some of the 31 nuclear markers are bound to be on the same chromosome (Bufo 

has 22 chromosomes; Olmo, Gargiulo, & Morescalchi, 1970; Olmo, 1973), we used a test of pairwise 

linkage disequilibrium (LD), indicative of close physical linkage of markers, based on the log 

likelihood ratio statistic (G-test) with the R-package genepop (Rousset, 2008). One pair of markers, 

exon_1 and ttc37, was found to be in significant pairwise LD in two populations (Pc < 0.05; Table S.6). 

As these populations were located in the hybrid zone, where we expect the effect of admixture 

linkage disequilibrium to increase the number of markers in pairwise LD, we kept the two markers in 

downstream analyses, but we checked that this marker pair did not distort the general patterns 

described below. To investigate functional linkage, a protein-interaction network was analysed with 

STRING v.10.5 (Szklarczyk et al., 2015) on the basis of the X. tropicalis genome, and 30 out of 31 

annotated nuclear markers. A protein function description was recorded for each annotated marker 

(Table S.7). The markers brca2 and rfc1 were found to be functionally linked. As these markers were 

neither deviating from Hardy-Weinberg proportions nor in pairwise linkage disequilibrium within 

populations, they were included in all downstream analyses but, again, we checked that this marker 

pair did not distort the general patterns described below. Note that it remains possible that 

individual markers are under direct or indirect selection, and the current and future analyses using 

these markers need to take this into account. 

 

Population structure 

Allocation of individuals to genetically defined groups was done using all 31 nuclear markers in 

Structure v.2.3.4 (Pritchard, Stephens, & Donnelly, 2000) with ten independent chains of one up to 

ten genetic clusters (K), a burn in of 10,000, and a chain length of 25,000 under the admixture model 

following recommendations of Benestan et al. (2016). Other settings were left at default. Credibility 

intervals (95%) were estimated and convergence was checked comparing log likelihood and 

similarity of admixture proportion (Structure Q scores) between runs. The results were summarized 
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with CLUMPAK (Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015). The best value of K 

was determined using the Evanno method (Evanno, Regnaut, & Goudet, 2005; Table S. 8), and 

results were visualised using the R package POPHELPER (Francis, 2017). The admixture proportions 

are used in the cline analysis (see below) to approach an overall cline shape and position that 

summarizes all nuclear clines. 

 

Cline analyses 

Classic equilibrium cline models, describing a sigmoid change in allele frequency or phenotype across 

the hybrid zone, were fitted with the R package HZAR (Derryberry, Derryberry, Maley, & Brumfield, 

2014) for 30 nuclear markers, mtDNA, and admixture proportion (K = 2), using a set of custom R 

scripts provided by G. Derryberry. Marker egflam was not analysed with HZAR as it was not behaving 

according to Hardy-Weinberg proportions. First, 30 maximum likelihood estimation searches were 

performed with random starting parameters, followed by a trace analysis of 60,000 generations on 

all models with a delta Akaike Information Criterion corrected for small-sample-size (ѐAICc) below 

ten. Fifteen model variants can be fitted in HZAR, based on all possible combinations of trait interval 

(allele frequency at the transect ends; three types) and cline shape. The different cline shapes 

represent either a single sigmoid curve, or a combination of (1) the central sigmoid portion and (2) 

shallower exponential decay curves at one or both ends (tails) with slopes shallower than expected 

from the central portion. We refer to these alternatives ĂƐ ͚ƚĂŝů ƚǇƉĞƐ͛ (five types). Tail types were 

fitted as an exponential tail to the left (L), exponential tail to the right (R), both tails exponential with 

independent parameters (B), both tails exponential but with the same parameters mirrored on the 

cline centre (M), and no exponential tails fitted (N). For cline tails estimated separately (B), we 

assessed tail slope (ʏ; shallow tails reflected by low parameter values) and distance from the cline 

centre where a tail started (ɷ; short distances reflected by low parameter values). When ʏ and ɷ are 

both low on one side and both high at the other side of the hybrid zone, introgression is asymmetric. 

Convergence of the HZAR analysis was visually assessed in trace plots. Significance of cline model fits 
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was determined by calculating ѐAICc for each best model (ѐAICc > 2 compared to the second best 

model; Table S.9, S.10, Figure S.1). Deviation from an equal frequency of left and right tails (as 

expected in a stable hybrid zone) was tested for all markers with a coincident cline centre with the 

chi-square test for equal probabilities. 

