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∗
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Abstract

This paper finds optimal portfolios for the reference-dependent preferences by Kőszegi and Ra-

bin, with piecewise linear gain-loss utility, in a one-period model with a safe and a risky asset. If

the return of the risky asset is highly dispersed relative to its potential gains, two personal equilib-

ria arise, one of them including risky investments, the other one only safe holdings. In the same

circumstances, the risky personal equilibrium entails market participation that decreases with loss

aversion and gain-loss sensitivity, whereas the preferred personal equilibrium is sensitive to market

and preference parameters. Relevant market parameters are not the expected return and standard

deviation, but rather the ratio of expected gains to losses and the Gini index of the return.
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1 Introduction

Standard portfolio theory imagines investors as utility maximizers, unencumbered by personal past ref-

erences, who are sensitive to consumption and wealth outcomes alone. An important implication is that

every such investor should participate, however little, in investments carrying a positive risk premium:

using the words of Huang and Litzenberger (1988), “An individual who is risk averse and who strictly

prefers more to less will undertake risky investments if and only if the rate of return on at least one risky

asset exceeds the risk-free interest rate.”

In reality, less than half of households participates in the stock market (Guiso, Haliassos, and Jap-

pelli, 2002; Vissing-Jorgensen, 2003), and the prospect theory of Kahneman and Tversky (1979) recog-

nizes reference dependence as a major determinant of preferences, though it remains silent on the origin

of such references. Filling this void, Shalev (2000) argues that “Reference points emerge as expressions

of anticipation which are fulfilled”, and Kőszegi and Rabin (2006) stipulate that reference points are

“rational expectations held in the recent past about outcomes”.

This paper solves the one-period portfolio choice problem for an investor with the reference-de-

pendent preferences of Kőszegi and Rabin (2006), and finds that its solution supports two competing

personal equilibria—expectations about one’s choice that make such choice optimal. One personal equi-

librium involves a mix of risky and safe investments, and is a variant of the familiar utility-maximizing

portfolio of Markowitz (1952). The additional equilibrium involves only safe investments, and offers

an explanation for non-participation in the market based on reference-dependent preferences: for an in-

vestor expecting to take risk, it is optimal to do so to the extent specified by the risky equilibrium. Yet,

for an investor with the same preferences but with the expectation to hold safe assets, it is optimal to

forgo risky assets completely.

The reference-dependent preferences of Kőszegi and Rabin (2006) prescribe that the overall value of

a payoff results from its standard expected utility plus a further component that measures the satisfaction

or disappointment of the payoff in comparison to another reference payoff. The comparison is performed

by averaging a gain-loss function over all possible payoff-reference pairs, each of them weighted by its

respective probability. This gain-loss function is “kinked” at the origin, with a steeper slope for losses

than for gains to reflect loss aversion—“losses loom larger than gains” (Kahneman and Tversky, 1979).

While Kőszegi and Rabin (2006, 2007, 2008, 2009) develop reference-dependent preferences at

increasing levels of generality, their implications for portfolio choice have hitherto remained unexplored,

and this paper starts to fill this gap. The central difference from previous models of reference dependence

(cf. Bernard and Ghossoub, 2010; He and Zhou, 2011) is that the reference point is endogenous, and

therefore needs to be identified as part of the optimization.

Two main issues arise: First, as optimal choices depend on the reference as well as the utility,

multiple optimal portfolios may exist, even with a strictly concave utility function. Second, a reference

must be a personal equilibrium, in that it needs to be the optimal payoff for those who adopt it as a

reference, e.g., investors cannot increase their utilities by adopting unrealistically low references as to

surprise themselves with brilliant results. In mathematical terms, a fixed-point problem appears.

We characterize all the personal equilibria in a one-period model of portfolio choice: First, we solve

the optimization problem for an arbitrary reference. Then, we identify those references that reproduce

themselves as optimal payoffs. Among them, we further determine the preferred personal equilibrium—

the ideal reference that an investor unencumbered by a past reference would choose.

We find that the statistical attributes of asset returns that separate the participation and non-partici-

pation regimes are not the first two moments typical of mean-variance analysis, but rather the gain-loss

ratio and the Gini index. The ratio of expected gains to expected losses varies from zero for a sure

loss to infinity for a sure gain, and already appears in the work of Bernardo and Ledoit (2000), who

investigate the asset pricing restrictions for the gain-loss ratio, in analogy to the analysis of Hansen and

Jagannathan (1991) on Sharpe ratios. Reference-dependent preferences make this ratio prominent as a

result of loss-aversion, and offer theoretical support for its use in asset pricing.

The role of the Gini index as relevant measure of dispersion stems from the definition of reference-
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dependent utility, which contributes to preferences through the expected gain-loss of payoff-reference

outcomes. As payoff and reference are sampled independently in this definition, and our gain-loss

function is piecewise linear, it follows that the expected gain-loss of a personal equilibrium is a function

of the the mean-absolute difference1 of such payoff, and the Gini index coincides with the mean-absolute

difference divided by twice the mean.

The Gini index also affects the incidence of market participation and non-participation. As the main

result (Theorem 3.4 below) shows, and in contrast to the initial quote from Huang and Litzenberger

(1988), a risky asset with high gain-loss ratio (hence expected return) is not sufficient to guarantee par-

ticipation, which in turn requires that the return’s Gini index is sufficiently low. Even then, participation

and non-participation may coexist as two competing personal equilibria, each of which is optimally

chosen by those who already take it as a reference. Of these two personal equilibria, which one is

preferred depends on parameter values, as we demonstrate by studying a model in detail.

The paper proceeds as follows: Section 2 describes the model and formulates the reference-depen-

dent optimization problem; Section 3 states the main results and discusses their significance; Section 4

focuses on a model with exponential utility and Gaussian returns, calculating in detail optimal portfolios

and their performance; Section 5 discusses further implications and concludes. All proofs are in the

appendix.

2 Model

Consider a one-period model in which an investor trades at time 0 and evaluates the payoff at time T ,

when its return is revealed. The market includes a safe asset with constant interest rate r ≥ −1, so that

the gross return 1+r is non-negative, and a risky asset with excess return described by a random variable

X defined on a probability space (Ω,F ,P).

At time 0, no information is available (i.e., the σ-algebra F0 = {∅,Ω} is trivial), while at time T all

information is revealed (i.e.,FT = F ). Thus, a self-financing portfolio is described by the initial capital

w0 and the exposure φ ∈ R to the risky asset at time 0. Its terminal value is

V
φ

T
= w̃0 + φX,

where w̃0 ≔ w0 (1 + r) denotes the compounded initial wealth.

The next assumption ensures that the utility function is smooth and the usual utility maximization

problem is well-posed.

Assumption 2.1.

(i) The risky asset return X is integrable (i.e., E[|X|] < +∞), arbitrage-free2 (i.e., P{X > 0} > 0 and

P{X < 0} > 0), and has a bounded density f (·) with respect to the Lebesgue measure on R.3

(ii) The utility function u : R → R is strictly increasing, concave, and continuously differentiable.

