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26 ABSTRACT

27

28 Broiler chickens are selected to undergo a rapid six-week hatch-to-slaughter growth 

29 phase to attain large body and muscle mass. Broilers have relatively high resting and locomotor 

30 metabolic costs suggesting that adaptive thermoregulatory mechanisms are required to 

31 dissipate excess heat. Using thermal imaging in the growing broiler we characterised the 

32 trajectory of radiative and convective cooling in still air across broiler development. Scaling of 

33 head, tarsus and toe surface area did not deviate from body mass2/3 while torso area increased 

34 with positive allometry, body mass0.82, reflecting increased feather coverage and/or 

35 disproportionate abdominal/thoracic growth. Despite relatively increased area, the body 

36 became less effective for heat transfer presumably due to increasing feather coverage. 

37 Conversely, the magnitude of heat exchange from the distal hindlimbs was improved in larger 

38 birds. Overall capacity to transfer heat by convection and radiation in still air was attenuated 

39 over development, since the proportion of resting metabolic rate accounted for decreased in 

40 standing and sitting postures. This physiological constraint could be ameliorated by increased 

41 latent heat transfer or provision of environmental ventilation, which we modelled according to 

42 industrial guidelines. Based on models, higher airspeeds coincided with improved convective 

43 cooling that assisted in maintaining the proportion of RMR accounted for by convective and 

44 radiative heat transfer. These data highlight the potentially adverse thermoregulatory effects of 

45 rapid growth rate and body mass increases, which may contribute to the increased sedentary 

46 resting and decreased locomotor behaviour observed in large broilers.  

47

48 Key words: broiler, development, thermoregulation, air velocity, thermal imaging
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51 1. INTRODUCTION

52

53 Modern broiler chickens are the product of ongoing artificial selection for rapid growth, 

54 high feed conversion efficiency and large meat yield. While highly desirable for efficient meat 

55 production, these characteristics are concomitant with health problems, such as 

56 cardiorespiratory disease (Wideman, et al., 2007) and leg pathologies (Bradshaw, et al., 2002). 

57 The lag between organ and skeletal development related to muscle growth are thought to drive 

58 the underlying health related issues (Havenstein, et al., 2003b; Schmidt, et al., 2009; Tickle, et 

59 al., 2014). Despite the physiological challenges that have accompanied selection for rapid 

60 growth, unlimited access to food to satisfy metabolic demand coupled with closely-controlled 

61 environmental conditions ensure that broiler production is profitable and sustained with only 

62 limited losses due to disease and premature mortality. The energy balance of broilers is 

63 different when compared to other galliform species, with resting metabolic rate (RMR) and the 

64 cost of locomotion unusually high across development (Tickle, et al., 2018). Resting posture 

65 in birds has a pronounced effect on the magnitude of RMR, and this effect is magnified as body 

66 mass increases (Tickle, et al., 2018). Particularly pertinent to broilers is that an increased cost 

67 of breathing may account for this observation since the metabolic requirements of respiratory 

68 muscles to power movements of the increasing heavy sternal mass are likely to parallel the 

69 sternal-weight gain (Tickle, Paxton, Rankin, Hutchinson and Codd, 2014; Tickle, et al., 2010). 

70 The elevated energetic costs of normal physiological functions in the broiler indicate 

71 that dissipation of excess heat to the environment is likely to play an increasingly important 

72 role for maintaining normal body temperature. Development of large body size and breast 

73 muscles (Tickle, Paxton, Rankin, Hutchinson and Codd, 2014) and elevated metabolic rate 

74 (Tickle, Hutchinson and Codd, 2018) indicates that broilers may struggle to maintain 

75 thermoregulatory balance as they grow because the surface area available for heat exchange 
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76 via convection, radiation and conduction is expected to increase with body mass2/3 (Walsberg 

77 and King, 1978). In the commercial farming of broilers, careful control of environmental 

78 conditions is required to optimise broiler development, since growth rate and feed efficiency 

79 are affected by temperature (Deaton, et al., 1996; Deeb and Cahaner, 2002; Donkoh, 1989; 

80 May and Lott, 2000), relative humidity (Yahav, 2000; Yahav, et al., 1995) and airflow (May, 

81 et al., 2000; Simmons, et al., 2003; Yahav, et al., 2004; Yahav, et al., 2001). The importance 

82 of maintaining optimal environmental conditions is highlighted by the limited broiler energy 

83 budget (Tickle, Hutchinson and Codd, 2018), which gives minimal scope for increasing resting 

84 metabolic rate to conserve the energetic resources available for growth when thermoregulatory 

85 costs are increased. The capacity for maximal metabolic heat dissipation (Speakman and Krol, 

86 2010) may therefore impose a limit on energy utilisation to prevent hyperthermia in broilers. 