 

Admixture linkage disequilibrium 

Using variance in hybrid index (HI, see also Table 1), admixture linkage disequilibrium (D͛) can be 

calculated, and subsequently lifetime dispersal distance (ʍ) weighted for individuals in aquatic (pre-) 

and terrestrial (post-metamorphosis) life stages, expected cline width under neutrality, and average 

effective selection on a locus (s*) can be calculated following Barton & Gale (1993). This was done 

using 29 nuclear markers, excluding marker egflam, which was not within Hardy-Weinberg 

proportions and marker banp, for which the cline centre was displaced compared to other clines 

(Figure S.2). Average effective selection is the selection pressure on a locus at the zone centre due to 

direct selection or association with other loci under selection. A few input parameters were needed 

for these calculations (Table S.11). A mean recombination rate between marker pairs of 0.4997 was 

calculated following formula (6) from Macholán et al. (2007), using the number of chiasmata per 

bivalent for Bufo bufo (1.95; Wickbom, 1945), and the number of chromosomes for Bufo bufo (N = 

22). A generation time of 2.5 years for Bufo toads at the latitude of the hybrid zone (mean of three 

years in females and two years in males; Hemelaar, 1988), and initial secondary contact at 8,000 

years ago following Arntzen et al. (2016) were used as input parameters. The width of the hybrid 

zone was derived from a general sigmoid cline model following ƚŚĞ ͚Ŷo-ƚĂŝůƐ͛ ĨŽƌŵƵůĂ ŝŶ HZAR 

(Derryberry et al., 2014) fitted to the HI. At the cline centre, D͛ was estimated from its regression on 

p*(1-p), where p is the average over loci of the frequency of the B. bufo allele at a sample location. 

Means and 95% confidence intervals (CI) for cline width, D͛ at the centre, dispersal distance, 

expected cline width under neutrality, and effective selection were based on 1,000 bootstrap 

replicates of the original genotype dataset (with replacement, maintaining original sample size; 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Table S.11), using custom R scripts. The amplitude and position of the peak in D͛ were estimated by 

fitting a Gaussian curve following Gay et al. (2008). 

 

Hybrid index analysis 

To visualise potential unequal contribution of both species to the genomic composition of admixed 

individuals, we used the R package HIest (Fitzpatrick, 2012). This analysis scales the number of 

markers derived from each parental species (S) to heterozygosity, which is calculated as the fraction 

of heterozygous markers with variants inherited from both parent species, within an individual (HI). 

We used 29 markers with an allele frequency difference between species more than 0.8 (Larson, 

Andrés, Bogdanowicz, & Harrison, 2013). To assess unequal inheritance of mtDNA in hybrid 

offspring, we coloured the data points by mtDNA type. 

 

Results 

The number of genetic clusters (K) supported by Structure was two, concordant with the two toad 

species (Table S.8). Species admixture was recorded in populations 7-15. Individuals of populations 

7-9 north of the hybrid zone centre were hybrid populations with a relatively high frequency of B. 

spinosus nuclear alleles when compared to the number of B. spinosus mtDNA haplotypes (Fig. 2c). 

Credibility intervals of the admixture proportion estimates are shown in Figure S.3. 

HZAR clines were partitioned according to tail type (Fig. 3, for a plot including all clines see Figure 

S.2, Tables S.9, S.10). Eight nuclear marker clines best fitted a left tail of introgression (northwards 

into B. bufo) and for seven markers the fit was significantly better than alternative models (Fig. 3a). 