Moreover, there exists ǫ > 0 such that

E
[
u′(α + βX)

]
< +∞ and E

[
u′(α + βX)1+ǫ |X|2+2ǫ

]
< +∞ for all α, β ∈ R. (2.1)

The above market structure is deliberately simple, as the paper’s main focus is on preferences, which

follow the reference-dependent framework of Kőszegi and Rabin (2006). The total welfare of a payoff Z

results from the usual expected utility E[u(Z)], plus a further contribution that reflects the disappointment

or satisfaction from Z in relation to some stochastic reference payoff B. Such contribution is computed

1 The mean-absolute difference of a random variable X is defined as E[|X − Y |], where Y is independent of X and identically

distributed.
2 The case X = 0 almost surely (a.s.) is trivial and hence excluded here.
3 The boundedness of f (·) can be replaced with the weaker, but more cumbersome condition

∫
R

f (x)2+ 1
ǫ dx < +∞, with the

same ǫ > 0 as in (2.1).
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as follows: upon receiving the payoff Z, the agent evaluates the utility surprise u(Z) − u(B) according to

some gain-loss function ν(·) that is kinked at the origin to reflect the higher disappointment from a given

utility loss than the satisfaction from a utility gain of equal size. The resulting gain-loss ν(u(Z) − u(B))

is then aggregated across all possible values of Z and B, each pair weighted according to its respective

probability.

The above informal description crystallizes into the following definition.

Definition 2.2 (Reference-dependent utility (Kőszegi andRabin, 2006)). The gain-loss function ν : R→
R is of the form4

ν(x) ≔ ν+
(
x+

)
11[ 0,+∞) (x) − ν−

(
x−

)
11(−∞,0)(x) , for all x ∈ R,

where ν± : [0,+∞) → R satisfy the following assumptions:

(A1) ν±(·) are continuous on [0,+∞) , strictly increasing on [0,+∞) , twice-differentiable on (0,+∞),

and ν±(0) = 0;

(A2) (Risk aversion on gains and risk propensity on losses) ν′′±(x) ≤ 0 for all x > 0;

(A3) (Loss aversion) ν+(y) − ν+(x) < ν−(y) − ν−(x) for all x, y ∈ (0,+∞) with x < y, and

λ ≔
ν′+(0)

ν′−(0)
∈ (0, 1) , (2.2)

where ν′±(0) denote the right (+) and left (−) derivatives of ν(·) at 0.

The reference-dependent utility of a payoff Z with respect to the reference B is defined as

U(Z| B) ≔ E[u(Z)] + E

[∫

R

ν(u(Z) − u(b)) dPB(b)

]

=

∫

R

∫

R

[u(z) + ν(u(z) − u(b))] dPB(b) dPZ(z) , (2.3)

where PZ and PB are the probability laws of Z and B, respectively.5

Though Kőszegi and Rabin (2006) define reference-dependent utility for general S -shaped gain-

loss functions ν(·), which make agents potentially risk-seeking in losses, this paper focuses on a more

parsimonious setting, in which ν(·) is piecewise linear for gains and losses, with a concave kink at zero

that preserves loss aversion.

Assumption 2.3. For some η ∈ (0, 1),

ν+(x) ≔
λη

1 − η
x and ν−(x) ≔

η

1 − η
x, for all x ∈ [0,+∞) .

4 Here, x± ≔ max{±x, 0} for all x ∈ R. In addition, 11A : X → {0, 1} denotes the indicator function of the set A ⊆ X, defined

as

11A(x) ≔

{
1, if x ∈ A,

0, otherwise.

5 Note that the product measure PB × PZ in (2.3) reflects the evaluation of the gain-loss function, in which each outcome of Z

is compared to all possible values of the reference B. Thus, the above expressions could be written in the appealing form

U( Z| B) = E[u(Z)] + E[ν(u(Z) − u(B))] ,

where Z and B are independent random variables. This expression is more compact, but it is also partly misleading, as it

suggests that the random variables are compared outcome-by-outcome. While this is technically true in the product space

(Ω × Ω,F ⊗F ,P ⊗ P), it is conspicuously false in the original probability space. In fact, all that is necessary to define (2.3)

is the distribution of B, which may not even be supported by the probability space Ω.
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The advantage of this parametrization is to reduce reference-dependence to the two parameters η, λ ∈
(0, 1). The parameter λ is a measure of loss tolerance (cf. Abdellaoui, Bleichrodt, and Paraschiv, 2007),

defined as the ratio between sensitivity to gains and sensitivity to losses, as in Benartzi and Thaler

(1995); Köbberling and Wakker (2005): λ ↓ 0 represents extreme sensitivity to losses, which makes

gains irrelevant, while λ = 1 recovers the usual case of a smooth utility, with equal sensitivity for gains

and losses. The parameter η controls the relative weights of classical versus reference-dependent utility

in the overall objective, with η = 0 recovering the classical setting, and η ↑ 1 the pure reference-

dependent limit. (Elsewhere in the literature, e.g., Tversky and Kahneman (1992), the symbol λ denotes

loss aversion, defined as the ratio between small losses and equal-sized gains, which corresponds to 1/λ

in our notation. This paper prefers to focus on loss tolerance, which is between zero and one, and hence

allows to display parameter regimes in the foregoing figures without axis distortions.)

Reference-dependent preferences lead to the two central concepts of personal equilibrium and pre-

ferred personal equilibrium. Informally, a personal equilibrium is a payoff that is optimal when used as

reference: if the agent takes such a strategy as a reference, then the strategy is indeed chosen. In this

sense, personal equilibria are the only rational references, which are actually selected once adopted.

As personal equilibria can be numerous and each of them may have a different utility, the question

arises of which personal equilibrium is optimal, leading to the concept of preferred personal equilib-

rium, a personal equilibrium that is not surpassed by any other. A rational forward-looking agent,

unencumbered by a legacy reference, necessarily chooses a preferred personal equilibrium.

Definition 2.4 (Personal equilibria).

(i) A portfolio φ is a personal equilibrium with initial wealth w0 if

sup
ϕ∈R

U
(
V
ϕ

T

∣∣∣ Vφ

T

)
= U

(
V
φ

T

∣∣∣∣ Vφ

T

)
, (2.4)

and PE(w0) ⊆ R denotes the set of personal equilibria.

(ii) A portfolio φ ∈ PE(w0) is a preferred personal equilibrium if

v∗(w0) ≔ sup
ϕ∈PE(w0)

U
(
V
ϕ

T

∣∣∣ Vϕ

T

)
= U

(
V
φ

T

∣∣∣∣ Vφ

T

)
,

and PPE(w0) ⊆ R denotes the set of preferred personal equilibria.

3 Main Results

3.1 Linear utility

The first result of the paper identifies personal equilibria in the special case of a linear utility function

u(·). In the context of reference-dependence, a linear utility does not imply risk neutrality, in view of

loss aversion in the reference-dependent component.

The theorem below finds that three regimes arise: (i) there are no personal equilibria; (ii) the safe

portfolio is the unique personal equilibrium; and (iii) any risky position with positive expected return

(including zero) is a personal equilibrium. These conclusions are illustrated in Figure 1, which displays

the parameter combinations in which each regime arises.

Theorem 3.1. Let u(·) be linear, µ ≔ E[X] , 0, and let Assumptions 2.1 and 2.3 hold. Also, set µ± ≔
E
[
X±

]
, and denote the Gini index of the distribution of X by

G ≔
1

|µ|

∫

R

P{X ≤ x}P{X > x} dx.