87 Previous studies have considered the contribution of thermoregulatory mechanisms in 

88 birds, highlighting the role of evaporative (Dawson, 1982), radiative (Greenberg, et al., 2012; 

89 Yahav, Straschnow, Luger, Shinder, Tanny and Cohen, 2004), convective (Giloh, et al., 2012)  

90 and conductive (Van Sant and Bakken, 2006) cooling. Here, we quantify the changing profile 

91 of two mechanisms of heat transfer (radiation and convection) under normal environmental 

92 conditions across a size range of broilers and consider the potentially significant effect of 

93 resting posture on thermal biology. We hypothesise that sensible heat loss becomes less 

94 effective in larger broilers, and that artificial airflow becomes an essential compensatory 

95 mechanism. Our data provides a novel perspective on the thermal challenges faced by 

96 developing broilers and underscores the coupled importance of physiological constraints and 

97 environmental airflow on energetics and behaviour.

98

99 2. METHODS
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101 2.1 Animals

102

103 Commercial broilers (Cobb® 500) were obtained from a local supplier and housed in 

104 pens with ad libitum access to poultry pellets and water. Daily recordings of body mass (Mb) 

105 and gait (Kestin 1992) were made to monitor development and welfare thereby ensuring that 

106 only healthy birds were included in thermal imaging analysis. The sex ratio of hatched broiler 

107 chickens has a slight female bias (55% female, 45% male) (Zakaria and Omar, 2013). 

108 Experimental procedures and methods were carried out under ethical approval from the 

109 University of Manchester Ethics Committee in accordance with the Animal (Scientific 

110 Procedures) Act 1986, covered by a Home Office project licence (40/3549) held by Dr. Codd.

111

112 2.2 Thermal Imaging

113

114 Experiments were conducted on birds (N = 18) from 2 to 6 weeks old (body mass (Mb) 

115 range: 256g – 2903g). Single measurements were made using 6 birds whereas multiple (3 or 

116 fewer) measurements were conducted on 12 birds across the developmental period. Individual 

117 birds were removed from their housing pen and placed in an experimental set-up that consisted 

118 of an open-sided Perspex box (volume 61L) resting on a plastic floor. A FLIR i7 (FLIR Systems 

119 Inc., Wilsonville, OR, USA) thermal imaging camera (< 0.1c precision; ± 2% accuracy) was 

120 used to photograph the lateral perspective of each bird resting in sitting and standing posture. 

121 Thermal images (Fig. 1) were recorded when the birds were seen to rest quietly in a particular 

122 posture (Tickle, Hutchinson and Codd, 2018). A portable combined temperature and relative 

123 humidity (RH) meter (± 0.1c / 1% RH) was used to record ambient conditions during each 

124 trial. Temperature and humidity (Fig. 2) were controlled in line with industry guidelines (Cobb-

125 Vantress® “Broiler Management Guide” revised 2012) and therefore assumed to fall within 
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126 the thermoneutral zone for broilers (Donkoh, 1989; Meltzer, 1983). Air speed was not 

127 measured but assumed to be minimal because the birds were enclosed within a laboratory. 

128 Consequently, no measure of evaporative or conductive heat transfer was made in this study 

129 so an estimate of total heat transfer is not possible. Rather, the contribution of two principal 

130 thermoregulatory mechanisms under favourable environmental conditions are presented. 

131 Comparison of sensible heat loss with RMR allows an estimation of the magnitude of combined 

132 evaporative and conductive heat loss which we assume accounts for the remainder.

