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Spatio-temporal Gaussian Process Models for

Extended and Group Object Tracking with Irregular

Shapes
Waqas Aftab, Roland Hostettler, Member, IEEE, Allan De Freitas, Mahnaz Arvaneh,

and Lyudmila Mihaylova, Senior Member, IEEE

Abstract—Extended object tracking has become an integral
part of many autonomous systems during the last two decades.
For the first time, this paper presents a generic spatio-temporal
Gaussian process (STGP) for tracking an irregular and non-rigid
extended object. The complex shape is represented by key points
and their parameters are estimated both in space and time. This is
achieved by a factorization of the power spectral density function
of the STGP covariance function. A new form of the temporal
covariance kernel is derived with the theoretical expression of the
filter likelihood function. Solutions to both the filtering and the
smoothing problems are presented. A thorough evaluation of the
performance in a simulated environment shows that the proposed
STGP approach outperforms the state-of-the-art GP extended
Kalman filter approach [1], with up to 90% improvement in the
accuracy in position, 95% in velocity and 7% in the shape, while
tracking a simulated asymmetric non-rigid object. The tracking
performance improvement for a non-rigid irregular real object
is up to 43% in position, 68% in velocity, 10% in the recall and
115% in the precision measures.

Index Terms—Extended Object Tracking, Spatio-temporal
Gaussian Process, Rauch-Tung-Streibel Smoother.

I. INTRODUCTION

EXTENDED object tracking (EOT) includes the process of

estimating the kinematic states and the shape parameters

of the objects of interest using a sequence of noisy sensor

measurements. Group object tracking (GOT) involves state

estimation of closely spaced objects moving with similar

dynamics. Often, the average dynamics and the shape of

the group are estimated over time. Since the state estimation

requirements are comparable, hence the methods for EOT and

GOT are similar. EOT and GOT are an integral part of various

autonomous systems1, for example: robot navigation [2], people

tracking using depth sensors such as Microsoft Kinect [3].

Other applications include crowd analysis [4], tracking of

chemical, biological, radiological and nuclear (CBRN) pollutant

clouds [5] and sea surveillance [6]. In all these systems,

specialized sensors are used to collect measurements. Although
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the states are interpreted according to the application, the

measurement processing and the state estimation requirements

are similar. The object kinematic states such as the position,

velocity or other higher order time derivatives and shape

parameters are estimated based on sensor data. The shape

is generally represented by the size or volume parameters.

The EOT methods are also applied in self-driving cars navi-

gating through the urban traffic [7]. Although the technology of

autonomous vehicles has many advantages, the main focus is

on improving safety and resilience of this technology. Various

types of sensors, such as a camera, radar and LiDAR (light

detection and ranging), are installed for detection and tracking

of roads and obstacles [8]–[10], around the driverless car.

The EOT techniques are an inherent part of the cars obstacle

avoidance and navigation system.

Tracking multiple point objects (commonly called targets) is

known as multi-target tracking (MTT) [11], [12] and requires

non-linear estimation methods that successfully deal with data

association and clutter. In contrast to tracking point targets [13]–

[16], which has been a widely researched area, EOT is a

relatively new area and has seen an increase in real-world

applications during the last two decades. In point objects

tracking, the object kinematics is estimated and most methods

assume single measurement per object per time sample. In

a similar way, in EOT, the kinematics as well as the shape,

extent, and size of the object are estimated. Moreover, multiple

measurements per object per time sample are received. The

already developed kinematics models for point objects [17],

[18] have been typically used in the EOT kinematic state

estimation. Hence, the focus of the EOT research has been

on the measurement models, the shape estimation and data

association.

A typical approach to an EOT problem is to estimate the

kinematics of the center of the object (CoO) and model the

extent as a parametric or non-parametric function [16], which

is unknown and nonlinear as shown in Fig. 1. The extended

objects can be classified as either rigid if the shape does not

change over time, or non-rigid if the shape changes over time.

The existing methods for EOT use simple models for the

temporal changes in shape and as a result, the performance is

compromised while tracking non-rigid extended objects. In this

paper, an advanced shape model is proposed to improve the

shape estimation of non-rigid extended objects. The improved

estimates give better tracking performance [16] especially in

challenging environments such as low SNR [19].



2

A Gaussian Process (GP) [20] can also be employed for

estimation of the extent. A GP is a distribution over an unknown

and nonlinear function, in the continuous domain. The observed

values of these functions can be used to predict the values at

unobserved points. Traditionally, the GP is a batch processing

method and cannot be used for real-time applications. A GP

based recursive filter for real-time EOT has been proposed

in [1], [21]. This GP based EOT method models the correlations

in a single input domain. The extent states consist of radial

values of the object extent from the CoO at different angles.

The GP is used to model the nonlinear mapping of the spatial

input (angle) to the spatial output (radius). However, the

spatial output is correlated in both the spatial and the temporal

domain. In [22], it has been shown that if one of the input

dimensions is stationary (and some other conditions), then

it has an equivalent state space representation which can be

solved using Rauch-Tung-Streibel smoothing. The model is

termed as spatio-temporal GP (STGP). A recursive equivalent

of a temporal GP is proposed in [23], [24] and of an STGP

is proposed in [22]. The filter requires a forward pass and is

suitable for a real-time implementation. The smoother requires

a forward and backward pass and the increase in computational

expense with time makes it unsuitable for real-time processing.

In this paper, a new model based on the recursive equivalent

of the STGP is proposed for real-time tracking of a non-rigid

extended object.

A. Related Work

Recent methods for EOT have been comprehensively summa-

rized in two overview papers [15] and [16]. The EOT research

can be divided into two parts as shown in Fig. 1: tracking of

the CoO and the shape. The CoO kinematics models have been

inherited and are similar to the point object kinematics models.

Object shapes have been estimated using basic geometric

shapes based models for example stick [25], circle [26], [27],

rectangle [28] or ellipse [13], [29]. Although the real world

objects do not typically have such basic geometrical shapes,

these models have been shown to perform satisfactorily well

in some applications such as tracking boats with elliptical

shapes [30] or cars with rectangular shapes [31]. In the presence

of sensor clutter and multiple objects or for tracking irregularly

shaped objects, a more detailed shape estimation not only

improves the data association performance by providing more

accurate confidence regions but also gives better kinematics

states estimation [16]. Relatively complex shape models have

been proposed using a mixture of ellipsoids [32] or star-

convex shape models such as random hypersurface model

(RHM) [33] and GP model [1]. The shape changes have

been estimated well using basic geometrical shape models.

These models are however insufficient for the tracking of

irregularly shaped objects. The shape changes in the complex

shape models, which perform better for irregular shapes, and

some other basic shape models such as the random matrix

approach the shape is assumed constant (rigid) and the changes

in the shape are incorporated using motion process noise

(random walk) [13], [14], [34]. A different approach is taken

in the GP extended Kalman filter (GP-EKF) [1], where the

shape changes are modeled using a forgetting factor. When

tracking non-rigid extended objects, the extent changes over

time. Tracking performance is degraded in such scenarios when

modeled using the random walk or a forgetting factor shape

change model. Additionally, in [1] the GP based approach has

been proposed equivalent to a batch GP regression without

giving the theoretical explanation and the necessary conditions

for the equivalence. Additionally, the measurement noise is

ignored at some points during the derivation of the measurement

likelihood.

B. Contributions

The contribution area of the proposed model in the EOT

literature is depicted in Fig. 1. The key contributions of

this work are as follows; (i) A novel interpretation of the

center of an asymmetric extended object is presented (given

in Subsection IV-A). (ii) A novel non-rigid extended object

tracker is proposed based on an STGP model, which includes

both the spatial and the temporal correlations of the extent (See

Subsection IV-C). (iii) Based on the theoretical results of [22],

the full GP regression is proposed to be approximated using a

fixed-lag Rauch-Tung-Streibel smoother to obtain quasi-real

time approach. This is the first time in the literature of EOT

that the theoretical fundamentals of the equivalence between

a batch and the recursive GP regression are described for

deep understanding (See Subsection IV-H). (iv) A real-time

fixed lag smoother based on the STGP model is proposed,

which improves upon the accuracy of the filter estimates (See

Subsections IV-H and VI-B). (v) The measurement likelihood is

derived considering all noises. Due to the complex relationship

between the states and the measurements, the previous GP

based implementations of the EOT ignored part of the noise

(given in Subsection IV-E). (vi) The performance validation of

the proposed approach is provided on real and simulated data.

The computational complexity and the effect of smoother lag

is also evaluated (given in Section VI).

The remaining part of the paper is structured as follows. The

theoretical background of the GP and the STGP is covered in

Section II and that of inference is covered in Section III. The

proposed model of the EOT is explained in Section IV, an

example is given in Section V and the evaluation is presented in

Section VI followed by conclusions. The sensor measurements

coordinate conversions are given in Appendix A and the

transformed sensor noise pdfs are derived in Appendix B.