6 P. Guasoni and A. Meireles-Rodrigues

(i) (Personal equilibria)

(a) If

1 − η (1 − λ) ≤ µ+

µ−
≤ 1

1 − η (1 − λ)
(3.1)

and

1 − η (1 − λ) ,
G − 1

G + 1
(3.2)

both hold, then PE(w0) = {0}, where 0 is the portfolio with all wealth in the safe asset.

(b) If (3.1) holds but (3.2) fails, then PE(w0) = {φ ∈ R : φµ ≥ 0}.
(c) If (3.1) fails, then PE(w0) = ∅.

(ii) (Preferred personal equilibria)

If (3.1) holds, then PPE(w0) = {0}. Otherwise, PPE(w0) = ∅.

Proof. See Appendix A.2. �

Remark 3.2. Condition (3.1) is equivalent to the condition

1 + ν′+(0)

1 + ν′−(0)
≤ µ+

µ−
≤

1 + ν′−(0)

1 + ν′+(0)
(3.3)

identified in Kőszegi and Rabin (2007, Proposition 11(i)) as necessary for a zero lottery to be a personal

equilibrium, and sufficient for it to be preferred to sufficiently small favorable bets (with a safe reference).

By contrast, Theorem 3.1 implies, under the same condition, that the safe investment combined with the

safe reference is strictly better than all risky portfolios combined with the safe reference, hence (3.3) is

also sufficient for the existence of the safe personal equilibrium. Note also that the potentially unbounded

random variables considered here raise the integrability issues addressed in Lemma A.3 below.

(a) G ≤ 1.

η (1 − λ) =
|µ|

max{µ+, µ−}

η (1 − λ) =
2

G + 1

(b) G > 1.

Figure 1: The set of personal equilibria of an investor with linear utility (in a market where µ , 0) is defined by

the relation between the investor’s loss tolerance λ on the x-axis and reference-dependence η on the y-axis. The

three regions represent the sets of personal equilibria for all combinations of the parameters λ and η: PE(w0) = ∅

on , PE(w0) = {0} on , and PE(w0) = {φ ∈ R : φµ ≥ 0} on .
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Even a cursory look at this result immediately highlights some stark differences from usual portfolio

theory. First, an asset’s appeal is measured not by its expected return, but rather by its gain-loss ratio

µ+/µ−. Bernardo and Ledoit (2000) postulated such ratio as the central element of their asset pricing

model: here it arises from the combination of loss-aversion with reference-dependent utility. Second,

the risk of an asset is not described by variance, but rather by the Gini index G, a measure of disper-

sion introduced by Gini (1912) and commonly used in the inequality literature, but apparently novel in

portfolio choice. Note, however, that while the Gini index of a distribution with positive support varies

between 0 (no dispersion) and 1 (extreme dispersion), the Gini index of a random variable taking pos-

itive as well as negative values, such as the excess return considered here, can take values above one

(Lemma A.7 below offers bounds for the Gini index in terms of the Sharpe ratio).

The main message of Theorem 3.1 is that, if expected gains are not significantly different from

expected losses, as captured by the gain-loss ratio µ+/µ−, then the only risk-neutral preferred personal

equilibrium is the fully safe portfolio. That the safe portfolio is a personal equilibrium is not surprising

in view of loss aversion, which creates a tension between positive expected returns, emphasized by

classical utility, and expected losses, emphasized by the reference-dependent component. The deeper

question is whether other personal equilibria exist.

Condition (3.2) characterizes the uniqueness of the safe personal equilibrium, which holds unless

the Gini coefficient of the risky asset has the critical value for which (3.2) fails (i.e., equality holds).

Such a result appears puzzling at first, as the safe asset is the unique personal equilibrium for values of

1−η (1 − λ) both below and above, but not equal to (|G| − 1) / (|G| + 1). Behind such apparent singularity

lie two sharply different reasons for a unique equilibrium below and above 1 − η (1 − λ). Below such

threshold, loss aversion is strong enough to make an investor wish for a safer portfolio, no matter what

the reference payoff: the safe personal equilibrium is “stable”.

Above the threshold, the opposite occurs: loss aversion is so weak that any risky reference payoff

encourages even more risk (and return), whence equilibrium fails unless the reference portfolio is safe,

which represents an “unstable” equilibrium. At the threshold, loss aversion encourages neither more

nor less risk taking, making any strategy with positive expected return a personal equilibrium. This

interpretation is further supported by Theorem 3.4 below in the context of risk aversion, which leads to

multiple equilibria. Note also that6

G − 1

G + 1
= −E[X ∧ Y]

E[X ∨ Y]
, (3.4)

where the random variable Y is independent of, and identically distributed to the excess return. Thus,

the right-hand side of (3.4) can be interpreted as the opposite of a min-max ratio, a scale-invariant

attribute that describes how far the average minimum of two independent outcomes is from the average

maximum.7

In summary, reference dependence induces a delicate tradeoff between loss aversion and gain-loss

ratios even for linear utilities, generating two main regimes: either the safe asset is the only preferred per-

sonal equilibrium, or no equilibrium exists. The preferred safe equilibrium region contains a borderline

case with infinitely many equilibria.

Remark 3.3 (Long Positions Constraint). The non-existence of personal equilibria in Theorem 3.1

stems from the absence of constraints on risky positions, which lead a risk-neutral utility maximizer

to take arbitrarily large risks when they are sufficiently attractive. (Put differently, neither the set of

trading strategies nor the superlevel sets of the objective are compact—unlike Theorem 3.4 below.8)

Alternative assumptions of interest include the possibility that neither leverage nor short sales are al-

lowed, whence the strategy must lie in the interval [0,w0], and a personal equilibrium always exists. An

inspection of the proof in the appendix reveals that, under such constraint, the statement of Theorem 3.1

6 Here, x ∨ y ≔ max{x, y} and x ∧ y ≔ min{x, y}, for all x, y ∈ R.
7 Note also that the min-max ratio is strictly between −1 and 1, and that the Gini index and min-max ratio of a (purely atomic)

Dirac law δx0
, for some x0 ∈ R \ {0}, are equal to 0 and 1, respectively.

8 In this respect, our setting differs from the standard environment of Kőszegi and Rabin (2006), in which the action set is

compact.
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changes as follows:

(i’) (Personal equilibria)

(a’) If, in addition to (3.1),

1 − η (1 − λ) >
G − 1

G + 1
, (3.5)

then PE(w0) = {0,w0}.
(b’) If, in addition to (3.1),

1 − η (1 − λ) <
G − 1

G + 1
,

then PE(w0) = {0}.
(c’) If (3.1) holds but (3.2) fails, then PE(w0) = [0,w0].

(d’) If (3.1) fails, then PE(w0) = {w0}.

(ii’) (Preferred personal equilibria)

If (3.1) holds, then PPE(w0) = {0}. Otherwise, PPE(w0) = {w0}.

3.2 Concave utility

With concave utilities, risk aversion arises from both the utility function and the loss aversion in the

reference-dependent component. The next result characterizes the optimal solution in this setting, in

which a personal equilibrium always exists. In fact, two personal equilibria typically compete for op-

timality: one is the safe asset, as for linear utility. The other one involves a mix of safe and risky

investments, and converges to the usual maximizer of expected utility as reference-dependence van-

ishes.

Theorem 3.4. Let u′(·) be strictly decreasing with u′(−∞) = +∞, µ , 0, and let Assumptions 2.1 and 2.3

hold.