133 Linear measurements (mm) of the head, body, tarsus and toes 1-4 were taken after each 

134 trial, enabling calculation of surface area by assuming each segment’s geometry was equivalent 

135 to three-dimensional shapes (Yahav, et al., 2005). The head was modelled as a sphere, the body 

136 (i.e. thorax and abdomen) as a prolate spheroid and the legs and toes as open-ended cylinders 

137 (to account for surface area only, and therefore disregarding the internal anatomy that would 

138 otherwise be included). Linear regression on log–transformed data was used to calculate 

139 scaling relationships for surface area over development.

140

141 2.3 Calculation of Heat Transfer

142

143 Thermal images were processed in the FLIR Tools program (version 5.11). Photographs were 

144 analysed by overlaying 2-dimensional shapes to each body component (e.g. an oval was fitted 

145 to the torso). The mean temperature within each shape was calculated in the FLIR Tools 

146 program. Metabolic heat loss (Watts, W) was estimated as the sum of radiative and convective 

147 heat transfer. 

148

149 2.3.1 Calculated Radiative Heat Transfer
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151 Radiative heat transfer (qrad; W) from the bird to the environment was calculated for each 

152 body segment as: 

153

154            (1)qrad = Aσεa (T
4
b ‒  T

4
a)

155

156 where A is body segment surface area (m2),  is the Stefan-Boltzmann constant (relates σ

157 radiative energy emittance to absolute temperature; 5.67 x 10-8 W m-2 K-1), is emissivity of εa 

158 bird feathers (assumed as 0.95; (Ward, et al., 1999)), Tb is the segment mean surface 

159 temperature and Ta   is ambient air temperature (K).

160

161 2.3.2 Modelled Convective Heat Transfer

162

163  A temperature gradient between the bird and surrounding air underlies the heat transferred by 

164 convection (qconv; W) and can be modelled as:

165

166 (2)qconv = Ahc(Tb ‒ Ta)

167

168

169 where hc is the convective heat transfer coefficient (W m-2 K-1):

170

171        (3)hc = Nu
k

d

172

173 and Nu is the dimensionless Nusselt number, k is the thermal conductivity of air (W m-1 K-1) 

174 and d is the characteristic dimension of each body segment (Mitchell, 1976). The Nusselt 
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175 number can be considered a function of the dimensionless Reynolds (Re) and Prandtl (Pr) 

176 numbers:

177

178  (4)Re =
ud

v

179

180 where u is airspeed (ms-1) and v is the kinematic viscosity of air (m2 s-1). 

181

182                  (5)Pr =  
v

k

183

184 Nu is determined according to Re and Pr as:

185

186             (6)Nu = d (Pr x Re)

187

188 Convective heat transfer was therefore calculated for each body segment based upon its 

189 specific geometry (Yahav, Shinder, Tanny and Cohen, 2005). Given the effective lack of air 

190 movement during imaging, heat loss was modelled for birds according to ventilatory guidelines 

191 produced for broiler farms rearing Cobb 500 broilers (Cobb-Vantress® “Broiler Management 

192 Guide” revised 2012). Implementation of airflow guidelines contributes to establishing 

193 environmental conditions that allow for optimal broiler production. Airspeed was modelled as 

194 0.300, 0.500, 0.875 ms-1 for birds with measured body mass as expected for ages between 0-

195 14, 15-21 and 22-28 days, respectively. A range of simulated airspeeds was implemented for 

196 older, heavier birds according to the suggested ventilation conditions (1.750-3.00 ms-1) 

197 provided in the Broiler Management Guide. Convective heat transfer was also calculated as by 

198 free convection, i.e. in still air. In this case, Nu is a function of the Grashof number (Gr):

199
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200  (5)
Gr = agd

3 (Tb ‒  Ta)

v
2

201

202 where a is the coefficient of thermal expansion (K-1) and g is acceleration due to gravity (9.81 

203 m s-2). The relationships between Nu, Gr and the geometry of body segments were taken into 

204 account when estimating convective heat exchange (Monteith and Unsworth, 1990; Morgan, 

205 1975).