II. GAUSSIAN PROCESS REGRESSION MODELS

A. Gaussian Processes

A Gaussian Process (GP) [20] is a stochastic process that

models a nonlinear function from an input to an output space.

A GP is defined by a mean and a covariance kernel. The mean

models the mean of the GP output whereas the covariance

kernel models the correlations among the inputs of the GP. The

parameters of the mean and the covariance kernel are called

hyperparameters. The optimal values of the hyperparameters

can be determined for instance by maximizing the likelihood

of the GP on a given set of input-output data. This process

is also called learning. A GP with learned hyperparameters
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Extended Object Tracking Models

Center of object
(CoO)

Shape

Basic geometrical
shapes e.g.

circle,ellipse etc

Complex shapes
e.g. RHM, GP,
STGP etc

Point object
motion models e.g.
coordinated turn,

NCV etc

Target type

Tracking
models

Methods

NCV = nearly constant velocity

RHM = random hypersurface model

GP = Gaussian process

STGP = spatio-temporal Gaussian process

Abbreviations

Fig. 1. The proposed innovation. The figure gives a hierarchical representation of single EOT research and highlights the contribution of this paper within
this paradigm. A complex extent model namely STGP (bold) has been proposed in this paper.

can predict the mean output and its uncertainty at new input

locations.

Suppose a GP models the nonlinear function g from a random

input θ to an output γ given below:

γ = g(θ), g(θ) ∼ GP (µ(θ), k(θ, θ′)), (1)

where µ(θ) represents the mean and k(θ, θ′) represents the

covariance kernel of the GP. The output γ is observed at n

different input values and modeled using the measurement

equation given below:

z = g(θ) + v, (2)

where z = [z1, z2, ..., zn]
T represents the measurement vector

corresponding to the input vector θ = [θ1, θ2, ..., θn]
T , g(θ) =

[g(θ1), g(θ2), ..., g(θn)]
T represents the function values vector,

v ∼ N (0, σ2In) represents the additive independent identically

distributed (i.i.d.) measurement noise vector with variance σ2

and In represents an n-dimensional identity matrix. Several

works on GP regression for non-i.i.d. Gaussian measurement

noise assumption can be found at [35]–[37]. The GP covariance

matrix Σθθ and the GP prediction at the new input vector θ⋆

is given below [20]:

Σθθ =







k(θ1, θ
′
1) k(θ1, θ

′
2) · · · k(θ1, θ

′
n)

...
...

. . .
...

k(θn, θ
′
1) k(θn, θ

′
2) · · · k(θn, θ

′
n)






, (3)

µ(θ⋆) = µ(θ) +Σθ⋆θ(Σθθ + σ2In)
−1[g(θ)− µ(θ)], (4)

C(θ⋆) = Σθ⋆θ⋆ −Σθ⋆θ(Σθθ + σ2In)
−1

Σθθ⋆, (5)

where µ(θ) represents the mean vector of GP at θ, µ(·) and

C(·) represent, respectively, the mean vector and the error

covariance matrix of the GP prediction.

B. Spatio-Temporal Gaussian Processes

An STGP is a stochastic process model for systems evolving

in both space and time [22]. Let the spatial input be represented

by θ and the temporal input is represented by t, then an STGP

can be used to model a functional mapping from the input to

the output r of the form given below:

r = f(θ, t), f(θ, t) ∼ STGP (µ(θ, t), k(θ, θ′; t, t′)), (6)

where µ(θ, t) and k(θ, θ′; t, t′) represent, respectively, the mean

and the covariance kernel of the STGP model. The STGP

regression can be determined in the same way as the GP

regression explained in Subsection II-A. The time complexity

of determining an STGP regression on a model trained at T

time steps for N input locations is O(N3T 3). As the time

progresses the computational expense increases beyond desired

for most applications that require real-time processing. In [22]

it has been shown that under some conditions, the STGP

regression is equivalent to an infinite dimensional state space

model. An infinite dimensional recursive filter and a smoother

can then be used to perform the inference instead of using the

batch processing method. An additional separability assumption,

given below, simplifies the resulting model:

k(θ, θ′; t, t′) = kθ(θ, θ
′)kt(t, t

′),

where kθ(·, ·) and kt(·, ·) represent the spatial and temporal

covariance kernels, respectively. The conditions are given

below:

(C1) The temporal (process) covariance is stationary

kt(t, t
′) = kt(t− t′).

(C2) The power spectral density (PSD) of the process is rational

S(ωθ, ωt) = F [k(θ, θ′; t, t′)] =
constant w.r.t ωt

polynomial in ω2
t

,

where S(·) represents the PSD of the process, ωθ and ωt
represent the Fourier frequency in the θ and t domains,

respectively and F [·] denotes the Fourier transform.

(C3) The order of the temporal PSD is a multiple of 2

S(ωθ, ωt) =
qtS(ωθ)

S(ω2
t )

,

where qt denotes the spectral density of a white noise

process driving the temporal dynamics.

(C4) The spectral factorization of PSD gives a stable transfer

function i.e.

S(ωθ, ωt) = G(ιωt)S(ωθ)G(−ιωt),
where G(ιωt) and G(−ιωt) represent the unstable and

the stable transfer function components, respectively, and

ιωt represents the complex Fourier frequency.

As a result, the corresponding GP covariance matrices are

also separable. Under the above conditions, the spatio-temporal

stochastic process can be equivalently represented by an infinite

dimensional dynamic system given below:

∂f(θ, t)

∂t
= Af(θ, t) +Lw(θ, t), (7)

where f(θ, t) is a function of the spatial input θ at time t, A

is the state transition matrix, L represents the noise effect and

w(·, ·) represents a zero mean continuous time white noise

process.
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The measurements are assumed to be arriving at discrete

time. The equivalent discrete time model is given below:

f(θ, tk) = F kf(θ, tk−1) +wk(θ), (8)

zk = Hkf(θ, tk) + vk, (9)

where k denotes the discrete time step, F k is the state transition

matrix, wk(θ) ∼ N (0,Q(θ,θ′;Ts = tk − tk−1)) represents

the zero mean white process noise with corresponding co-

variance matrix Q(·, ·; ·), Ts represents the sampling time, Hk

is the measurement matrix and vk represents the measurement

noise vector.

Given a system model of the form (8)–(9), recursive Bayesian

filtering and smoothing solutions can be developed to estimate

the function f(θ, tk). As a result, the computational complexity

of the STGP regression is reduced to O(N3T ) and becomes

linear in time.

III. BAYESIAN INFERENCE

The state estimation for the model defined by (8) and (9) can

be done using Bayesian inference methods. Bayesian inference

relies on belief propagation using a prior density and the

measurements. The standard Bayesian inference is done in two

steps namely the prediction and the update step. The prediction

step uses the prior density and the system dynamics model to

determine a predictive density. The update step is performed

once the measurements have been received. This step uses

the predictive distribution and the measurement likelihood to

determine the posterior density. All the information regarding

the state is encapsulated in the posterior density. Consider the

system dynamics and the measurement model given below:

xk = f(xk−1,wk), (10)

zk = h(xk,vk), (11)

where x and z represent the state and measurement vectors,

respectively, f and h represent the nonlinear state dynamics

and measurement functions, respectively, and w and v represent

the process and measurement noise vectors, respectively.The

Chapman-Kolmogorov equation given below describes the

Bayesian prediction:

p(xk|z1:k−1) =

∫

Rn
x

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (12)

where p(xk−1|z1:k−1) denotes the prior and p(xk|z1:k−1)
denotes the predictive density, p(xk|xk−1) denotes the one

step state prediction and z1:k−1 represents all measurements

from beginning up to time k − 1. Under the Markovian

assumption, the posterior density is determined using the

following recursion:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

∫

Rnx
p(zk|xk)p(xk|z1:k−1)dxk

, (13)

where p(xk|z1:k) is the posterior density and p(zk|xk) is

the measurement likelihood. For a linear Gaussian system

dynamics and measurement model, the Kalman filter [38]

is the closed form optimal solution to the Bayes recursion

given above. For nonlinear Gaussian models various nonlinear

filtering techniques such as extended Kalman filter can be used

while for nonlinear non-Gaussian models sequential Monte

Carlo methods have been proposed, some of which have been

studied in the survey paper [39].

In this paper, an EKF is derived for recursive filtering and

Rauch-Tung-Streibel smoother (RTSS) for smoothing.

A. Extended Kalman Filter

The EKF provides a recursive solution to the model given

by (10)–(11) under additional assumptions of additive, i.i.d.