Two nuclear marker clines had a right tail of introgression (southwards into B. spinosus), of which 

one had a significantly better fit than alternative models (Fig. 3b). For four nuclear marker clines, 

both tails were exponential with independent parameters, of which three had a significantly better 

fit than alternative models (Fig. 3c). For these clines, tail slope (ʏ) and distance from the cline centre 

where the tail started (ɷ) showed an increase in one parameter (e.g. ɷ) and a decrease in the other 
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(e.g. ʏ) in all cases. Such results are not straightforward to interpret in terms of directional 

introgression and these clines were not taken into account when assessing unidirectional 

introgression. For eleven nuclear markers, clines had mirrored tails of which six had a significantly 

better fit than alternative models (Fig. 3d). For three nuclear markers, clines had no tails, and one 

marker had a significantly better fit than alternative models (Fig. 3e). All nuclear markers had cline 

centres within 30 km of the admixture proportion cline centre (positioned at 539 km) except for 

banp, with a cline centre > 300 km to the south, inside the range of B. spinosus (Figure S.2). This cline 

had a non-significant left tail into B. bufo (Fig. 3f). The mitochondrial marker had a significant right 

tail into B. spinosus (Fig. 3f). The functionally linked markers brca2 and rfc1 had similar cline models 

with mirrored tails and overlapping 95% credible cline regions for centre and width, and showed no 

pattern of introgression deviating from the admixture proportion cline. In summary, seven nuclear 

markers showed significant introgression of B. spinosus into B. bufo by cline discordance, whereas 

two nuclear markers showed significant introgression the other way around, one by cline 

discordance and one by displacement. The inequality of introgression was non-significant (Chi-

square test for equal probabilities, Chi2 = 2.78, df = 1, P = 0.096). 

Populations 9-15 within the hybrid zone had higher values of D͛ than populations outside the 

hybrid zone (Fig. 4). This is reflected by an increase in pairwise linkage disequilibrium among loci 

(Table S.6). Populations 7, 8, and 10 north of the hybrid zone centre, and beyond the area of rapid 

allele frequency change, had larger D͛ with larger positive deviations from zero than other 

populations. However, it was not possible to fit a Gaussian curve through these data points, 

probably because of the large variation in D͛, and the position and amplitude of the peak of D͛ 

remain undetermined. 

Estimated lifetime dispersal (ʍ), based on D͛ at the cline centre, was 2.2 km generation-1/2 (95% CI 

0.6-3.7). The observed cline width based on HI was 114 km (95% CI 103-132). Assuming no selection 

against hybrids, the expected cline width would be 312 km (95% CI 91-532; Table S.11). The average 

effective selection on a locus (s*) was 0.0017 (95% CI 0.0001-0.0040). Despite variation among clines 
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suggesting weak coupling, the presence of an admixture LD peak supports the use of s* as an 

average value to describe the hybrid zone. HIest showed a continuum of B. bufo to B. spinosus 

genotypes in which hybrids possessing mtDNA haplotypes typical of either B. bufo or B. spinosus 

were about equally frequent (Figure S.4). The peak of ancestry is at 50% heterozygosity, indicating 

no asymmetry in the contribution of both species to the hybrid population. 

 

Discussion 

The features describing the Bufo hybrid zone in northwest France in the current study are broadly in 

line with previous descriptions, but provide more resolution and estimates of key parameters. We 

found that individual marker cline positions and shapes vary (e.g. Figure S.2), widening the 

admixture proportion cline. We inferred weak effective selection per locus against hybrids 

(s*=0.0017), but with low precision of the estimate. Even when effective selection is low and clines 

are wide, a moving hybrid zone may stagnate at an ecotone, limiting further movement of the zone 

(Endler, 1977; Moore, 1977; Barton & Hewitt, 1985; Buggs, 2007; Gompert, Mandeville, & Buerkle, 

2017). The section of the Bufo hybrid zone studied here appears to be located at a weak ecotone in a 

hilly landscape forŵĞĚ ďǇ ƚŚĞ ͚CŽůůŝŶĞƐ ĚĞ NŽƌŵĂŶĚŝĞ͕͛ ǁŝƚŚ B. bufo at a lower and B. spinosus at a 

higher altitude (Arntzen et al., 2016). The genetic estimate of lifetime dispersal of 2.2 km generation-

1/2 diverges from the average maximum observed in field studies, but the field estimate is within the 

CI for the genetic estimate (1.3 km; Smith & Green, 2005; Daversa, Muths, & Bosch, 2012; Trochet et 

al., 2014). In amphibians, dispersal distance based on genetic data is more often found to be higher 

compared to field studies, because mark-recapture, seasonal, or field studies covering a small area 

are at risk of underestimating (rare) long-distance dispersal (Smith & Green, 2005).  