206

207 2.4 Resting metabolic rate

208

209 Comparable broiler RMR data (Tickle, Hutchinson and Codd, 2018) was transformed from 

210 V฀CO2 (ml min-1) to metabolic power (W) using the thermal equivalent in Brody (1945), 

211 assuming a respiratory exchange ratio (RER) of 0.85. Scaling analyses were completed by 

212 fitting ordinary least-squares regression to log-transformed RMR, qrad and qconv data. Statistical 

213 analyses were completed in SPSS v.24 (IBM SPSS Statistics for Windows, Version 24.0.0.1 

214 Armonk, NY: IBM Corp.) and PAST v.2.17c (Hammer, et al., 2001). Details of linear and 

215 polynomial regression equations and statistics are provided in the Supplementary Material.

216

217 3. RESULTS

218

219 3.1 Morphology

220

221 Head, tarsus and toe surface areas scaled geometrically, i.e. Mb
 0.67 (Table 1). In contrast, 

222 body surface area developed with positive allometry (Mb
0.82) which was indicative of a 

223 disproportionate increase in thoracic and/or abdominal size and/or plumage volume over 

224 development. Regression on Mb (kg) indicated that the proportional surface area (Mb = 
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225 2.635*body + 80.002; r2 = 0.463, F = 23.268, P < 0.001) accounted for by the body surface 

226 accounted for 80.6% in a 0.25kg bird rising to 87.5% in a 2.90kg bird (Supplementary Material). 

227 Therefore, proportion of overall surface area accounted for by unfeathered skin was reduced 

228 over development.

229

230 3.2 Heat loss

231

232 Mean toe surface temperature increased with body mass, body surface temperature 

233 decreased, and head and tarsus temperature were unchanged (Figs. 1, 2a & 2c). The difference 

234 between ambient and body surface temperature reduced as birds grew larger, while the inverse 

235 relationship was detected for head, tarsus and toes (Fig. 2b & 2d). Total sensible heat loss in 

236 still air decreased as a proportion of RMR over development (Fig. 3 & Table 2), indicating that 

237 convection and radiation were not adequate to maintain a neutral energy balance in the sitting 

238 bird in still air (Fig. 4a). In contrast, radiative and convective cooling in a standing posture was 

239 sufficient to dissipate total metabolic heat production until the birds weighed in excess of 

240 approximately 1.00kg (Fig. 4b). Developmental trajectories of radiative and convective heat 

241 loss were similar (comparison of regression slopes by ANCOVA: F = 0.507; P = 0.480) in the 

242 sitting and standing bird (Fig. 3c), although the magnitude of heat exchange was higher during 

243 standing (comparison of intercepts by ANCOVA: F = 20.570; P < 0.001). 

244 Simulated air movement improved convective heat transfer in sitting (Fig. 4a) and 

245 standing birds (Fig. 4b). Comparison of the scaling relationship between body mass and total 

246 sensible heat transfer indicated that the magnitude of heat loss increases with airspeed and 

247 allows the proportion of sensible heat transfer to remain constant over development (Table 2). 

248 In still air, heat transfer scales with negative allometry indicating that the risk of heat stress 

249 increases as birds grow.
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250

251 4. DISCUSSION

252

253 In this study, we have identified how convective and radiative cooling  mechanisms 

254 contribute to heat exchange in the broiler over development, and the potentially important 

255 thermoregulatory role of posture. Our hypothesis that heavier birds have impaired radiative 

256 and convective cooling mechanisms was supported by comparison of thermal imaging and 

257 respirometry data, and posture appears to exert a determining role in the magnitude of heat 

258 loss. Large body size coupled with a high resting metabolic rate present a significant challenge 

259 to the thermal physiology of the modern broiler and this restriction on adequate heat loss may 

260 constrain other functions including locomotor activity.

261 There was a change in the spatial distribution of surface temperature (Cangar, et al., 

262 2008) over development (Figs. 1 & 3). As birds grew larger, body surface temperature 

263 decreased while toe temperature increased (Figs. 3). In accordance with earlier research 

264 (Cangar, Aerts, Buyse and Berckmans, 2008) and regardless of resting posture, the disparity 

265 between ambient and surface temperature reduced for the body while the difference increased 

266 for head, tarsus and toes, indicating a switch in the relative importance of thermoregulatory 

267 surfaces over development. Sensible heat loss in still air was inadequate to maintain adequate 

268 thermoregulation over development (Fig. 4), consistent with a reduction in proportional surface 