(i) (Personal equilibria)

(a) If

1 − η (1 − λ) ≤ µ+

µ−
≤ 1

1 − η (1 − λ)
(3.1)

and

1 − η (1 − λ) >
G − 1

G + 1
(3.5)

both hold, then PE(w0) = {0, θ∗} for some θ∗ ≡ θ∗(η, λ) such that θ∗µ > 0.

(b) If (3.1) holds but (3.5) fails, then PE(w0) = {0}.
(c) If (3.1) fails, then PE(w0) = {θ∗}.

(ii) (Preferred personal equilibria)

If (3.1) holds and G ≥ 1, then PPE(w0) = {0}. If (3.1) fails, then PPE(w0) = {θ∗}.

Proof. See Appendix A.2. �

Remark 3.5. Theorem 3.4 identifies the set of personal equilibria in all cases, and the preferred personal

equilibrium in all cases other than G < 1 combined with (3.1). In such a case, determining which

personal equilibrium is preferred requires the comparison of the values of the respective utilities, on

a model-by-model basis. We did not find model-free conditions that identify the preferred personal

equilibrium in this case.
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(a) G ≤ 1.

η (1 − λ) =
|µ|

max{µ+, µ−}

η (1 − λ) =
2

G + 1

(b) G > 1.

Figure 2: Regions of different sets of personal equilibria in the parameter space (λ, η) for an investor with strictly

concave utility and unbounded marginal (in a market where µ , 0): PE(w0) = {θ∗} on , PE(w0) = {0, θ∗} on

, and PE(w0) = {0} on . The dashed curve and the dotted curve represent the existence boundary of the

safe personal equilibrium and of the risky personal equilibrium, respectively.

Figure 2 displays the regimes arising for different combinations of η and λ. Weak loss aversion (λ

near one) or reference-dependence (η near zero) generate a single personal equilibrium that includes

both safe and risky investments, as in the usual expected-utility setting. In this regime, the asymmetry

between gains and losses is not sufficient to alter the qualitative structure of the solution.

As reference dependence and loss aversion increase, the safe equilibrium emerges, coexisting with

the classical one (darker region in Figure 2). In such a regime, either equilibrium can be preferred,

depending on their respective values, which in turn depend on the specific utility function. If the return

of the risky asset is relatively concentrated (G ≤ 1), no other regime is possible. However, if dispersion

is high (G > 1), then a third regime arises, in which the safe investment survives as the only, hence

preferred, personal equilibrium.

Remark 3.6 (Long Positions Constraint). If leverage and short sales are excluded, the conclusions of

Theorem 3.4 remain valid if the initial capital is sufficiently large and P{X < −1 − r} > 0. By contrast,

the borrowing constraint is binding whenever the initial capital is small, whence PE(w0) = PPE(w0) =

{0} if (3.1) holds, and PE(w0) = PPE(w0) = ∅ otherwise.

The last theorem of this subsection describes the sensitivity of the only risky equilibrium (when it

exists) in Theorem 3.4 to model parameters, such as gain-loss sensitivity, loss tolerance, initial capital,

and risk aversion.

Theorem 3.7. Let u′(·) be strictly decreasing with u′(−∞) = +∞, µ , 0, and let Assumptions 2.1 and 2.3

as well as condition (3.5) hold. Also, denote by θ the unique solution of the classical utility maximization

problem, i.e.,

sup
ϕ∈R
E

[
u
(
V
ϕ

T

)]
= E

[
u
(
Vθ

T

)]
, (3.6)

and by θ∗(η, λ) the unique nonzero (i.e., risky) personal equilibrium (which exists by (3.5)).
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(i) (Sensitivity to preference parameters)

(a) (Continuity) The mapping (η, λ) 7→ θ∗(η, λ) is continuous.

(b) (Reference dependence induces less risk taking) For all η, λ satisfying (3.5),

∣∣∣θ∗(η, λ)
∣∣∣ < |θ| . (3.7)

(c) (Monotonicity) The mapping λ 7→ θ∗(η, λ) is strictly increasing for any η ∈ (0, 1), and η 7→
θ∗(η, λ) is strictly decreasing for any λ ∈ (0, 1).

(d) (Classical utility limits) For any η, λ ∈ (0, 1), limλ→1 θ
∗(η, λ) = θ and limη→0 θ

∗(η, λ) = θ.

(e) (Pure reference-dependent limits) If G > 1, then for all η̄, λ̄ ∈ (0, 1) for which (3.2) fails,

lim
(η,λ)→(η̄,λ̄)

θ∗(η, λ) = 0.

If G = 1, then

lim
(η,λ)→(1,0)

θ∗(η, λ) = 0.

If G < 1, then there exists θ̄ with θ̄µ > 0 and |θ̄| < |θ∗| such that

lim
(η,λ)→(1,0)

θ∗(η, λ) = θ̄.

(ii) (Sensitivity to risk aversion)

Let η, λ ∈ (0, 1) satisfy (3.5), and let ui(·), i ∈ {1, 2}, be two utility functions such that u′
i
(·) is

strictly decreasing with u′
i
(−∞) = +∞. If u2(·) is a concave monotone transformation of u1(·), i.e.,

there exists a strictly increasing, concave and differentiable function ρ(·) such that

u2(x) = ρ(u1(x)) for all x ∈ R, (3.8)

then
∣∣∣θ∗

1

∣∣∣ ≥
∣∣∣θ∗

2

∣∣∣, where θ∗
i

denotes the unique risky personal equilibrium for the reference-depen-

dent problem (2.4) with utility ui(·).

(iii) (Sensitivity to initial capital)

Let η, λ ∈ (0, 1) satisfy (3.5), and assume further that u(·) is twice-differentiable. Also, denote the

Arrow-Pratt coefficient of absolute risk aversion (Arrow, 1965; Pratt, 1964) of u(·) by

ARAu(x) ≔ −u′′(x)

u′(x)
, for all x ∈ R.

If ARAu(·) is non-increasing (respectively, constant or non-decreasing), then ∂θ∗/∂w0 is non-

negative (respectively, zero or non-positive).

Proof. See Appendix A.2. �

Property (i)(a) states the continuity of the personal equilibrium with respect to the preference para-

meters, meaning that slight changes in preference parameters produce only slight changes in the risky

personal equilibrium. Equation (3.7) shows that the personal equilibrium implies a lower investment

in the risky asset, in view of loss aversion. The interpretation of (i)(c) is that more loss tolerance

leads to a riskier position; likewise, the larger the gain-loss sensitivity, the smaller the risky position.

Property (i)(d) stipulates that, as the gain-loss sensitivity vanishes either through η or λ, the personal

equilibrium boils down to the unique utility-maximizing portfolio.

Part (i)(e) describes the impact of the return dispersion G on the optimal portfolio. A high dispersion

(G ≥ 1) has a predictable effect: the personal equilibrium degenerates to the safe investment as the

reference-dependent component overwhelms expected utility (i.e., η near 1 and λ near 0 when G = 1; if
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G > 1, however, then it is not possible for the pair (η, λ) to even approach (0, 1), since it can only reach

as high as the threshold for existence of the risky personal equilibrium).