Gaussian noises (both process and measurement). The model

under these assumptions is given below:

xk = f(xk−1) +wk, wk ∼ N (0,Qk), (14)

zk = h(xk) + vk, vk ∼ N (0,Rk). (15)

The time update equations are given below;

xk+1|k = fk+1(xk|k),F k+1 =
∂f

∂x

∣

∣

∣

xk=xk|k

, (16)

P k+1|k = F k+1P k|k(F k+1)
T +Qk+1, (17)

where P represents the state error covariance matrix, (·)k|k rep-

resents the estimate and (·)k+1|k represents one-step prediction.

The measurement update is given below:

zk+1|k = h(xk+1|k),Hk+1 =
∂h

∂x

∣

∣

∣

xk=xk+1|k

, (18)

Sk+1 = Hk+1P k+1|kH
T
k+1 +Rk+1, (19)

Kk+1 = P k+1|kH
T
k+1S

−1
k+1, (20)

xk+1|k+1 = xk+1|k +Kk+1[zk+1 − zk+1|k], (21)

P k+1|k+1 = P k+1|k −Kk+1Hk+1P k+1|k. (22)

B. Fixed Lag Smoother

Given a smoothing length ks, the smoothed state x̃k and the

state error covariance P̃ k are recursively estimated using the

following recursion [40], which is performed for the time-steps

{k − 1, k − 2, · · · , k − ks};

Gk = P k|kF
T (P k+1|k)

−1, (23)

x̃k = x̂k|k +Gk[x̃k+1 − x̂k+1|k], (24)

P̃ k = P k|k +Gk[P̃ k+1 − P k+1|k]G
T
k . (25)

The smoother is initialized at the current time step k as

x̃k = x̂k|k and P̃ k = P k|k.

IV. THE PROPOSED EXTENDED OBJECT MODEL

In this section, the proposed model for EOT and the

associated multiple measurements likelihood is derived. A novel

extent dynamical model based on a spatio-temporal GP (STGP)

is used. A GP based model is preferred as it is a non-parametric

method and can model complex shapes. Additionally, the STGP

includes both the spatial and the temporal dynamics to give

better shape estimation. The inference can be done using STGP

batch regression, however in this work real-time EOT / GOT

using an STGP model is presented. The real-time processing

requires modeling the STGP in a state space form and deriving

a recursive filtering and smoothing solution to the STGP state

space model. The object is modeled as a star convex [1] shape

as shown in Figs. 2 and 3.
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Fig. 2. An example illustrating sensor and object frames. The figure
shows a sensor, an extended object, the CoO, two (Cartesian and polar)
sensor frames with origin at the sensor and an object (polar) frame
(origin at IRP). A superscript with the coordinates represents the frame
it belongs to e.g. the coordinates of the IRP in Cartesian sensor frame
are (xsen,c, ysen,c). The state vector consists of radial extent values
at equidistant points in the angle domain. A sensor measurement i is
reported at z̄

sen,p
i = [ψ̄sen,p

i , φ̄
sen,p
i ]T in polar sensor frame. The co-

ordinates of i in Cartesian sensor frame are z̄
sen,c
i = [x̄sen,c

i , ȳ
sen,c
i ]T

and in object polar frame are z̄
obj,p
i = [r̄obj,pi , θ̄

obj,p
i ]T .
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Fig. 3. Visualization of the nonlinear function estimated using

the STGP. The figure shows the radial function robj,p = f(θobj,p)
(orange) on polar axis (green). The origin corresponds to the IRP i.e.
(xsen,c, ysen,c) given in Fig. 2. The measurement i (red square) is
shown for comparison with Fig. 2. The extent state vector (blue plus)
consists of radial values (shown on y-axis), which are equidistant points
on the θobj,p axis. In this figure, the number of extent states is B = 4.
The function is periodic with period equal to 2π. An STGP, trained on
coordinates of i and other measurements reported by the sensor, can
model the extent at complete angle domain.

A. Center of a Non-rigid Asymmetric Extended Object

The definition of the CoO depends on the application, for

example, for uniformly dense objects the geometric center

(centroid) of the object shape is considered as the CoO. For

non-uniformly dense objects, it can be defined as the center

of gravity or the center of mass. In this paper, objects with

uniform density are considered. The CoO of rigid objects is

assumed to lie on the same position relative to the object

extent at all times. In such cases, a filter with nearly accurate

initialization and appropriately modeled dynamics can provide

efficient CoO estimates. In contrast, the CoO of a non-rigid

asymmetric extended object can shift relative to the object

extent. This displacement of the CoO needs to be considered

in the CoO kinematics model. In this paper, it is proposed that

the estimator does not model the CoO kinematics. Instead, the

kinematics of a reference point and the extent states relative

to this reference point are modeled. This point lies anywhere

inside the object boundary and is called the Internal Reference

Point (IRP). The CoO kinematic parameters are determined

from the IRP and the extent estimates.

B. Sensor and Object Reference Frames

The extended object tracking problem is modeled in two

frames, the sensor (global), and the object (local) frames.

The sensor measurements are reported in the sensor (polar

or Cartesian) frame. The kinematics of the CoO parameters

and the IRP states are modeled in the Cartesian sensor frame

whereas the extent states and their kinematics are modeled in

the object (polar) frame as shown in Fig. 2. The extent states

are radial values of the object extent at an angle from the IRP

that is robj,p = f(θobj,p), where (·)obj,p denotes the variable

is in the polar object frame, robj,p represents the radial extent

and θobj,p represents the angle from the IRP. This is shown in

Fig. 3. The frames and coordinates superscripts are omitted

from hereon for brevity.

C. Dynamic Model

The IRP dynamics are modeled using point object motion

models [17], [18]. The extent dynamics are designed as

separable kernels, which satisfy (C1) to (C4), as given below:

kE(θ, θ′; t, t′) = kEθ (θ, θ
′)kEt (t, t

′), (26)

where kE(·) represents the spatio-temporal covariance kernel,

kEθ (·) represents the spatial and kEt (·) represents the temporal

covariance kernel. A periodic [20] or Von-Mises [41] covariance

kernel can be used to model kEθ (·). kEt (·) can be modeled

in a number of ways, e.g. squared exponential or Whittle-

Matèrn, which shows the generality of the proposed method.

The proposed model is converted to a transfer function form

and subsequently to an equivalent state space representation

using steps given in Subsection II-B. The dynamics of the IRP

and the extent states are assumed independent of each other.

The dynamical models are given below:

xIk = f Ik(x
I
k−1) +wI

k, wI
k ∼ N (0,QI

k), (27)

xEk = FE
k x

E
k−1 +wE

k , wE
k ∼ N (0,QE

k ), (28)

where (·)I and (·)E denote the vector or matrix corresponds,

respectively, to the IRP and the extent, f I represents the

nonlinear IRP dynamics function, FE represents the linear

extent dynamics function as derived in (8), w and Q denote

the corresponding process noise and process noise covariance

matrix, respectively. The IRP state transition models the object

motion and determines the maximum velocity or acceleration

limits. For slowly moving objects, simple motion models can be

used. However, for fast maneuvering objects, complex motion
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models [17], [18] can be adopted. The resulting state vector at

time k is given below:

xk =
[

(xIk)
T (xEk )

T
]T
, (29)

where xk ∈ R
nx

represents the overall state vector,

xIk =
[

(pk)
T , (p′

k)
T
]T ∈ R

nI denotes the IRP kinematic

states, xEk =
[

(rk)
T , (r′k)

T
]T ∈ R

nE represents the extent

dynamics states, pk and p′
k denote, respectively, the position

and its higher order time derivatives, rk and r′k represent,

respectively, the radial extent and its higher order time

derivatives. The spatial input of the STGP model is denoted

as θ = [θ1, θ2, ..., θB ]
T which consists of B keypoints in the

angle domain between 0 and 2π, as shown in Fig. 3.

D. Measurement Model

Nk measurements are received from the object boundary at

time k. The coordinates of the sensor measurements can be

either polar z̃
sen,p
k or Cartesian z̃

sen,c
k . The polar measurement

vector is represented as z̃
sen,p
k =

[

z̃
sen,p
1,k , · · · , z̃sen,pNk,k

]T
. Each

measurement is modeled as an i.i.d. Gaussian z̃
sen,p
i,k ∼

N (µsen,pi,k ,R
sen,p
i,k ). The coordinate converted measurement

vector in sensor (Cartesian) frame is represented by z̃
sen,c
k =

[

z̃
sen,c
1,k , · · · , z̃sen,cNk,k

]T
and the corresponding pdf of the ith

measurement at time k is approximated to a correlated Gaussian

z̃
sen,c
i,k ∼ N (µsen,ci,k ,R

sen,c
i,k ). For the Cartesian sensor measure-

ments case, this approximation is not required. After translating

z̃
sen,c
k to the IRP and converting the coordinates to polar, the

measurement vector z̃
obj,p
k =

[

z̃
obj,p
1,k , · · · , z̃obj,pNk,k

]T

is obtained.