269 area (Table 1) and increased feathering to provide greater thermal insulation in older birds 

270 (Herreid and Kessel, 1967). Postural-dependent thermoregulation was inferred because sitting 

271 contributes to reduced heat loss (Fig. 4a) when compared to standing (Fig. 4b), a finding 

272 consistent with previous reports of RMR in birds (Tickle, Hutchinson and Codd, 2018; Tickle, 

273 et al., 2012; van Kampen, 1976). It is striking that resting in a sitting position is used for 

274 proportionately longer periods of the day given that heavier birds, which are potentially subject 
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275 to greater thermal stress, tend to sit for longer than lighter birds (Bokkers and Koene, 2003; 

276 Tickle, Hutchinson and Codd, 2018). A number of factors, including leg pathologies (Paxton, 

277 et al., 2014) and restriction on daily metabolic rate (Tickle, Hutchinson and Codd, 2018) are 

278 likely to determine resting posture, but a limit on heat dissipation by convection and radiation 

279 due to morphological changes may constrain overall energy expenditure so that heavier broilers 

280 are unable to undergo exertion, or else risk hyperthermia (Speakman and Krol, 2010; Tickle, 

281 Hutchinson and Codd, 2018), especially if the cooling capacity of other heat exchange 

282 mechanisms is insufficient. Specific guidelines for ventilation in commercial production 

283 facilities (Cobb-Vantress® “Broiler Management Guide” revised 2012) highlight the necessity 

284 of applying engineering solutions to this biological problem. Older, heavy broilers are unable 

285 to dissipate heat at the required rate in still air using convection and radiation alone (Figs. 4 & 

286 5) and require formation of convection currents to ensure adequate thermoregulation and 

287 weight-gain performance. Elevated mortality due to high ambient temperature coupled with 

288 inadequate ventilation (Knezacek, et al., 2010; Warriss, et al., 2005) illustrates the critical 

289 function of airflow to thermoregulation in large broilers. An unknown variable in this study is 

290 the contribution of latent heat transfer, which is expected to increase in importance when 

291 convection and radiation become less effective (Richards, 1970). Evaporative cooling via 

292 panting can be used to supplement other thermoregulatory mechanisms when broilers are 

293 placed under considerable heat stress (Borges, et al., 2004) and is therefore highly likely to 

294 have occurred in the broilers used in this study. While we did not observe panting/gular flutter 

295 during experiments, the possibility of increased evaporative cooling cannot be dismissed; 

296 rather, it is likely that this process was progressively upregulated in larger birds due to the 

297 greater disparity between RMR and measured heat transfer in still air (Fig.4). It is important to 

298 note that for optimal body mass gain a significant contribution of evaporative cooling should 

299 be avoided in broilers due to the energetic expenditure associated with panting that may reduce 
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300 the efficiency of heat transfer (Yahav, Straschnow, Luger, Shinder, Tanny and Cohen, 2004) 

301 Interestingly, in light of recent findings we speculate that this important function may be 

302 compromised in broilers due to the relatively slow development of musculoskeletal 

303 components of the respiratory system. A relatively reduced muscle mass in larger birds 

304 indicates that the power available to maintain increased respiratory rate during panting may be 

305 reduced over development (Tickle and Codd, 2009; Tickle, Paxton, Rankin, Hutchinson and 

306 Codd, 2014). Our results show that environmental ventilation to improve convective cooling 

307 is necessary for heat dissipation (Yahav, Straschnow, Luger, Shinder, Tanny and Cohen, 2004), 

308 becoming more significant as the broilers reach slaughter-weight of approximately 2.5 – 3.0kg 

309 (Fig. 5). In line with existing data (Yahav, Straschnow, Luger, Shinder, Tanny and Cohen, 

310 2004), the magnitude of convective heat transfer is related to airspeed (Fig. 5) thereby enabling 

311 the overall proportion of RMR accounted for by sensible heat loss to remain effectively 

312 constant (at least in sitting birds, Fig. 5a) over development, under controlled conditions (Fig. 