A more surprising phenomenon occurs for more concentrated distributions (G < 1): then the unique

personal equilibrium converges to a nontrivial, nonzero limit, even for an agent solely focused on loss

aversion, and insensitive to gains (η ↑ 1, λ ↓ 0). At first glance, such a result is puzzling, as the investor

has nothing to gain from risk taking. The key here is that an ambitious reference payoff can induce risky

investments, even if gains are disregarded, purely to keep up with the reference by avoiding losses. Put

differently, for an investor with a high reference payoff and a moderately concentrated return, opting

for the safe asset is an unpalatable choice, as it entails larger losses from the reference than a risky

investment that on average comes closer to such target. Thus, such an investor is trapped by a high

reference in a non-preferred personal equilibrium, which is inferior to a safe investment combined with

the safe reference.

Turning to (ii), first recall that, if the utilities u1(·) and u2(·) are both twice-differentiable then, by

Arrow-Pratt’s theorem (Arrow, 1965; Pratt, 1964), condition (3.8) is equivalent to replacing u1(·) with

some u2(·) with higher risk aversion than u1(·). Hence, as for expected utility, higher risk aversion leads

to safer investments.

Finally, property (iii) recovers the same wealth effects for reference-dependent utility as for classical

utility: if an agent has constant absolute risk aversion, then the risky personal equilibrium is independent

of the initial capital; if an agent’s absolute risk aversion is decreasing (respectively, increasing) in wealth,

then the stock is a normal good (respectively, an inferior good)—i.e., the optimal amount allocated to

the risky asset increases (respectively, decreases) with the initial capital.

Remark 3.8 (Recovering Risk Neutrality). It is tempting to view Theorem 3.1 as the limit case of The-

orem 3.4 as risk aversion vanishes to risk neutrality, but there are perils in such an interpretation. As

intuition suggests, in the model in the next section the risky personal equilibrium becomes arbitrarily

large as the utility function becomes linear (Proposition 4.2(iv))—the risky personal equilibrium disap-

pears. Yet, contrary to intuition, it is possible to construct sequences of concave utilities that converge

pointwise to a linear function, while the corresponding risky personal equilibria remain confined in a

bounded interval (Lemma A.6 below). In summary, while risk aversion can be zero only in one way, it

can vanish in many ways, and personal equilibria may diverge, converge, or oscillate.

3.3 Ramifications and extensions.

3.3.1 More general gain-loss functions.

Piecewise-linear gain-loss functions conveniently confine the effect of reference-dependence to the loss

aversion at the reference point. The question is to what extent the results in the previous section carry

over to more general gain-loss functions.

Throughout this subsection, assume that u(·) is twice-differentiable, and suppose that Assumption 2.3

is replaced by the weaker:

Assumption 3.9. For all x, y ∈ R such that x < y,

− u′′(x)
(
1 + ν′−(u(y) − u(x))

)
≥ −u′(x)2 ν′′−(u(y) − u(x)) . (3.9)

This condition ensures that, while investors may be risk-seeking on losses, the concavity of their

utility u(·) more than compensates the convexity of ν−(·), so that the overall reference-dependent prob-

lem (2.4) remains globally concave. Note that (3.9) holds in particular whenever ν−(·) is a linear function.

With this more general gain-loss function, (3.3) remains necessary and sufficient for the safe portfo-

lio to be a personal equilibrium. By contrast, some differences arise for risky personal equilibria, which

are addressed in the following result.
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Lemma 3.10. Let µ , 0, and let Assumptions 2.1 and 3.9 hold.

(i) (Linear utility)

Let u(·) be linear. Also, set ν′±(+∞) ≔ limx→+∞ ν
′
±(x) ∈ [0,+∞) and

λ∞ ≔
ν′+(+∞)

ν′−(+∞)
.

(a) If
G − 1

G + 1
∈

(
1 − ν−

(0) (1 − λ∞)

1 + ν−(0)
, 1 − ν−

(0) (1 − λ)

1 + ν−(0)

)
, (3.10)

then PE(w0) \ {0} is non-empty and bounded, and all risky personal equilibria have the same sign

as µ.

(b) If
G − 1

G + 1
<

[
1 − ν−

(0) (1 − λ∞)

1 + ν−(0)
, 1 − ν−

(0) (1 − λ)

1 + ν−(0)

]
, (3.11)

then PE(w0) \ {0} = ∅.

(ii) (Concave utility)

Let u′(·) be strictly decreasing with u′(−∞) = +∞. If

1 −
ν′−(0) (1 − λ)

1 + ν′−(0)
>

G − 1

G + 1
, (3.12)

then PE(w0) \ {0} is non-empty and bounded, and all risky personal equilibria have the same sign

as µ.

Proof. See Appendix A.2. �

The main difference of this result from the piecewise-linear case is that the number of risky personal

equilibria is not determined a priori. For an investor with linear utility, first note that u(·) can override

risk-propensity on losses only if ν−(·) is linear. As conditions (3.10) and (3.11) show, the existence of

risky personal equilibria is now also dependent on the new parameter λ∞; as in He and Zhou (2011), we

denote it as the large-loss tolerance (i.e., the analogue of the loss tolerance parameter λ, but for large

rather than small payoffs). While part (i)(a) states that there is at least one risky personal equilibrium if

(3.10) holds, part (i)(b) is a partial converse result, which makes condition (3.11) essentially sharp, as it

leaves open only the borderline case

G − 1

G + 1
∈

{
1 − ν−

(0) (1 − λ∞)

1 + ν−(0)
, 1 − ν−

(0) (1 − λ)

1 + ν−(0)

}

which needs to be examined model by model, with the exception of ν+(·) linear (which falls in the

case (i)(b) of Theorem 3.1).

Turning to a strictly concave utility with unbounded marginal, it is still possible to establish the

existence of a risky personal equilibrium with positive expected return under condition (3.12), which is

a generalization of (3.5). While uniqueness is no longer guaranteed, for all risky personal equilibria the

amount of wealth invested in the stock never exceeds a certain level.

3.3.2 Mixed strategies.

The paper defines a portfolio as a pure strategy, a fixed number of shares that the investor chooses

at the beginning of the period, consistently with usual portfolio theory. Indeed, a mixed strategy—a

randomized number of shares—would not serve a classic utility maximizer well, as the added noise from

randomization would increase the overall portfolio risk. Yet, in the present setting the question arises
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of whether randomization can improve an investor’s prospects by increasing the reference-dependent

contribution. It turns out that it cannot.

To define mixed strategies, consider the product probability space (Ω × Ω′,F ⊗F ′,P ⊗ P′), where

(Ω,F ,P) is the original probability space describing the uncertainty in the market, while the extrinsic

randomness in the investors’ strategies is modeled by some random variable ζ defined on the second

probability space (Ω′,F ′,P′). Let F ′
0

be the sigma-algebra generated by ζ. A mixed strategy starting

from initial capital w0 is any F ′
0
-measurable, integrable random variable ψ with terminal value equal to

V
ψ

T
= w̃0 + ψX,

and denote the set of such mixed (or randomized) strategies by R . The reference-dependent utility is

defined by (2.3), the difference being that the integrals are now on the product space Ω×Ω′ with respect

to the product measure P ⊗ P′.
Intuitively, it is not worth enlarging the set of strategies to include mixed ones, as these only add more

noise to the investors’ payoff without improving welfare; this intuition is confirmed by the following

lemma. Roughly speaking, part (i) states that an agent planning to adopt a mixed strategy is actually

strictly better off choosing the associated mean (pure) strategy, thus precluding mixed-strategy personal

equilibria; by part (ii), for an investor with a pure-strategy reference, taking a mixed strategy never leads

to more satisfaction, hence the set of (pure) personal equilibria is not affected by this relaxation of the

set of strategies.