The hybrid zone was calculated to be 114 km wide, based on the hybrid index for 30 nuclear 

markers, and width was 63 km based on the cline of the admixture proportion for 31 nuclear 

markers. A narrower width (30 km) was earlier recorded based on the first PCA axis of 12 

microsatellites, whilst in the same study cline width for four nuclear markers ranged from 27 to 91 
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km, and morphological cline widths exceeded 200 km (Arntzen et al., 2016). Microsatellites are 

noncoding, have higher mutation rates, and they are more suitable for investigating small scale 

evolutionary processes, therefore they may reflect more recent demographic processes (Ellegren, 

2000). This poses the question what is causing a more spatially restricted transition in the 

microsatellite markers as opposed to a wider transition in nuclear gene markers, as one would 

expect stronger selection against hybrids and thus narrower clines in markers from coding regions 

than in microsatellites. Including more markers would cause the hybrid index or admixture 

proportion clines to get wider, because drift causes the centres of individual marker clines to vary. 

The larger number of markers in this paper may thus explain the wider zone currently reported 

compared to the previously reported width based on less markers. Confidence intervals overlap for 

many of these width estimates and all widths are large relative to dispersal. This indicates the 

general conclusion of weak selection is robust. 

We examined patterns of gene flow and admixture linkage disequilibrium to test the hypothesis 

of movement of the hybrid zone in two common toad species (B. bufo and B. spinosus) in northwest 

France. Introgression from B. spinosus into B. bufo was more frequent than introgression the other 

way around, a result that was found before with four nuclear markers (Arntzen et al., 2016, 2017). 

Disregarding whether cline model fits are significant, eleven markers show introgression from B. 

spinosus into B. bufo and two show introgression the other way around, a significant difference (Chi-

square test for equal probabilities, Chi2 = 6.23, P = 0.013). Cases where introgression is not explicit 

can also point out methodological difficulties, such as determining unidirectional introgression from 

cline shape parameters. To better compare the asymmetry of introgression between individual 

markers, future methods could compare e.g. the area underneath and above the geographic cline on 

both sides of the cline centre. Further simulations are needed to provide clear expectations for 

stable and moving hybrid zones.  
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Three populations with elevated admixture linkage disequilibrium (D͛Ϳ suggest a peak of early-

generation hybrid offspring north of the hybrid zone. Fitting a Gaussian curve through D͛ proved 

impossible, as there was too much variance within the data, especially in populations 5, 9 and 11. 

The Gaussian curve is the shape of the peak expected under a symmetrical cline model (Gay et al., 

2008). The absence of a clear peak can be caused by asymmetry in the cline model or insufficient 

sample size of individuals, populations, or markers, or a combination of both. More data should be 

generated to be able to determine the shape and position of the peak with higher precision. While 

the unidirectional introgression is in line with southward movement of the hybrid zone (Buggs, 

2007), the northern position of a peak in D͛ is in line with movement in the opposite direction (Gay 

et al., 2008; Wang et al., 2011). Since our results do not fully support the original hypothesis of 

(southward) hybrid zone movement in Bufo, alternative explanations have to be considered, in 

particular for the position of the peak in admixture linkage disequilibrium, for which we compare our 

result with other case studies. 

Concordant and narrow clines suggest that a hybrid zone is maintained by a balance between 

strong selection and dispersal, as opposed to wide and displaced clines indicating that selection 

against hybrids is low (Barton & Gale, 1993). By surveying the hybrid zone literature, we found eight 

studies with empirical data on effective selection (i.e. s*) and cline centre and shape in a wide 

variety of organisms (Table S.12; Mallet et al., 1990; Szymura & Barton, 1991; Phillips, Baird, & 

Moritz, 2004; Macholán et al., 2007; Kawakami, Butlin, Adams, Paull, & Cooper, 2009; Carneiro et al., 

2013, Baldassarre, White, Karubian, & Webster, 2014; Hollander, Galindo, & Butlin, 2015; Wielstra, 

Burke, Butlin, & Arntzen, 2017). Six studies report substantial effective selection (0.19 ʹ 0.37) with 

mostly concordant, coincident and steep clines, and three studies report low average effective 

selection (0.007 ʹ 0.011) with multiple discordant and displaced clines. Our results for Bufo, with low 

effective selection and substantial cline variability, fall into the latter category.  
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We also consulted the literature on the direction of introgression and the location of elevated 

levels of admixture linkage disequilibrium in hybrid zones. Two studies document a peak in 

admixture linkage disequilibrium opposite to where introgression takes place (Fig. 5a), and one 

study documents a peak of admixture linkage disequilibrium and introgression on the same side (Fig. 