313 5). Interestingly, airflow alone did not prevent a reduction in the relative contribution of 

314 sensible heat transfer during standing in the largest broilers (Fig. 5b) indicating that an 

315 alternative thermoregulatory strategy was necessary e.g. evaporative cooling (Borges et al., 

316 2004). This finding corresponds to previous reports of reduced activity in larger broilers 

317 (Bokkers and Koene, 2003; Tickle, Hutchinson and Codd, 2018) and provides evidence for a 

318 thermoregulatory constraint on posture and locomotion.

319 The contribution to sensible heat loss from each body segment varied across 

320 development. As expected, there was a proportional decrease in the heat transfer from head, 

321 body and tarsus relative to body mass over development (Table 2), consistent with a reduction 

322 in relative surface area available for thermoregulation (Table 1). However, toe qconv increased 

323 with positive allometry (Table 2), indicating that, in still air, cooling via the toes is important 

324 for heat transfer and may partially compensate for the less effective cooling from other body 
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325 segments. Analysis of the scaling relationship between sensible heat loss and body surface area 

326 indicated a reducing magnitude of sensible heat loss via the head and body over development, 

327 while cooling via the tarsus and toes increased at a faster rate than surface area (Table 3), 

328 highlighting the importance of the distal hindlimb as a conduit for heat transfer (Macleod and 

329 Hocking, 1993; Steen and Steen, 1965). The negatively allometric relationship between surface 

330 area and heat loss from the head and body is potentially due to increasing feather coverage 

331 providing better surface insulation (Wolf and Walsberg, 2000), and highlights the reduction in 

332 thermoregulatory capacity via sensible heat transfer from these relatively large anatomical 

333 components as the birds grow. 

334 An improvement in convective cooling with airspeed suggests that there is potential for 

335 an adverse effect on thermoregulation as birds grow and effective stocking density increases. 

336 High stocking density is associated with increased body and surface temperatures and relatively 

337 poor broiler performance (Abudabos, et al., 2013), which may be due in part to an increased 

338 thermoregulatory burden. Birds become more closely spaced with increasing body size 

339 potentially causing a reduction in circulating airflow and therefore compromising the efficacy 

340 of convective heat transfer. Behavioural changes, including a shift in favoured resting posture 

341 (Bokkers and Koene, 2003; Tickle, Hutchinson and Codd, 2018) may therefore be used by 

342 broilers to balance metabolic heat production and dissipation. 

343 Our analyses considered the effects of simulated rather than experimentally modified 

344 ventilation, so no consideration was given to the effect of airspeed on radiative heat transfer, 

345 although no significant effect on radiative cooling performance was expected in light of 

346 existing work showing this mechanism to be insensitive to airflow (Yahav, Straschnow, Luger, 

347 Shinder, Tanny and Cohen, 2004). Furthermore, our assumption that surface temperature was 

348 unaffected by ventilation is a potential source of error since relatively small changes (<10%) 

349 in leg surface temperature are related to air velocity up to 3.1ms-1 in broilers (Furlan, et al., 
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350 2000). Nevertheless, our data confirm previous reports (Yahav, Shinder, Tanny and Cohen, 

351 2005; Yahav, Straschnow, Luger, Shinder, Tanny and Cohen, 2004) that identified the 

352 significance of convective and radiative thermoregulatory mechanisms in broilers. Following 

353 the end of experiments, thermal imaging often revealed localised heat transfer via conduction 

354 to the substrate (i.e. elevated surface temperature of substrate), but we were unable to quantify 

355 the magnitude of this transfer because broiler surface area in contact with the ground proved 

356 difficult to measure accurately. While heat transfer by conduction contributed to broiler 

357 thermoregulation in our experiments (Gerken, et al., 2006), the substrates (e.g. wood shavings, 

358 rice husks etc.) on which broilers are routinely reared are unlikely to confer a favourable 

359 surface on account of low thermal conductivity, meaning that any heat conduction is minimal. 