Lemma 3.11. Let Assumptions 2.1 and 3.9 hold, and assume that either u(·) is linear or u′(·) is strictly

decreasing with u′(−∞) = +∞. Then:

(i) For all ψ ∈ R \ R,

U

(
V
ψ

T

∣∣∣∣ Vψ

T

)
< U

(
V
ψ̄

T

∣∣∣∣ Vψ

T

)
,

where ψ̄ ≔ E
[
ψ
]
∈ R.

(ii) For all φ ∈ R,

sup
ϕ∈R

U
(
V
ϕ

T

∣∣∣ Vφ

T

)
= sup

ψ∈R
U

(
V
ψ

T

∣∣∣∣ Vφ

T

)
. (3.13)

Proof. See Appendix A.2. �

4 Example

This section examines in detail a concrete model, focusing on exponential utility combined with nor-

mally distributed returns.

Assumption 4.1. The stock’s excess return X has normal distribution with mean µ ∈ R \ {0} and standard

deviation σ > 0. Investors have exponential utility with constant absolute risk aversion coefficient γ > 0,

u(x) ≔
1 − e−γx

γ
, for all x ∈ R.

In the absence of reference dependence, in this setting the optimal portfolio prescribes an amount

invested in the risky asset given by the usual Merton formula:

θM ≔
µ

γσ2
.

The following result shows how reference-dependent preferences affect the optimal portfolio, and char-

acterizes the parameter restrictions under which one or two personal equilibria arise.
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Proposition 4.2. Let Assumptions 2.3 and 4.1 hold. Denote by S ≔
µ

σ
the stock’s Sharpe ratio, and by

Φ(·) the standard normal distribution function.

(i) (a) (Personal equilibria)

If

1 − η (1 − λ) ≤ 1 + S
√

2πe
S 2

2 Φ(S )

1 − S
√

2πe
S 2

2 Φ(S )
≤ 1

1 − η (1 − λ)
(4.1)

and

1 − η (1 − λ) >
1 −
√
π |S |

1 +
√
π |S |

(4.2)

both hold, then PE(w0) = {0, θ∗}, where θ∗ is the unique solution of the transcendental equation

in z: (
µ − γσ2z

) (
1 − η (1 − λ) + η (1 − λ)Φ

(
γσ |z|
√

2

))
= η (1 − λ) e−(

γσz

2 )
2 sgn(z)σ

2
√
π

.

If (4.1) holds but (4.2) fails, then PE(w0) = {0}. If (4.1) fails, then PE(w0) = {θ∗}.
(b) (Preferred personal equilibria)

If (4.2) holds and |S | ≤ π− 1
2 , then PPE(w0) = {0}. If (4.2) fails, then PPE(w0) = {θ∗}.

(ii) θ∗ is strictly increasing in λ, µ; strictly decreasing in η; constant in w0. Moreover, limη→0 θ
∗ = θM

and limλ→1 θ
∗ = θM.

(iii) If |S | < π− 1
2 , then lim(η,λ)→(η̄,λ̄) θ

∗(η, λ) = 0 for all η̄, λ̄ such that

1 − η̄
(
1 − λ̄

)
=

1 −
√
π |S |

1 +
√
π |S |

.

If |S | = π− 1
2 , then lim(η,λ)→(1,0) θ

∗(η, λ) = 0. If |S | > π−
1
2 , then lim(η,λ)→(1,0) θ

∗(η, λ) = θ̄, where θ̄ is

the unique solution of the transcendental equation in z:

(
µ − γσ2z

)
Φ

(
γσz
√

2

)
=

σ

2
√
π

e−(
γσz

2 )
2

.

(iv) |θ∗| is strictly decreasing inσ, γ; and |θ∗| < |θM |. Moreover, limγ→0 |θ∗| = +∞ and limγ→+∞ θ
∗ = 0.

Proof. See Appendix A.2. �

The Gaussian distribution has the particularity that its Gini index is inversely proportional to the

Sharpe ratio. Consequently, we can write the gain-loss ratio and the opposite of the min-max ratio as,

respectively, increasing and decreasing functions of the Sharpe ratio (see (4.1) and (4.2)). As highlighted

in the previous section, both of these competing analogues of the Sharpe ratio have significance, in that

they give rise to different personal equilibria.

For a suitable choice of market and preference parameters, Figure 3 shows the graphs of some of the

functions associated with the reference-dependent optimization problem. The risk-free rate is fixed at

r = 1%; the market risk premium and volatility are set equal to 6% and 20% per year, respectively. We

select the loss tolerance parameter λ = 0.40 to be consistent with the value estimated by Tversky and

Kahneman (1991, 1992), and the gain-loss sensitivity parameter η = 0.90 so that (4.2) holds and two

personal equilibria arise. Finally, the initial capital w0 is normalized to 1, while absolute risk aversion is

set to γ = 3 so as to obtain a utility-maximizing portfolio θM with exposure of 50% to the risky asset, in

the absence of reference dependence. Note in particular that the mapping ϕ 7→ U
(
V
ϕ

T

∣∣∣ Vϕ

T

)
, determining

the set of preferred personal equilibria, is neither concave nor convex on the positive half-line. Finally,

the comparative statics given by Proposition 4.2 are clearly visible in Figure 4, where the risky personal

equilibrium is plotted for all possible combinations of the preference parameters.
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(solid line) and ϕ 7→ E
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u
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V
ϕ

T

)]
(dashed line).

Figure 3: Plots for an investor with exponential utility when the stock has normal excess return. Market and

preference parameters are: w0 = 1, r = 1%, γ = 3, µ = 6%, σ = 20%, λ = 0.40, and η = 0.90; thus, G ≈ 1.88,

θM = 0.50 (circle marker), and θ∗ ≈ 0.16 (asterisk marker).
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(a) Here, σ = 10%;

thus, G ≈ 0.94, θM = 2, and θ̄ ≈ 0.17.
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(b) Here, σ = 20%;

thus, G ≈ 1.88 and θM = 0.50.

Figure 4: Level curves of the mapping (η, λ) 7→ θ∗(η, λ) for an investor with exponential utility when the stock has

normal excess return. Market and preference parameters are: w0 = 1, r = 1%, γ = 3, and µ = 6%.

5 Conclusion

This paper solves the one-period portfolio selection problem under Kőszegi and Rabin reference-depen-

dent preferences. Any risk-averse investor with sufficiently high reference-dependence and loss aver-

sion has two competing personal equilibria—strategies that are optimal when taken as references—as

individuals with identical preferences may make different investments depending on their expectations.

Investors planning to participate in the stock market optimally choose to do so, while those planning

to refrain from risky investments optimally hold the safe asset only. The model offers an explanation

for limited stock market participation as a result of heterogeneity in references, even in the absence of

participation costs.

Although reference-dependent preferences already pose substantial challenges in the one-period set-

ting considered here, some of them stem from market incompleteness, which restricts the choice of both

references and payoffs. Models of complete markets in both discrete and continuous time offer another

setting with significant potential for tractability.

A Appendix

This appendix contains the proofs of the results stated in the main body of the paper. In what follows, Y

is a random variable independent of, and identically distributed to X under P.