5b). In the hybrid zone of the gull species Larus glaucescens (Naumann, 1840) and Larus occidentalis 

(Audubon, 1839), genotypic and phenotypic clines showed introgression towards the north, and a 

peak in admixture linkage disequilibrium towards the south, indicating a southward movement of 

the hybrid zone (Fig. 5a; Gay et al., 2008). In the hybrid zone of the house mouse subspecies Mus 

musculus musculus Linnaeus, 1758 and M. m. domesticus Schwarz & Schwartz, 1943 introgression to 

the east and a peak of admixture linkage disequilibrium to the west, supported a westward 

movement of the hybrid zone (Fig. 5a; Wang et al., 2011). Conversely, in the hybrid zone of the 

salamander subspecies Ensatina eschscholtzii eschscholtzii Gray, 1850 and E. e. klauberi Dunn, 1929, 

unidirectional introgression coincides with a peak of admixture linkage disequilibrium (Fig. 5b; Devitt 

et al., 2011). This result was explained by asymmetric pre- or postzygotic isolation. On the side of the 

hybrid zone where reproduction is reduced, introgression and admixture of genetically distinct 

individuals are absent, whereas at the other side where hybridisation succeeds, introgression and 

admixture of genetically distinct individuals occur. A deficit of hybrids with E. e. eschscholtzii mtDNA 

confirms that offspring of female E. e. klauberi and male E. e. eschscholtzii are successfully 

reproducing, whilst offspring of other parental combinations occur rarely.  

When comparing patterns of introgression between hybrid zones of different biological systems, 

dispersal rate and effective population size need to be taken into account (Canestrelli et al., 2016; 

Ravinet et al., 2017). Introgression generally increases when dispersal rate is high, because more 

genetically distant populations interbreed (Nichols & Hewitt, 1994). The effect of a higher dispersal 

on introgression is greater for a narrow hybrid zone where selection against hybrids is high, than for 

a wide zone where selection against hybrids is low, because in a narrow zone the distance between 

genetically distinct individuals is smaller (Barton & Gale, 1993). Therefore, we chose to express 
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dispersal in terms of the number of generations needed to cross the hybrid zone, as this summarises 

width in relation to dispersal, and thus also in relation to selection against hybrids. To include the 

effect of genetic drift in the comparison of hybrid zones, effective population size can be used. When 

effective population size is low, an increase in the effect of random genetic drift obscures genetic 

patterns of demographic and evolutionary history, and clines are predicted to be more randomly 

distributed in the landscape and vary in shape, despite a high selection against hybrids (Polechová & 

Barton, 2011). The Larus hybrid zone would take five generations of unimpeded dispersal to cross 

(Fig. 5a; Gay et al., 2008). Populations consist of 10,000 ʹ 100,000 individuals (Crochet et al., 2003). 

The Mus hybrid zone would take about 60 generations to cross (Fig. 5a; Raufaste et al., 2005; 

Macholán et al., 2007; Wang et al., 2011). The effective population size of mice is 500 to 5,000 

individuals (Pocock, Hauffe, & Searle, 2005). The Ensatina hybrid zone would take seven generations 

to cross (Fig. 5b; Staub, Brown, & Wake, 1995; Devitt et al., 2011). In high quality habitat Ensatina 

population density may be 1,300 individuals ha-1 with effective population size unknown (Stebbins, 

1954; Rosenberg, Noon, Megahan, & Meslow, 1998).  

The Bufo hybrid zone would take about 60 generations to cross, and dispersal capacity seems 

comparable to Mus. However, the effective dispersal distance in Mus is thought to be 

underestimated by population structure and migration studies, because effective genetic dispersal in 

mice is inflated by (human mediated) long-distance movements and frequent extinction-

recolonization effects (Barton & Hewitt, 1985; Slatkin, 1985; Macholán et al., 2007). Compared to 

Bufo, the effective population sizes in Larus and Mus are one to three orders of magnitude higher. 