The corresponding pdf of the ith measurement at time k is

approximated to a Gaussian z̃
obj,p
i,k ∼ N (µobj,pi,k ,R

obj,p
i,k ). The

relationship among z̃
sen,p
k , z̃

sen,c
k and z̃

obj,p
k is explained in

Fig. 2 and given in Appendix A. The resulting measurement

model is given below:

z
sen,c
k = h(xCk ,x

E
k , z̃

obj,p
k ,vk), (30)

where h(·) is a generic measurement function (linear / nonlin-

ear) and vk is the measurement noise.

E. Derivation of the Measurement Likelihood Function

The measurement likelihood is derived in this subsection

assuming contour measurements. For the surface measurements

case, the model derived in this section and a GP convolution

particle filter [41] can be used. Alternatively, Kalman filter

based approach, given in this paper, can be adopted using a

modified spatial covariance kernel as proposed in [1].

1) Likelihood function of a single measurement: The like-

lihood function is derived for the ith measurement. Refer to

Fig. 2 and consider the following vectors:

x
obj,c
i = x̄

sen,c
i − xsen,c, ysen,c = ȳ

sen,c
i − ysen,c, (31)

where a1 − a2 represents the vector difference of a2 from a1,

(x̄sen,ci , ȳ
sen,c
i ) represents the coordinates of the ith measure-

ment and (xsen,c, ysen,c) represents the coordinates of the IRP.

Assuming a noise free environment and using vector algebra

the measurement vectors are related to the IRP as given below:

x̄
sen,c
i = xsen,c + x

obj,c
i = xsen,c + r̄

obj,p
i cos(θ̄obj,pi ), (32)

ȳ
sen,c
i = ysen,c + y

obj,c
i = ysen,c + r̄

obj,p
i sin(θ̄obj,pi ), (33)

z
sen,c
i = p+ µGPi ζ̄i, (34)

where (r̄obj,pi , θ̄
obj,p
i ) represent the ith measurement predicted

coordinates, z
sen,c
i represents the ith sensor measurement

vector, p = [x̄sen,ci , ȳ
sen,c
i ]T represents the coordinates of the

IRP, µGPi = r̄
obj,p
i represents the mean of the STGP model at

the ith measurement angle and ζ̄i = [cos(θ̄obj,pi ), sin(θ̄obj,pi )]T

represents the ith measurement transformation vector mean.

r̄
obj,p
i is determined using the STGP model prediction and

has an associated error represented by the STGP covariance

matrix. θ̄
obj,p
i is calculated using coordinates transform between

the sensor and the object frames (Appendix A) and has

an associated uncertainty for the noisy measurement case,

represented by the pdf p(r̃, θ̃). The sensor and the object frames

and coordinates superscripts are omitted from the right hand

side of the measurement equation and the time step subscript

is added from here on for clarity. The measurement equation

with the noise terms is given below:

z
sen,c
i,k = pk + (ζ̄i,k + eζi,k)(µ

GP
i,k + eGPi ) + ei,k (35)

where eGPi ∼ N (0, cGPi,k ) represents the error in the GP

prediction on the ith noisy input angle, cGPi,k represents the

corresponding error variance, ei,k ∼ N (0,Rsen,c
i,k ) represents

the ith measurement noise vector and R
sen,c
i,k represents the

corresponding sensor error covariance matrix. The pdf of the ith

transformed vector ζ̃i,k =
[

cos(θ̃i,k), sin(θ̃i,k)
]T

(Appendix B)

is approximated to a Gaussian ζ̃i,k ∼ N (ζ̄i,k,R
ζ̃
i,k) where

ζ̄i,k =

[

µCi,k
µSi,k

]

,R
ζ̃
i,k=

[

σ2
Ci,k σ2

Ci,kSi,k
σ2
Si,kCi,k σ2

Si,k

]

. (36)

The ith measurement equation can be written as:

z
sen,c
i,k = pk + ζ̄i,kµ

GP
i,k + eζi,kµ

GP
i,k + ζ̄i,ke

GP
i + eζi,ke

GP
i

+ei,k

= pk + ζ̄i,kµ
GP
i,k + e1i,k + e2i,k + e3i,k + ei,k

= pk + ζ̄i,kµ
GP
i,k + vi,k, (37)

where vi,k represents the cumulative measurement error vector

consisting of four error vector components ei,k, e1i,k, e2i,k and

e3i,k. The components of the noise term vi,k are derived below

e1i,k ∼ N (0, (µGPi,k )2Rζ̃
i,k) = N (0,RḠζ̃

i,k ), (38)

e2i,k ∼ N (0, ζ̄i,kc
GP
i,k ζ̄

T

i,k) = N (0,Rζ̄G̃
i,k ), (39)

e3i,k ∼ N (0,Rζ̃G̃
i,k ), (40)

R
ζ̃G̃
i,k = diag

(

σ2
Ci,kc

GP
i,k

2π(σ2
Ci,k + cGPi,k )2

,
σ2
Si,kc

GP
i,k

2π(σ2
Si,k + cGPi,k )2

)

, (41)

where R
Ḡζ̃
i,k ,R

ζ̄G̃
i,k and R

ζ̃G̃
i,k represent the noise covariance

matrices corresponding to the error terms e1i,k, e2i,k and e3i,k,

respectively, and diag(·) represents a diagonal matrix. The sum

of independent Gaussian random variables is a Gaussian given

below:

vi,k ∼ N (0,Λi,k),Λi,k = R
Ḡζ̃
i,k +R

ζ̄G̃
i,k +R

ζ̃G̃
i,k +R

sen,c
i,k ,(42)
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where Λi,k represents the ith measurement noise covariance

matrix. The likelihood function is given below:

p(z̃sen,ci,k |xk) = N (Υi,k,Λi,k), (43)

Υi,k = z̄
sen,c
i,k − (pk + ζ̄i,kµ

GP
i,k ). (44)

2) Likelihood Function for Multiple Measurements: In this

section, the multiple measurement likelihood is given for Nk
measurements using the single measurement likelihood. The

measurement equation is given below:

z̄
sen,c
k = H(z̃obj,pk )xk + vk, (45)

where H(z̃obj,pk ) represents the measurement function and is

given below:

H(z̃obj,pk ) = H1(z̃
obj,p
k )C1(z̃

obj,p
k )C2, (46)

where H1,C1 and C2 represent the sub-functions of H. The

matrix multiplication of C1 and C2 with the state vector xk
gives a matrix consisting of the IRP states and the prediction of

the object’s extent at the angles defined by Nk measurements

with respect to the IRP. Subsequent multiplication with H1

performs the coordinate frame conversion of the predicted

measurements from polar local to Cartesian local and further

to Cartesian global. These matrices and the measurement noise

are:

H1(z̃
obj,p
k ) =











H2 ζ̄1,k o2 · · · o2

H2 o2 ζ̄2,k · · · o2
...

...
...

. . .
...

H2 o2 o2 · · · ζ̄Nk,k











, (47)

H2 =

[

1 0 o(nI−2)

0 1 o(nI−2)

]

, (48)

C1(z̃
obj,p
k ) =

[

InI OnI×nE

ONk×nI C θ̄kθ
+

Σ
θ̃k

C
′′

θ̄kθ

2

]

, (49)

θ̄k =
[

θ̄1,k θ̄2,k · · · θ̄Nk,k
]T

(50)

Σθ̃k
= diag(σ2

θ̃1,k
, σ2
θ̃2,k

, · · · , σ2
θ̃Nk,k

), (51)

C2 =

[

InI OnI×nE
OnE×nI C−1

θθ

]

, Cθθ=Σθθ ⊗ I nE

B

, (52)

vk ∼ N (0,Λk = Ω
Ḡζ̃
k +Ω

ζ̄G̃
k +Ω

ζ̃G̃
k +Ω

z̃G

k ), (53)

Ω
Ḡζ̃
k = blkdiag

(

R
Ḡζ̃
1,k R

Ḡζ̃
2,k · · · R

Ḡζ̃
Nk,k

)

, (54)

Ω
ζ̄G̃
k = blkdiag

(

R
ζ̄G̃
1,k R

ζ̄G̃
2,k · · · R

ζ̄G̃
Nk,k

)

, (55)

Ω
ζ̃G̃
k = blkdiag

(

R
ζ̃G̃
1,k R

ζ̃G̃
2,k · · · R

ζ̃G̃
Nk,k

)

, (56)

Ω
sen,c
k = blkdiag

(

R
sen,c
1,k R

sen,c
2,k · · · R

sen,c
Nk,k

)

, (57)

where Om×n represents an m by n zero matrix, om represents

an m-dimensional zero row vector, om represents an m-

dimensional zero column vector, ⊗ represents the Kronecker

product and blkdiag[·] represents a block diagonal matrix.