360 Despite the unknown components of evaporative and conductive heat transfer , broiler sensible 

361 heat loss in still air accounts for between 52-100% of RMR measured during standing (Tickle, 

362 Hutchinson and Codd, 2018). Clearly, a margin of error is implicit in our calculation of sensible 

363 heat loss since addition of unmeasured latent and conductive heat transfer would result in total 

364 heat exchange in excess of RMR (Fig. 4). Measurement of RMR while birds underwent thermal 

365 imaging may have reduced the level of this error because broilers with seemingly impossible 

366 sensible heat values greater than 100% RMR potentially had a relatively elevated RMR 

367 compared to expected values (Tickle, Hutchinson and Codd, 2018). Nevertheless, a 

368 comparable study in canaries (Serinus canaria) quantified sensible heat loss in a standing 

369 posture as 77% of RMR (Ward and Slater, 2005), highlighting that despite considerable 

370 disparity in Mb (canary Mb: 21.5±1.5g) and morphology, sensible heat loss in birds is the main 

371 thermoregulatory mechanism under normal conditions. Interestingly, broilers with relatively 

372 low Mb can transfer a greater proportion of total metabolic heat production via sensible heat 

373 loss when compared to the canary, and this is likely a consequence of incomplete feather 

374 development (Wolf and Walsberg, 2000).

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900



16

375 The data presented in this paper highlight the effectiveness of thermal imaging 

376 techniques for understanding animal behaviour and the relationship with the environment. 

377 Using this approach, we have presented evidence for a thermoregulatory constraint on broiler 

378 physiology and this may be a determining factor for reducing activity levels over development.

379
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508 Figure 1: Representative thermal images of low and high body mass broilers.

509

510

511 Typical thermal images of broilers in standing and sitting postures. Compare the high surface 

512 temperature of the smaller (0.26kg) bird (a, b) with a larger (2.0kg) broiler (c, d) that has 

513 better feather insulation. Ambient temperature/relative humidity at time of imaging were (a & 

514 b: 26.0°c / 51%; c & d: 22.0°c / 55%). 
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515 Figure 2: Ambient conditions during thermal imaging.

516

517 Ambient temperature during thermal imaging was reduced over the growing period (y = -

518 1.272x+24.461; F = 23.209; R2 = 0.445; P < 0.001) while there was a simultaneous non-

519 significant trend for increasing relative humidity (y = 2.309x + 52.935; F = 3.319; R2  =0.103; 

520 P = 0.079).
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522 Figure 3: Body surface temperature in the growing broiler

523

524
525 Surface temperature and difference between ambient and surface temperature ( temperature) 

526 of the growing broiler in sitting (a, c) and standing (b, d) postures. Symbols denote distinct 

527 body segments: 

528

529 circle/solid line: body (surface temperature: sitting: P < 0.001; standing: P < 0.001;  

530 temperature: sitting: P < 0.001; standing: P < 0.001)

531

532 triangle/dashed line: head (surface temperature: sitting: P = 0.765; standing: P = 0.350;  

533 temperature: sitting: P = 0.009; standing: P < 0.001)

534

535 asterisk/dotted line : tarsus (surface temperature: standing: P = 0.143  temperature: standing: 

536 P = 0.002)
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537

538 cross/dot-dash line: combined toes (surface temperature: standing: P = 0.010;  

539 temperature: standing: P < 0.001)
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540 Figure 4: Convective and radiative heat transfer over development
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543 The contribution of total radiative (triangles; dot-dash line) and convective (crosses; dotted line) 

544 cooling in the sitting (a) and standing (b) broiler. Polynomial curves (P < 0.001) are plotted for 

545 radiative (triangles; dot-dash line), convective (crosses; dotted line) and combined heat transfer 

546 (circles; dashed line). Metabolic rate for broilers as measured using respirometry (Tickle et al., 

547 2018) is plotted as the solid line. Sensible heat loss in still air as a proportion of RMR across 

548 development (c) highlights the decreasing contribution over development of qrad+qconv in 

549 standing (filled triangles, solid line: R2 = 0.492; P < 0.001) and sitting (open triangles, dashed 

550 line: y = R2 = 0.428; P = 0.001). Each marker represents an individual measurement
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551 Figure 5: Modelled heat loss with increasing airspeed

552   

553

554 Sensible heat loss (qrad + qconv) from sitting (a) and standing (b) birds in still air (dot-dot-dash 

555 line) and under simulated airflow conditions. Estimated sensible heat transfer from broilers 

556 older than 28 days (>1.524kg) is shown for airspeeds of 1.750 (dot-dash line)), 2.375 (dashed 

557 line) and 3.000 ms-1 (dotted line). All polynomial fits were significant (P < 0.001). RMR is also 

558 shown (solid line; sitting: y = 6.452*Mb +1.059; standing: y = 8.6074*Mb + 0.6187).