Toads breed in large water bodies, and adult Bufo population sizes regularly consist of 2,500 ʹ 5,000 

individuals, but effective population sizes are about two orders of magnitude lower (Scribner, 

Arntzen, & Burke, 1997). Population sizes in Bufo may be more comparable to Ensatina, considering 

that effective population sizes are often much smaller than census population sizes in amphibians 

(Funk, Tallmon, & Allendorf, 1999; Zeisset & Beebee, 2003; Vences & Wake, 2007). A combination of 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

low dispersal and small population sizes may impede introgression and cause patterns of admixture 

linkage disequilibrium to be less pronounced in Bufo than in the other hybrid zones.  

Drift is strong in populations with low dispersal and small population sizes, generating random 

variation in allele frequency in different populations. This variation causes clines to differ in shape 

and position more than would be predicted based on the width of clines of individual alleles (cline 

wobbling; Polechová & Barton, 2011). Cline wobbling increases the width of the hybrid index (or 

admixture proportion) cline. A low number of markers, sampling a small portion of the variation in 

cline shapes and position, may therefore be insufficient to assess patterns of admixture linkage 

disequilibrium. Further increasing the number of individuals sampled and the number of markers 

employed would increase our ability to test the hypothesis of hybrid zone movement. It is not 

currently known how sensitive the methods employed here are to the numbers of individuals or 

markers included in the dataset. Further investigation through simulations could help to improve our 

understanding of the limitations of these methods. It will be interesting to see if a higher number of 

markers generated randomly across the genome, such as RAD sequencing data (Baird et al., 2008), 

will behave similar or different to these gene-coding markers, as gene-coding markers may be more 

prone to local selection forces in small populations. 

Asymmetric pre- or postzygotic isolation, such as displayed in Ensatina, seems most congruent 

with the co-occurrence of introgression and a peak of admixture linkage disequilibrium seen in Bufo 

(Fig. 5b). However, we find only slight evidence for pre- or postzygotic isolation in the Bufo hybrid 

zone. First, we find marginally higher introgression from B. spinosus into B. bufo than the other way 

around. Second, hybrids with both parental types of mtDNA are about equally frequent, and the 

peak of ancestry is symmetric and centred at 0.5 heterozygosity (Figure S.4), whereas in Ensatina 

almost all hybrid individuals carried mtDNA of only one parental type. Third, low effective selection 

within the Bufo hybrid zone allows the unimpeded exchange of genes and previous studies showed 

no indication of asymmetric incompatibility (Arntzen et al., 2016; Trujillo et al., 2017). The only 

evidence in favour of asymmetric isolation besides the position of the admixture linkage 
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disequilibrium peak, is the relatively high introgression of B. bufo mtDNA into B. spinosus (e.g. right 

tail of introgression in mtDNA). Therefore, asymmetric pre- or postzygotic isolation might be weak, 

with hybridisation inhibited slightly more on the B. spinosus side. But this result can also be 

explained by other processes, such as sex-biased dispersal or adaptive introgression (Currat & 

Excoffier, 2005; Toews & Brelsford, 2012).  

In conclusion, we cannot reject the null hypothesis of a stable Bufo hybrid zone in northwest 

France, and low levels of dispersal and random genetic drift due to small population sizes are 

important in shaping the patterns of introgression. Based on earlier studies, this hybrid zone was 

predicted to move southwards (Arntzen et al., 2016, 2017). Our dataset shows similar characteristics 

to those of previous studies (e.g. northward introgression), but with additional analyses we showed 

asymmetric reproductive isolation may provide a more important driver of asymmetric introgression 

than hybrid zone movement. However, multiple processes appear to be at play in shaping the Bufo 

hybrid zone. One might imagine a situation where asymmetric reproductive isolation and hybrid 

zone movement co-occur where the strongest process may overrule any genetic patterns related to 

the other process. In addition, small population sizes and other demographic factors such as 

dispersal distance per generation may cause patterns to become obscured. With 31 nuclear SNPs, 

we sampled only a tiny portion of the 6 Gbp B. bufo genome (Vinogradov, 1998). Further increasing 

the number of individuals sampled and the number of markers employed can possibly increase our 

ability to test the hypothesis of hybrid zone movement. It is not currently known how sensitive the 

methods presented here are to the number of individuals or markers included in the dataset. 