The measurements are assumed independent which gives the

structure of Σθ̃k
,Ω

Ḡζ̃
k , Ω

ζ̄G̃
k , Ω

ζ̃G̃
k and Ω

sen,c
k as block diagonal.

The GP expression appearing in C1(z
obj,p
k ) and C2 and the GP

covariance CGP
k are derived in Subsection IV-F. The multiple

measurements likelihood function is given below:

p(z̃sen,ck |xk) = N (Υk,Λk), (58)

Υk = z̄
sen,c
k −

(

[pk]×Nk + ζ̄k ⊙
(

µGPk ⊗
[

1
1

])

)

,

where [a]×n represents a column vector with n times

repetition of the vector a, ⊙ represents element-wise product,

ζ̄k = [ζ̄1,k, · · · , ζ̄Nk,k]T and µGPk = [µGP1,k , · · · , µGPNk,k]T .

F. GP Prediction at Noisy Input Locations

The input locations θ̄k in (50) are corrupted by the sensor

noise. This gives a non-Gaussian posterior, which is approx-

imated to a Gaussian. The GP prediction given in (4)–(5)

is valid for noise-free inputs. The GP prediction for noisy

training input locations and non-noisy predicted locations is

derived in [20]. In (45), the GP prediction is required at noisy

locations using data of non-noisy input locations. This has

been derived in [42], [43] for different covariance kernels.

Exact first and second moments of the posterior are derived for

linear or Gaussian covariance kernels. For remaining covariance

kernels (like the spatial covariance kernel), using a Taylor series

expansion, the approximate moments are derived. For a given

input with distribution θ̃k ∼ N (θ̄k,Σθ̃k
), the predictive mean

and covariance are given below:

µGPk = µ(θ̃k) +
1

2

B
∑

i=1

βiTr[C
′′

θ̃kθi
Σθ̃k

],

CGP
k = C(θ̃k) + Tr

[(1

2
C ′′(θ̃k) + µ′(θ̃k)µ

′(θ̃k)
T
)

Σθ̃k

]

,

where µGPk and CGP
k represent the mean and the covariance

of the GP prediction at the noisy input angle measurements,

µ(θ̃k) and C(θ̃k) represent the noise-free GP prediction mean

and covariance, respectively, and Tr[·] is the trace function.

The terms on the right side of the summation in both equations

can be seen as the correction of the noise free GP mean

and covariance values. These are explained in the following

equations:

β = C−1
θθ x

E
k ,µ

′(θ̃k) = C ′
θ̄kθ

C−1
θθx

E
k , (59)

C ′′(θ̃k) = C ′′
θ̄kθ̄k

−C ′′
θ̄kθ

C−1
θθC

′′
θθ̄k

, (60)

C ′′
θ̄kθ

= Σ
′′
θ̄kθ

⊗
[

1 ō(
nE

B
−1
)

]

, (61)

C ′′
θ̄kθ̄k

= Σ
′′
θ̄kθ̄k

⊗
[

1 ō(
nE

B
−1
)

]

, (62)

C
′

θ̄kθ
= Σ

′

θ̄kθ
⊗
[

1 ō(
nE

B
−1
)

]

, (63)

where Σ
′

· and Σ
′′

· represent the first and second differential of

the corresponding noise free GP covariance matrices.

G. CoO Parameter Estimates

The parameters of the CoO kinematics are the posi-

tion and the higher order time derivatives of the position.

These parameters are calculated from the estimated shape

(polygon) in the sensor frame at each time step. Consider

{(xP̂1 , yP̂1 ), (xP̂2 , yP̂2 ), · · · , (xP̂B , yP̂B)} represents the coordinates

of the estimated polygon. The positional [44] (xCk , y
C
k ) and the

velocity (ẋCk , ẏ
C
k ) parameters are determined as given below:

A =
1

2

B
∑

i=1

(xP̂i y
P̂
i+1 − xP̂i+1y

P̂
i ), (64)
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xCk =
1

6A

B
∑

i=1

(xP̂i + xP̂i+1)(x
P̂
i y

P̂
i+1 − xP̂i+1y

P̂
i ), (65)

yCk =
1

6A

B
∑

i=1

(yP̂i + yP̂i+1)(x
P̂
i y

P̂
i+1 − xP̂i+1y

P̂
i ), (66)

ẋCk =
xCk − xCk−1

Ts
, ẏCk =

yCk − yCk−1

Ts
, (67)

where A represents the area of the polygon.

H. Real-time Inference

The inference can be done using an STGP batch regression.

As most of the EOT applications require real-time processing,

the estimation of the state space model and the measurement

likelihood derived above is done recursively. A real-time

recursive filter equivalent to a full GP regression has also

been proposed in [1], [21]. The mathematical equivalence of a

full GP regression is a smoother rather than a filter [22]. Given

a model of the form (27), (28) and (45) a recursive (nonlinear)

Kalman filtering and smoothing solution is developed, to

estimate the states at each time step. In high nonlinearity

scenarios, advance nonlinear filtering and smoothing methods

such as sequential Monte Carlo (SMC), Markov chain Monte

Carlo (MCMC) are preferred [39].

The processing time of the smoother increases with time and

the computation becomes non-real time as more measurement

samples are reported. A fixed lag RTSS is proposed for real-

time smoothing. It is further proposed to set the lag of the

RTSS equal to as long as the states are correlated in time.

In short, the real-time inference is achieved using a fixed lag

RTSS with lag value set equal to lt.

V. EXTENDED OBJECT TRACKING USING

WHITTLE-MATÈRN TEMPORAL COVARIANCE

Section V demonstrates the proposed method using different

models. A block diagram of the proposed method is given in

Fig. 4.

A. Extent Evolution Model

1) Spatial Covariance Kernel: The periodic spatial covari-

ance kernel [20] is illustrated in Fig. 5 and is given below:

kEθ (θ, θ
′) = σ2

fe
−

2 sin2

(

θ−θ′

p

)

l2
θ + σ2

r , (68)

where σ2
f , σ

2
r , p and lθ are hyperparameters. σ2

f controls the

correlation magnitude, σ2
r is the prior radial variance, p is

periodicity and lθ controls correlation length-scale. This kernel

is generic and can be used for various real-world extended

objects. Given ϑ = cos

(

2ε
p

)

and ε = θ̄ − θ′, the derivatives

of the covariance kernel are given below:

k
′

θ(θ̄, θ
′) =

d

dθ̄

[

kθ(θ̄, θ
′)
]

= −
σ2
fe

ϑ−1

4l2
θ sin

(

2ε
p

)

2l2θp
, (69)

k
′′

θ (θ̄, θ
′) =

d

dθ̄

[

k
′

(θ̄, θ′)
]

= −
σ2
fe

ϑ−1

4l2
θ (4l2θϑ+ ϑ2)− 1)

4l4θp
2

, (70)

STGP Model
(22)

Determine equivalent
transfer function

(C4)

Determine equivalent
state space
model (24)

IRP kinematics
model (23)

Augmented model

Determine derivatives
of spatial kernel

(65)-(67)

Extent Model

IRP Model

Initialize
states

Sensor
data

Coordinates
conversion
Appendix A

EKF
prediction
(12),(13)

EKF
update
(14)-(18)

RTSS
(19)-(21)

Save

Determine
CoO

(60)-(63)

Recursive filter and smoother

Filtered
and smoothed

estimates

Fig. 4. Proposed method. The figure shows the proposed method. The top
half (blue) of the figure shows the modeling part whereas the bottom half
shows the recursive filtering and smoothing solution. The diamond shape
represents a memory storage, required by the RTSS.

l /2 (p) 3 /2 (2p)

r

2

r

2
+

f

2

 k ( , ,)

Fig. 5. Spatial (Periodic) covariance kernel.

k
′′

θ (θ̄, θ
′) =

∂

∂θ̄∂θ′

[ ∂

∂θ̄∂θ′
[

k(θ̄, θ′)
]

]

=
σ2
f

l8θ
exp

(cos(ε)− 1.0

l2θ

)

(− cos(2ε)

2
+

cos(4ε)

8
− 3l2θ cos(ε)

2
+ l6θ cos(ε)

+
3l2θ cos(3ε)

2
+

7l4θ cos(2ε)

2
− l4θ

2
+

3

8

)

. (71)

2) Temporal Covariance Kernel: A Whittle-Matèrn temporal

covariance kernel [45], [46] is chosen and is given below:

kEt (t, t
′) = σ2

t

21−ν

Γ(ν)

(
√
2ν

lt
τ

)ν

Kν

(
√
2ν

lt
τ

)

, (72)

where τ = t′ − t, Γ(·) is the gamma function and σ2
t represents

the correlation magnitude and lt represents the temporal length-

scale. Kν is modified Bessel function of the second kind and
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smoothness of process is determined by the kernel parameter

ν. The corresponding spectral density S(ωt) is given below:

S(ωt) = σ2
t

2π
1
2Γ(ν + 1

2 )

Γ(ν)
λ2ν(λ2 + ω2

t )
−(ν+ 1

2
), (73)

where ωt represents frequency and λ =
√
2ν
lt

. As the spec-

tral density is a function of ω2
t , a stable transfer function

G(ιωt) = (λ+ ιω)−(p+1) can be obtained after spectral fac-

torization of the given kernel where p = ν − 1
2 and:

qt =
2σ2

t π
1
2λ(2p+1)Γ(p+ 1)

Γ(p+ 1
2 )

, (74)

where qt is the spectral density of the white noise process

driving the temporal evolution of the states.