559

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560



27

m c 95% CI R2 F P

Head 3.686 0.644 0.512 - 0.775 0.781 100.129 < 0.001

Torso 4.869 0.824 0.734 - 0.915 0.925 347.49 < 0.001

Tarsus 3.626 0.653 0.569 - 0.737 0.901 253.92 < 0.001

Toe1 2.800 0.595 0.505 - 0.684 0.869 184.984 < 0.001

Toe2 3.072 0.628 0.542 - 0.714 0.888 222.385 < 0.001

Toe3 3.32 0.651 0.575 - 0.728 0.916 304.416 < 0.001

Toe4 3.100 0.574 0.476 - 0.671 0.833 145.59 < 0.001

Sum of toes 3.716 0.620 0.559 - 0.682 0.938 426.423 < 0.001

560

561 Table 1: Development of body segment surface areas (mm2) in proportion to body mass (kg) 

562 as described by regression analysis performed on log-transformed data. Equations are in the 

563 form y = mxc

564

565

566

567

568

569

570

571

 m c 95% CI R2 F P

Head 0.399 0.710 0.512 - 0.909 0.747 56.201 < 0.001qconv

Body 0.224 0.436 0.294 - 0.578 0.685 41.225 < 0.001

Head 0.787 0.427 0.230 - 0.624 0.521 20.653 < 0.001

Sitting

qrad

Body 0.389 0.601 0.460 - 0.741 0.809 80.480 < 0.001

Head -0.416 0.757 0.614 - 0.900 0.819 118.852 < 0.001

Body 0.201 0.351 0.157 - 0.544 0.544 13.91 0.001

Tarsus 0.040 0.843 0.700 - 0.986 0.856 148.154 < 0.001

qconv

Toes -0.221 1.416 1.087 - 1.745 0.759 78.753 < 0.001

Head -0.808 0.327 0.149 - 0.506 0.364 14.283 0.001

Body 0.369 0.528 0.352 - 0.704 0.605 38.277 < 0.001

Tarsus -0.485 0.841 0.703 - 0.980 0.862 156.256 < 0.001

Standing

qrad

Toes -0.736 1.350 1.074 - 1.626 0.802 101.455 < 0.001

572

573 Table 2: Developmental change in magnitude of heat transfer (W) with body mass (kg) over 

574 development. Regression (y = mxc)was performed on log-transformed data.
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 m c 95% CI R2 F P

Head 2.009 1.041 0.931 - 1.152 0.953 389.223 < 0.001qconv

Body 0.819 0.523 0.382 - 0.664 0.760 60.236 < 0.001

Head 0.833 0.701 0.551 - 0.852 0.834 95.387 < 0.001

Sitting

qrad

Body 1.204 0.717 0.596 - 0.838 0.889 152.772 < 0.001

Head 2.117 1.096 0.964 - 1.228 0.921 291.756 < 0.001

Body 0.703 0.444 0.242 - 0.647 0.449 20.365 < 0.001

Tarsus 3.063 1.275 1.111 - 1.438 0.912 258.574 < 0.001

qconv

Toes 4.246 1.943 1.434 - 2.451 0.712 61.915 < 0.001

Head 0.503 0.568 0.370 - 0.766 0.583 34.961 < 0.001

Body 1.107 0.653 0.486 - 0.820 0.723 65.152 < 0.001

Tarsus 2.568 1.287 1.155 - 1.420 0.941 401.263 < 0.001

Standing

qrad

Toes 3.555 1.866 1.440 - 2.293 0.764 81.078 < 0.001

585

586 Table 3: Developmental change in magnitude of heat transfer (W) with surface area (m2) over 

587 development. Regression (y = mxc) was performed on log-transformed data. Heat transfer from 

588 the tarsus and toes increases at a greater rate than surface area (95% CI does not overlap 

589 isometry, i.e. c = 1). In contrast, the head (qrad) and body (qconv and qrad) become less effective 

590 conduits for sensible heat transfer as surface area increases.

591
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