A.1 Auxiliary results

The first lemma is a purely technical one establishing the differentiability of a given function, which is

required by Lemma A.2.
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Lemma A.1. Let Assumption 2.1 hold. Let b ∈ R \ {0}, and g : R2 → [0,+∞) be a continuous function,

differentiable on D ≔
{
(x, y) ∈ R2 : y − x > 0

}
. If the following conditions hold:

(i) E
[
g(bX, zY)

]
< +∞ for all z ∈ R;

(ii) g(x, y) = 0 for all (x, y) ∈ R2 \ D;

(iii) x 7→ g(x, y) is non-increasing for all y ∈ R;

(iv) for all z ∈ R, there exists ψz
1

: R→ [0,+∞) such that E
[
ψz

1
(Y) |Y |

]
< +∞ and

∣∣∣∣∣
g(bx, (z + h) y) − g(bx, zy)

h

∣∣∣∣∣ 11{(z+h)y−bx>0} ≤ ψz
1
(y) |y| for all (x, y) ∈ R2 and 0 < |h| < 1; (A.1)

(v) for all z ∈ R, there exists ψz
2

: R→ [0,+∞) such that E
[
ψz

2
(Y)1+ǫ |Y |2+2ǫ

]
< +∞ and

g(zy − |y| , zy) ≤ ψz
2
(y) |y| for all y ∈ R;

then the function Γ : R→ R defined by

Γ (z) ≡ Γ (b; z) ≔ E
[
g(bX, zY) 11{zY−bX>0}

]
, for all z ∈ R,

is differentiable on R \ {0}, with

Γ
′(z) = E

[
∂g

∂y
(bX, zY) Y11{zY−bX>0}

]
, for all z ∈ R \ {0} .

Proof. Let b < 0 be given (the proof in the case b > 0 is analogous). Note that Γ (·) is well-defined

by virtue of (i). Fix an arbitrary z ∈ R \ {0}, and consider a sequence {hn}n∈N of nonzero real numbers

converging to 0. Assume further, without loss of generality, that |hn| < 1 for all n ∈ N. The difference

quotient of Γ (·) at z with increment hn is equal to

Γ (z + hn) − Γ (z)

hn

= E

[
g(bX, (z + hn) Y) − g(bX, zY)

hn

11{(z+hn)Y−bX>0}

]

+ E

[
g(bX, zY)

11{(z+hn)Y−bX>0} − 11{zY−bX>0}

hn

]

for all n ∈ N. We carry out the rest of the proof in two steps.

(i) We show that limn→+∞ E[Zn] = E
[
∂g

∂y
(bX, zY) Y11{zY−bX>0}

]
, where

Zn ≔
g(bX, (z + hn) Y) − g(bX, zY)

hn

11{(z+hn)Y−bX>0} for all n ∈ N.

Let ω outside of the null event Ω1 ≔ {|X| = +∞} ∪ {|Y | = +∞} ∪ {zY = bX} ∪ {Y = 0}, and

let ε′(ω) > 0. If zY(ω) − bX(ω) < 0, then (z + hn) Y(ω) − bX(ω) < 0 for all n sufficiently

large, so limn→+∞ Zn(ω) = 0 =
∂g

∂y
(bX(ω) , zY(ω)) Y(ω) 11{zY−bX>0}(ω). If, on the other hand,

(bX(ω) , zY(ω)) ∈ D, there exists δ > 0 such that
∣∣∣∣∣
g(bX(ω) , zY(ω) + h) − g(bX(ω) , zY(ω))

h
− ∂g

∂y
(bX(ω) , zY(ω))

∣∣∣∣∣ < ε
′(ω)

for all h ∈ R with 0 < |h| < δ. Therefore, relabeling ε′(ω) as ε/Y(ω),

∣∣∣∣∣Zn(ω) − ∂g

∂y
(bX(ω) , zY(ω)) Y(ω) 11{zY−bX>0}(ω)

∣∣∣∣∣

=

∣∣∣∣∣
g(bX(ω) , (z + hn) Y(ω)) − g(bX(ω) , zY(ω))

hnY(ω)
− ∂g

∂y
(bX(ω) , zY(ω))

∣∣∣∣∣ |Y(ω)| < ε,

since |hn| < δ
|Y(ω)| and (z + hn) Y(ω)−bX(ω) > 0 for all n large enough. Furthermore, it is an imme-

diate consequence of (A.1) that the sequence {Zn}n∈N is dominated a.s. by the integrable random

variable ψz
1
(Y) |Y |. Hence, the use of Lebesgue’s dominated convergence theorem is justified.
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(ii) We claim that

lim
n→+∞

E

[
g(bX, zY)

11{(z+hn)Y−bX>0} − 11{zY−bX>0}

hn

]
= 0. (A.2)

To see this, we start by noticing that

E

[
g(bX, zY)

11{(z+hn)Y−bX>0} − 11{zY−bX>0}

hn

]
=

∫

R

f (y)
sgn(hny)

hn

(∫

I
y
n

g(bx, zy) f (x) dx

)
dy, (A.3)

where sgn(·) is the signum function,9 and I
y
n is the interval of all real numbers between zy/b

and (z + hn) y/b. By Lebesgue’s differentiation theorem, almost every real number belongs to the

set L f of Lebesgue points of f ,10 which in turn implies that Nz ≔

{
by

z
: y < L f

}
has Lebesgue

measure zero. Next, fix an arbitrary ε > 0, and let y outside of Nz ∪ {0}. It follows from the

continuity of g(·, ·) that there exists δ1 > 0 such that

g(bx, zy) = g(bx, zy) − g(zy, zy) <
1

2

for all x ∈ R with |x − zy/b| < δ. Moreover, since zy/b ∈ L f , there exists δ2 > 0 such that

1

2h

∫

( zy

b
−h,

zy

b
+h)

∣∣∣∣∣ f (x) − f

(
zy

b

)∣∣∣∣∣ dy < ε

for all 0 < h < δ2. Consequently, for all n sufficiently large,

1

|hny/b|

∫

I
y
n

g(bx, zy) f (x) dx ≤ 2

2 |hny/b|

∫
(

zy

b
−
∣∣∣∣ hny

b

∣∣∣∣, zy

b
+

∣∣∣∣ hny

b

∣∣∣∣
) g(bx, zy) f (x) dx < ε,

so the sequence of integrands of the outer integral on the right-hand side of (A.3) converges to 0

almost everywhere (as n→ +∞). Finally, for all n ∈ N and all y ∈ R,

f (y)
1

|hn|

∫

I
y
n

g(bx, zy) f (x) dx ≤ 2

|b|
f (y) |y| g(zy − |y| , zy) f ∗

(
zy

b

)
≤ 2

|b|
f (y) |y|2 ψz

2
(y) f ∗

(
zy

b

)
,

where f ∗(·) denotes the maximal function of f (·).11 Moreover, there is Cǫ > 0 such that

∫

R

f (y) |y|2 ψz
2
(y) f ∗

(
zy

b

)
dy

≤
(∫

R

ψz
2
(y)1+ǫ |y|2(1+ǫ) f (y) dy

) 1
1+ǫ

Cǫ

∣∣∣∣∣
b

z

∣∣∣∣∣
ǫ

2ǫ+1
(∫

R

f (y)
2ǫ+1
ǫ dy

) ǫ
1+ǫ

< +∞,

by Hölder’s inequality together with the Hardy-Littlewood maximal inequality. Hence, (A.2)

follows from the dominated convergence theorem. �

9 The signum function sgn : R→ {−1, 0, 1} is defined by

sgn(x) ≔



−1, if x < 0,

0, if x = 0,

1, if x > 0.