Remark 1: Choosing the order of the Whittle-Matern

covariance function, ν = 1
2 , yields the Ornstein-Uhlenbeck

function [47]. This in turn has the same state-space representa-

tion as the model used in GP-EKF [1]. Hence, the GP-EKF

can be seen as a special case of the method proposed herein.

3) Extent State Space Model: The system matrix and the

noise effect vector of the corresponding state space model for

ν = 5
2 are derived in [23] and given below:

A =





0 1 0
0 0 1

−λ3 −3λ2 −3λ



 , L =





0
0
1



 . (75)

Using above a multidimensional discrete time state space model

for B keypoints is derived and given below:

xEk = FExEk−1 +wE
k ,F

E = IB ⊗ eATs (76)

wE
k ∼ N (0,QE(θ,θ′;Ts)), (77)

QE(θ,θ′;Ts) = Cθθ[IB ⊗ Q̃(Ts)],

Q̃(Ts) =

∫ Ts

0

FE(Ts − τ)LqtL
TFE(Ts − τ)T dτ, (78)

where FE and QE(θ,θ′;Ts) represent the discrete time state

transition matrix and the process noise covariance matrix for

B keypoints, respectively.

B. IRP Kinematics Model

The IRP kinematics are modeled using a nearly constant

velocity (NCV) [17] motion model as given below:

xIk = F IxIk−1 +wI
k, wI

k ∼ N (0,QI), (79)

F I = diag(F̃
I
, F̃

I
), QI = diag(qxQ̃

I
, qyQ̃

I
), (80)

F̃
I
=

[

1 Ts
0 1

]

, Q̃
I
=

[

T 3
s

3
T 2
s

2
T 2
s

2 Ts

]

, (81)

where qx and qy represent the process noise variances.

C. State Vector

The corresponding state vectors are given below:

xIk =
[

xk ẋk yk ẏk
]T
, (82)

xEk =
[

r1k ṙ1k r̈1k · · · rBk ṙBk r̈Bk
]T
, (83)

where the location of the IRP is represented by xk, yk and

the velocity of the IRP is represented by ẋk, ẏk. The extent

states consist of B radial values from the IRP and its first and

second time derivatives.

VI. PERFORMANCE VALIDATION

The performance of the proposed method is validated using

simulated and real data. The estimates of the proposed method

are compared with the GP-EKF estimates [1] over 100 Monte

Carlo runs for the simulated experiments. The performance

evaluation parameters are the positional and velocity root mean

square errors (RMSE) of the CoO, the mean shape precision

Pµ and the mean shape recall Rµ. These are defined below:

RMSEa =

√

√

√

√

1

K

K
∑

j=1

1

NMC

NMC
∑

i=1

(aij − âij)
2, (84)

Rµ =
1

K

K
∑

j=1

1

NMC

NMC
∑

i=1

Area(T ij ∩ Eij)
Area(T ij )

, (85)

Pµ =
1

K

K
∑

j=1

1

NMC

NMC
∑

i=1

Area(T ij ∩ Eij)
Area(Eij)

, (86)

where RMSEa represents the RMSE of the parameter a, aij
represents the true and âij represents the estimated value, T ij
represents the true shape, Eij represents the estimated shape,

∩ represents the intersection of two star-convex polygons and

Area(p) represents the area of the polygon p. The recall

specifies how much of the true shape has been recalled

while the precision evaluates the false (not belonging to true

object) area. These parameters have been used to evaluate

estimators in computer vision for rectangular objects estimation

problems [48]. The percentage improvement compared to GP-

EKF is also given in the results section. If RMSEa, Rµ or Pµ
of the GP-EKF is represented by vector b and those of STGP-

EKF and STGP-RTSS by c, then the corresponding percentage

improvement d and the mean percentage improvement dµ are

given below:

d =
b− c

b
, dµ =

d

K
× 100. (87)

A. Simulation Results

The IRP motion model of the simulated object and

the estimators is CV with matched process noise variance

qx = qy = 1. Five different shape evolutions are simulated

using two shape models active at different time samples for

K = 250 time samples. These are the Singer acceleration

model [49] and a constant shape model. The shape of the

object does not change and the time derivatives of the

radial states are zero when the constant shape model is

active. The Singer model is active for the time samples

in the range k = [(1− 50), (80− 130), (180− 230)] and the

constant model is active at all other times. The parameters of the

Singer model are maneuver variance σ2
m = 12 and maneuver

time constant τ = 1s. The shape model and the parameters for

simulation are different from the model in filter and smoother.

The switching and mismatched shape models further validate

the robustness of the proposed method. The different shape

evolutions simulated are explained in Table I.

The number of keypoints is B = 24, the sample time is

Ts =
1
30s, the spatial length-scale is lθ = 15◦, the prior radial

variance is σ2
r = 1, the spatial correlation magnitude variance

is σ2
f = 1, the periodicity is p = 2, the temporal length-scale is
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TABLE I
NON-RIGID SHAPE MODELS

Non-rigid

object model
Description

S1
Triangle

A triangular object randomly changes
its size.

S2
Quadrilateral

A quadrilateral object randomly
changes its size.

S3
Regular Dodecagon

An almost circular object (regular
12-gon) randomly changes its size.

S4
Axis-symmetric Dodecagon

A 12-gon object adapts random
axis-symmetric shapes.

S5
Asymmetric Dodecagon

A 12-gon object adapts random
asymmetric shapes.

TABLE II
RMSE FROM SIMULATED DATA

Shape Models
States Methods

S1 S2 S3 S4 S5

STGP-EKF 0.23 0.12 0.08 0.14 0.12x
(m) STGP-RTSS 0.11 0.06 0.04 0.07 0.07

STGP-EKF 0.34 0.14 0.09 0.16 0.13y
(m) STGP-RTSS 0.17 0.06 0.04 0.09 0.07

STGP-EKF 1.11 0.84 0.75 0.91 0.90ẋ
(m/s) STGP-RTSS 0.35 0.29 0.25 0.29 0.35

STGP-EKF 1.07 0.82 0.74 0.89 0.90ẏ
(m/s) STGP-RTSS 0.35 0.29 0.25 0.30 0.34

STGP-EKF 0.98 0.99 1.00 0.99 0.99
P

STGP-RTSS 0.97 0.99 0.99 0.99 0.99

STGP-EKF 0.96 0.98 0.99 0.98 0.98
R

STGP-RTSS 0.98 0.99 0.99 0.99 0.99

lt = 2s, the temporal correlation magnitude is σ2
t = 1. The GP-

EKF forgetting factor is tuned to α = 0.001. The sensor error

standard deviations are σr = 0.25m for range and σθ = 0.25◦

for angle. The number of measurements is Poisson distributed

with mean λm = 20. The measurements are located randomly

over the contour of the object using a uniform distribution.

a) Results: The RMSE values and the percentage im-

provement from 100 Monte Carlo runs for the five scenarios

is given in the Tables II and III. The tables show that the

performance of the STGP-EKF and STGP-RTSS is improved

in all five cases. Fig. 6 shows the snapshots of tracking of

a single simulation run of the five scenarios at the selected

time steps. It can again be observed that the GP-EKF shape

estimates are less accurate as compared to both the STGP-EKF

and the STGP-RTSS estimates except for S3 (simplest shape

model), where they are comparable.