Further investigation through simulations could help improve our understanding of the limitations of 

these methods. Looking back on past literature on hybrid zone movement in various organisms, it 

will be interesting to see if the hypotheses previously inferred still stand with new data and new 

analytical approaches. The Bufo hybrid zone exemplifies the complex influences of interspecific 

hybridization on genomic composition and can be used to test various hypotheses of introgression 

and speciation.  
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Tables and Figures 

Table 1: Overview table with the number of individuals sampled per population, the distance in 
kilometres (km), and the mean hybrid index, pooled for the reference populations (1-4 for B. bufo 
and 23-29 for B. spinosus), and for each transect population (5-22). 
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Figure 1: Schematic representation of an hypothesis of hybrid zone movement. In contrast to a 
stable hybrid zone (a) where the peak of admixture linkage disequilibrium is situated in the hybrid 
zone centre and clines are symmetric, a moving hybrid zone (b) is expected to have a peak of 
admixture linkage disequilibrium shifted ahead of the hybrid zone and a tail of introgression in the 
wake of the hybrid zone (t0 is the previous hybrid zone position, t1 the current position). Dashed 
lines indicate the hybrid zone centre. 
 

Figure 2: Map of Western Europe (a) with reference populations to determine diagnostic nature of 
markers for Bufo bufo (blue circles) and B. spinosus (red circles), and transect populations (grey 
circles). Panel b details the transect orientation (dashed line) and the position of hybrid zone 
populations. Panel (c) shows bar plots with individual admixture proportion (Structure Q scores) on 
the left and mtDNA allele frequency per population on the right. The grey bar refers to one missing 
mtDNA data point. 
 

Figure 3: Best fitting clines for 30 nuclear markers and the mtDNA marker determined with HZAR. 
Frequencies of 0 and 1 represent pure Bufo bufo and B. spinosus genotypes. Left tail clines are in 
panel (a), right tail clines are in (b), both tail clines in (c), mirror tail clines in (d), and no tail clines are 
in (e). Panel f shows the mtDNA cline with a significant right tail and the nuclear marker banp with a 
significantly displaced cline centre and a non-significant left tail. Cline models that fit significantly 
better than the next best model (ѐAICc > 2) are shown by green lines and the others by grey lines. 
Sample localities on the transect are shown on the x axis by inside ticks and the arrow (^) indicates 
the position of the hybrid zone centre based on the admixture proportion cline (dashed line). 
 

Figure 4: Admixture linkage disequilibrium (D͛) recorded over a transect from the north (Bufo bufo, 

populations 1-4) to the south (B. spinosus, populations 23-29). Note that the horizontal axis does not 

represent linear geographical distance. The dotted vertical line is the position of the hybrid zone 

centre inferred from the admixture proportion cline. Estimates for D͛ are obtained by bootstrap 

analysis and shown by box-and-whisker plots. 

 

Figure 5: Schematic representation of inferred hybrid zone movement in (a) the gulls Larus 

glaucescens and L. accidentalis (Gay et al., 2008), and the house mice Mus musculus musculus and 

M. m. domesticus (Wang et al., 2011), and asymmetric reproductive isolation in (b) the salamanders 

Ensatina eschscholtzii eschscholtzii and E. e. klauberi (Devitt et al., 2011), and possibly also in the 

toads Bufo bufo and B. spinosus in the present study. In panel b, the tick mark shows where 

reproduction can take place and the cross shows where reproduction cannot take place. Cardinal 

directions are given by N, E, S and W. The question mark in panel b refers to the uncertainty of 

unidirectional introgression and of the magnitude and position of the peak of D͛ ŝŶ ƚŚĞ Bufo hybrid 

zone.  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Population Individuals 

sampled

Distance 

(km )

Hybrid 

index (HI)

1 10

2 10

3 7

4 6

5 20 174 0.06

6 18 335 0.03

7 12 468 0.16

8 10 469 0.17

9 20 508 0.28

10 10 530 0.38

11 18 530 0.39

12 20 541 0.50

13 20 555 0.74

14 20 561 0.79

15 19 571 0.86

16 12 648 0.96

17 8 644 0.96

18 10 689 0.97

19 8 680 0.98

20 8 695 0.96

21 10 705 0.99

22 18 791 1.00

23 2

24 2

25 2

26 1

27 2

28 1

29 2

1222 1.00

0 0.03
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