TABLE III
MEAN PERCENTAGE IMPROVEMENT (SIMULATIONS)

Shape Models
States

Methods

compared S1 S2 S3 S4 S5

STGP-EKF 85.81 86.87 79.85 83.49 85.76
x

STGP-RTSS 92.09 93.47 89.66 90.89 91.47

STGP-EKF 77.91 84.74 73.82 83.90 84.17
y

STGP-RTSS 87.55 92.47 87.15 91.50 90.86

STGP-EKF 91.98 90.23 61.90 88.40 87.96
ẋ

STGP-RTSS 97.08 96.99 87.53 96.42 95.53

STGP-EKF 91.79 90.43 62.69 88.43 87.85
ẏ

STGP-RTSS 96.60 96.90 87.40 96.50 95.51

STGP-EKF 33.27 14.71 2.01 9.33 8.51
P

STGP-RTSS 32.55 14.12 1.70 8.90 8.13

STGP-EKF 18.02 11.21 0.69 7.20 6.59
R

STGP-RTSS 19.62 12.28 1.52 8.20 7.56

B. Effect of the STGP-RTSS Lag Value

The performance of the fixed-lag smoother is evaluated using

the shape model S5. The performance is evaluated at different

lag values for 100 Monte Carlo runs. The smoother lag ks is

chosen less than, equal to and more than the true temporal

correlation length-scale lt. The results are given in Fig. 7. It can

be observed that the performance of the smoother is degraded

for ks < lt. However, the smoother performance is comparable

for the cases ks >= lt. Keeping in mind the computational

advantage gained by keeping the lag smaller, as proposed, the

ks = lt is a reasonable trade-off value for the smoother lag.

The peaks in the graphs are observed at time samples when

the shape model switches between the Singer and the constant

model.

C. Computational Complexity

The computational complexity of the STGP-EKF and STGP-

RTSS scale as O(N3
kB +N2

kB
3)and O(ksB

3), respectively.

The empirical results with respect to the three variables B,

Nk and ks are shown in Figs. 8, 9 and 10, respectively. The

program was run on MATLAB R2016b on a Windows 10 (64

bit) Desktop computer installed with an Intel(R) Core(TM) i5-

6500 CPU @ 3.20 GHz (4 CPUs) and 8 GB RAM. B and ks
are the model parameters and can be managed during the design

phase. The number of extent states, B, can be decreased in the

model according to the available computational resources. At

the end of each time-step, the object shape can be constructed

as per the requirement using the standard GP prediction (4)

and (5). If the object shape is constructed at B0 angles, the

increase in computational expense due to this operation is

B0B. Similarly, ks can be reduced according to the available

computational resources. The third variable, Nk, is dependent

on the sensor, the object and other environmental conditions.

The processing time can be further reduced through faster code

implementation in C++.

D. Real Data

In this section, the proposed method is evaluated on real data

presented in [50]. This is a thermal video data of pedestrians

and vehicles sampled at 10Hz obtained using a fixed camera

in an open environment. Three different video samples are

chosen for evaluation which are a motorcycle, a rickshaw and

a pedestrian. The rickshaw appears as a regular rigid object,

the motorcycle as an irregular rigid object and the pedestrian

as an irregular non-rigid object. The ground truth data is not

available and is manually generated by marking the object

contour (as precisely as possible) in each frame, calculating

the CoO location in each frame and the CoO kinematics are

determined using the CoO locations of consecutive frames.

The video frames are pre-processed using frame differencing

and median filtering to generate contour measurements. The

following parameters are changed for the real data experiments;

B = 48, lt = 1, σ2
f = 30 and qx = qy = 50 for the STGP-

EKF / STGP-RTSS and B = 48, σ2
f = 2 and qx = qy = 10

for the GP-EKF.
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S1

S2

S3

S4

S5
× measurement True shape bc STGP-EKF shape

rs STGP-RTSS shape ut GP-EKF shape

+
bc

rs ut GP-EKF COO

True COO STGP-EKF COO

STGP-RTSS COO
rs

Fig. 6. Simulated shapes at k = 1, 50, 150, 230. The figure shows snapshots at selected time samples of the five different shape evolutions. The true CoO
(red plus) and the shape (red solid line) along with the corresponding estimates are also presented in the figure. It can be observed that except for the S3 the
shape estimates of the proposed method are improved as compared to the method [1].
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Fig. 7. STGP-RTSS performance at different lag values. The figure shows
the comparison of smoother performance at different lag values compared to
the true temporal correlation lt. The best performance is given by the smoother
with lag ks = K that is a full STGP regression. It can be observed that values
less than lt provide degraded performance while the performance is almost
similar for ks >= lt.

Results: The RMSE and the percentage improvement of all

three scenarios are given in Tables IV and V. It can be observed

that the performance of the proposed approach is comparable

to the reference (GP-EKF) method while tracking a regularly

shaped rigid object (rickshaw). As observed in the simulated

experiments, there is a significant improvement in performance

while tracking irregularly shaped objects, especially when the

object shape is also changing (pedestrian). The snapshots at

three different samples is given in Fig. 11. It can again be

observed that the shape estimates (especially the precision) are
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Fig. 8. Effect of B on the processing time. The figure shows a comparison
of time taken per time sample by increasing B. The extent state vector of
the STGP model is three times the size of the GP-EKF vector. Hence, the
STGP-EKF and the STGP-EKF-RTSS require more processing time. As B
increases, the processing time of the STGP-EKF-RTSS rises at a much faster
rate compared to the filters due to the RTSS recursion.

significantly improved for non-rigid objects.

VII. CONCLUSIONS

A novel and generic model has been proposed to track

a non-rigid extended or group object based on STGP. Real-

time filtering and smoothing STGP approaches are presented,

along with the theoretical derivations. An improved tracking

efficiency is demonstrated compared to the reference method [1]

using simulated data with more than 90% improvement in
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Fig. 9. Effect of the Nk on the processing time. The figure shows a comparison
of time taken per time sample by increasing Nk . The computational cost of
the STGP-EKF increases at a higher rate as compared to the GP-EKF. The
STGP-EKF-RTSS computational cost is not dependent on the Nk and hence
the plot follows the a similar slope to STGP-EKF with a vertical shift equal
to the time required for RTSS recursion.
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Fig. 10. Effect of the ks on the processing time. The figure shows a comparison
of time taken per time sample by increasing ks. The computational complexity
of the filter is independent of ks while that of RTSS increases exponentially.

TABLE IV
RMSE FROM REAL DATA

Scenarios
States Methods

Rickshaw Motorcycle Pedestrian

STGP-EKF 1.68 1.74 1.63x
(p) STGP-RTSS 1.11 1.05 1.47

STGP-EKF 2.31 1.50 3.95y
(p) STGP-RTSS 0.84 1.08 4.00

STGP-EKF 9.13 11.43 6.31ẋ
(p/s) STGP-RTSS 7.79 7.87 5.51

STGP-EKF 8.35 10.43 14.87ẏ
(p/s) STGP-RTSS 6.08 8.19 13.41

STGP-EKF 0.99 0.96 0.83
P

STGP-RTSS 0.97 0.93 0.76

STGP-EKF 0.81 0.81 0.84
R

STGP-RTSS 0.89 0.89 0.91

TABLE V
MEAN PERCENTAGE IMPROVEMENT (REAL DATA)

Scenarios
States

Methods

compared Rickshaw Motorcycle Pedestrian

STGP-EKF 30.37 89.18 89.56
x

STGP-RTSS 54.19 93.45 90.58

STGP-EKF -22.16 88.29 43.96
y

STGP-RTSS 55.82 91.53 43.32

STGP-EKF 27.11 82.52 91.11
ẋ

STGP-RTSS 37.78 87.96 92.23

STGP-EKF 37.84 83.04 64.81
ẏ

STGP-RTSS 54.75 86.69 68.26

STGP-EKF 7.58 75.81 135.06
P

STGP-RTSS 5.95 71.67 115.54

STGP-EKF -8.94 16.23 0.20
R

STGP-RTSS 0.60 27.90 9.23

× measurement True shape STGP-EKF shape

rs STGP-RTSS shape GP-EKF shape

+
GP-EKF COO

True COO STGP-EKF COO

STGP-RTSS COO

bc
ut

bc
rs utrs

Fig. 11. Snapshots of three time samples. The figure shows snapshots at
selected time samples of the three scenarios, that is rickshaw (top), motorcyclist
(middle) and the pedestrian (bottom). The ground truth and the estimates from
the STGP-EKF, STGP-RTSS and GP-EKF are also shown. It can be observed
that the shape estimates of the STGP based models are improved as compared
to the GP-EKF.

the accuracy in position, 95% in velocity and 7% in the

shape for the tracking of an asymmetric non-rigid object.

The performance improvement to track a non-rigid real object

(pedestrian) is up to 43% in position, 68% in velocity, 10% in

the recall and 115% in the precision. For complicated nonlinear

scenarios, advanced nonlinear filters and smoothers can be

derived for the same model using similar steps. Being a general

model, it can be applied to solve various real-world problems.

The model can also be extended to 3D scenarios.

APPENDIX A

SENSOR MEASUREMENTS COORDINATE CONVERSIONS

This Appendix presents the coordinate converted mea-

surement pdfs as derived in [51]. It presents a geometrical

approximation to an i.i.d. Gaussian pdf which undergoes the

following transformations; polar to Cartesian, translation, and

then back from the translated Cartesian to polar. Another

approximate approach is presented using unscented transforms

for the above mentioned transformations in [52]. In the

Appendix of [51], the author derives the pdf for polar to

Cartesian case using mathematical identities, which is exact.
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A biased conversion degrades the filter performance [53]. The

unbias coordinate conversion has also been proposed namely

unbiased converted measurement (UCM) in [54], for polar

to Cartesian conversion. In [55], an incompatibility in the

UCM derivation was highlighted and removed. The corrected

conversion was named modified UCM (MUCM), which was

later verified through experiments in [56], [57]. The MUCM

conversion is exactly same as proposed in the Appendix of [51].

In this paper, we use the geometric approximate conversion

proposed in [51], as the approximation is valid for low sensor

noise, which is often the case in EOT / GOT applications.

The sensor measurement noise is modeled i.i.d. Gaussian

with variances σ2
ψ̃i,k

and σ2
φ̃i,k

. The sensor measurement pdf

in polar global frame is z̃
sen,p
i,k = N (µsen,pi,k ,R

sen,p
i,k )

with z̃
sen,p
i,k = [ψ̃i,k, φ̃i,k]

T , µ
sen,p
i,k = [ψ̄i,k, φ̄i,k]

T

and R
sen,p
i,k = diag(σ2

ψ̃i,k
, σ2
φ̃i,k

). The corresponding

sensor measurement pdf in Cartesian global frame is

z̃
sen,c
i,k = N (µsen,ci,k ,R

sen,c
i,k ) with z̃

sen,c
i,k = [x̃i,k, ỹi,k]

T ,

µ
sen,c
i,k = [x̄i,k, ȳi,k]

T , R
sen,c
i,k =

[

σ2
x̃i,k

σ2
x̃i,kỹi,k

σ2
ỹi,kx̃i,k

σ2
ỹi,k

]

,

λb = exp

(

−φ̃2
i,k

2

)

ψ̄i,k and

x̄i,k = λb cos φ̄i,k, ȳi,k = λb sin φ̄i,k, (88)

σ2
x̃i,k

=
1

2
(ψ̄2
i,k + σ2

ψ̃i,k
)[1 + cos(2φ̄i,k) exp(−2σ2

φ̃i,k
)]

− exp(σ2
φ̃i,k

)ψ̄2
i,k cos

2 φ̄i,k (89)

σ2
ỹi,k

=
1

2
(ψ̄2
i,k + σ2

ψ̃i,k
)[1− cos(2φ̄i,k) exp(−2σ2

φ̃i,k
)]

− exp(σ2
φ̃i,k

)ψ̄2
i,k sin

2 φ̄i,k (90)

σ2
x̃i,kỹi,k

=
1

2
(ψ̄2
i,k + σ2

ψ̃i,k
)[sin(2φ̄i,k) exp(−2σ2

φ̃i,k
)]

− exp(σ2
φ̃i,k

)ψ̄2
i,k cos φ̄i,k sin φ̄i,k (91)

Suppose a [−xk,−yk]T translation is applied to z̃
sen,c
i,k to

obtain z̃
obj,c
i,k = [x̃ti,k, ỹ

t
i,k]

T where x̃ti,k = x̄i,k − xk + νx̃i,k =
x̆i,k + νx̃i,k , ỹti,k = ȳi,k − yk + νỹi,k = y̆i,k + νỹi,k and

νi,k = [νx̃i,k , νỹi,k ]
T = N (0,Rsen,c

i,k ) represents measurement

noise. The measurement pdf after converting the translated

vector to the polar coordinates is approximated to a Gaus-

sian z̃
obj,p
i,k = N (µobj,pi,k ,R

obj,p
i,k ) with z̃

obj,p
i,k = [r̃i,k, θ̃i,k]

T ,

µ
obj,p
i,k = [r̄i,k, θ̄i,k]

T and R
obj,p
i,k =

[

σ2
r̃i,k

σ2
r̃i,k θ̃i,k

σ2
θ̃i,k r̃i,k

σ2
θ̃i,k

]

where

σ2
r̃i,k

= σ2
x̃i,k

cos2(θ̄i,k) + ̺i,k + σ2
ỹi,k

sin2(θ̄i,k) (92)

σ2
θ̃i,k

=
σ2
x̃i,k

sin2(θ̄i,k)− ̺i,k + σ2
ỹi,k

cos2(θ̄i,k)

r̄2i,k
(93)

̺i,k = 2σx̃i,kỹi,k cos(θ̄i,k) sin(θ̄i,k) (94)

ρr̃i,k θ̃i,k =
(−σ2

x̃i,k
+σ2

ỹi,k
)sin(2θ̄i,k)+2σx̃i,kỹi,kcos(2θ̄i,k)

2σr̃i,kσθ̃i,k r̄i,k
(95)

σr̃i,k θ̃i,k = σθ̃i,k r̃i,k = ρr̃i,k θ̃i,kσr̃i,kσθ̃i,k , (96)

r̄i,k =
√

x̆2i,k + y̆2i,k, θ̄i,k = tan−1
( y̆i,k

x̆i,k

)

(97)

The above conversions are approximate and this approximation

is valid in the central and near central regions. If the angular

error is σφ̃ = 0.5 deg, then the approximation becomes invalid

at 10σφ̃. Similarly, if
σ
ψ̃

ψ̄
= 0.01, then 5% error occurs at 5σψ̃ .

The sensor errors in the EOT / GOT applications are generally

lower and the above approximation remains valid.

APPENDIX B

PROBABILITY DENSITY FUNCTION OF ζ̃i,k

Given ζi,k =
[

cos(θ̃i,k), sin(θ̃i,k)
]T

, the Gaussian approx-

imation of the pdf of ζi,k is derived in this Appendix.

Suppose, a cosine transformation is applied to a standard nor-

mal distribution β ∼ N (0, σ2
β). According to Euler’s formula

exp(ιβ) = cosβ + ι sinβ and E[exp(ιβ)] = exp

(

− σ2
β

2

)

where E[·] represents the mathematical expectation oper-

ator. Also E[eιβ ] = E[cosβ + ι sinβ] = E[cosβ] +
ιE[sinβ]. As a result, the real and imaginary parts can

be equated as ℜ{E[eιβ ]} = exp

(

− σ2
β

2

)

= E[cosβ] and

ℑ{E[eιβ ]} = 0 = E[sinβ], respectively, where ℜ{.} and ℑ{.}
represent the real and imaginary parts of the variable.

Now consider cosine and sine transformations applied to

θ̃i,k ∼ N (θ̄i,k, σ
2
θ̃i,k

) with σ2
θ̃i,k

= σ2
β , Ci,k = cos(θ̃i,k) and

Si,k = sin(θ̃i,k). Given that β = θ̃i,k − θ̄i,k, the mean and

variances are approximated as follows:

µCi,k = E[cos(θ̃i,k)] = e−
σ2
θ̃i,k
2 cos θ̄i,k, (98)

µC2
i,k

= E[cos2(θ̃i,k)] =
1

2
+

1

2
e
−2σ2

θ̃i,k cos 2θ̄i,k, (99)

σ2
Ci,k = E[cos2 θ̃i,k]− (E[θ̃i,k])

2

=
1

2
+

1

2
e
−2σ2

θ̃i,k cos 2θ̄i,k − e
−σ2

θ̃i,k cos2 θ̄i,k,

µSi,k = e−
σ2
θ̃i,k
2 sin θ̄i,k, (100)

σ2
Si,k =

1

2
− 1

2
e
−2σ2

θ̃i,k cos 2θ̄i,k − e
−σ2

θ̃i,k sin2 θ̄i,k, (101)

σ2
Ci,kSi,k = σ2

Si,kCi,k = E[{cos(θ̃i,k)− E(cos(θ̃i,k))}×
{sin(θ̃i,k)− E(sin(θ̃i,k))}] = 0, (102)

where µCi,k and µSi,k represent the mean, σ2
Ci,k and σ2

Si,k
represent the variances and σ2

Ci,kSi,k and σ2
Si,kCi,k represent

the covariances. Using above, the pdf can be approximated to

a Gaussian ζ̃i,k ∼ N (ζ̄i,k,R
ζ̃
i,k) where:

ζ̄i,k =

[

µCi,k
µSi,k

]

,R
ζ̃
i,k =

[

σ2
Ci,k σ2

Ci,kSi,k
σ2
Si,kCi,k σ2

Si,k

]

. (103)

The approximation is valid in central and near central regions

as explained in the Appendix A.
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