10 Recall that x ∈ R is a Lebesgue point of a locally Lebesgue integrable function f : R→ R if

lim
h→0+

1

2h

∫

(x−h,x+h)

| f (y) − f (x)| dy = 0.

11 Recall that, given a locally Lebesgue integrable function f : R → R, its Hardy-Littlewood maximal function f ∗ : R →
[−∞,+∞] is defined by

f ∗(x) ≔ sup
r>0

1

2r

∫

(x−r,x+r)

| f (t)| dt, for all x ∈ R.
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The next lemma is, despite its mathematical simplicity, central to our study of personal equilibria.

Parts (i) and (ii) imply that investors cannot achieve infinite bliss or grief from any combination of

investment strategy and reference payoff. In (iii) and (iv), we study some of the main properties (such as

continuity and differentiability) of the reference-dependent utility function given the safe reference and

a risky reference, respectively; these are needed, in particular, for obtaining the first-order conditions of

Lemma A.3. Lastly, part (v) is used to determine the preferred personal equilibrium.

Lemma A.2. For X and u(·) satisfying Assumption 2.1, defineU : R2 → [−∞,+∞] as

U (z, b) ≔ E
[
u
(
w̃0 + zY

)
+ ν

(
u
(
w̃0 + zY

)
− u

(
w̃0 + bX

))]
, for all (z, b) ∈ R2.

(i) For all b ∈ R, there exists C ≡ C(b) > 0 such thatU (z, b) ≤ C (1 + |z|) for all z ∈ R.

(ii) For all b, z ∈ R, there exists C′ ≡ C′(z, b) > 0 such thatU (z, b) ≥ −C′ (1 + |z|).

(iii) The function Ξ0 : R→ R defined by

Ξ0(z) ≔ U (z, 0) , for all z ∈ R,

is continuous on R and differentiable on R \ {0}, with

Ξ
′
0(z) =



E
[
u′

(
w̃0 + zY

) (
1 + ν′+

(
u
(
w̃0 + zY

)
− u

(
w̃0

)))
Y11{Y<0}

]

+ E
[
u′

(
w̃0 + zY

) (
1 + ν′−

(
u
(
w̃0

)
− u

(
w̃0 + zY

)))
Y11{Y>0}

]
, if z < 0,

E
[
u′

(
w̃0 + zY

) (
1 + ν′+

(
u
(
w̃0 + zY

)
− u

(
w̃0

)))
Y11{Y>0}

]

+ E
[
u′

(
w̃0 + zY

) (
1 + ν′−

(
u
(
w̃0

)
− u

(
w̃0 + zY

)))
Y11{Y<0}

]
, if z > 0.

(A.4)

Moreover,

Ξ
′
0(0±) ≔ lim

z→0±

Ξ0(z) − Ξ0(0)

z
= u′

(
w̃0

) [
µ+

(
1 + ν′±(0)

)
− µ−

(
1 + ν′∓(0)

)]
= lim

z→0±
Ξ
′
0(z) . (A.5)

(iv) For all b ∈ R \ {0}, the function Ξb : R→ R defined by

Ξb(z) ≔ U (z, b) , for all z ∈ R,

is differentiable on R, with

Ξ
′
b(z) = E

[
u′

(
w̃0 + zY

) (
1 + ν′+

(
u
(
w̃0 + zY

)
− u

(
w̃0 + bX

)))
Y11{zY−bX>0}

]

+ E
[
u′

(
w̃0 + zY

) (
1 + ν′−

(
u
(
w̃0 + bX

)
− u

(
w̃0 + zY

)))
Y11{zY−bX<0}

]
, for all z ∈ R.

(A.6)

(v) If, in addition, Assumption 2.3 holds, then the function Π : R→ R defined by

Π(z) ≔ U (z, z) = E
[
u
(
w̃0 + zY

)]
− η

(1 − λ)

2 (1 − η)
E

[∣∣∣u(w̃0 + zY
)
− u

(
w̃0 + zX

)∣∣∣
]
, for all z ∈ R,

is continuous on R and differentiable on R \ {0}, with

Π
′(z) =



(
1 +

η(1−λ)

1−η

)
E
[
u′

(
w̃0 + zY

)
Y
]
− 2η(1−λ)

1−η E
[
u′

(
w̃0 + zY

)
Y11{Y−X<0}

]
, if z < 0,(

1 +
η(1−λ)

1−η

)
E
[
u′

(
w̃0 + zY

)
Y
]
− 2η(1−λ)

1−η E
[
u′

(
w̃0 + zY

)
Y11{Y−X>0}

]
, if z > 0.

Moreover,

Π
′(0±) ≔ lim

z→0±

Π(z) − Π(0)

z
= u′

(
w̃0

) (
µ ∓ η

(1 − λ)

2 (1 − η)
∆

)
= lim

z→0±
Π
′(z) , (A.7)

where ∆ ≔ E[|X − Y |] denotes the mean-absolute difference of the distribution of X.
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Proof. For readability, we split the proof into several steps.

(i) Let b ∈ R be given. Since u(·) and ν+(·) are both concave, it is possible to find C1 > 0 such that

u(x) ≤ C1 (1 + |x|) for all x ∈ R, and ν+(x) ≤ C1 (1 + x) for all x ∈ [0,+∞) . These two inequalities

combined with the assumption that ν−(·) is non-negative yield, for all z ∈ R,

U (z, b) ≤ C1

(
1 +

∣∣∣w̃0

∣∣∣ + |z|E[|Y |]
)
+C1 E

[(
1 + u

(
w̃0 + zY

)
− u

(
w̃0 + bX

))
11{zY>bX}

]
.

Next, fix an arbitrary z ∈ R. It follows from the fact that u′(·) is both non-increasing and strictly

positive that, for each ω outside of the null set N ≔ {|X| = +∞} ∪ {|Y | = +∞},

(
u
(
w̃0 + zY(ω)

)
− u

(
w̃0 + bX(ω)

))
11{zY>bX}(ω) ≤ u′

(
w̃0 + bX(ω)

)
|zY(ω) − bX(ω)| .

As X and Y are independent,

E
[
u′

(
w̃0 + bX

)
|zY − bX|

]
≤ |z|E

[
u′

(
w̃0 + bX

)]
E[|Y |] + |b|E

[
u′

(
w̃0 + bX

)
|X|

]
.

Hence, choose

C ≔ C1 max
{
2 +

∣∣∣w̃0

∣∣∣ + |b|E[u′(w̃0 + bX
)
|X|

]
,E[|Y |]

(
1 + E

[
u′

(
w̃0 + bX

)])}
,

which is finite in virtue of Assumption 2.1, strictly positive, and independent of z. Note that

U (z, b) < +∞ for all (z, b) ∈ R2.

(ii) Let b, z ∈ R be arbitrary, but fixed. Because the function ν−(·) is concave, there exists some C2 > 0

such that ν−(x) ≤ C2 (1 + x) for all x ∈ [0,+∞) , which together with ν+(x) ≥ 0 for all x ∈ [0,+∞)

leads to

U (z, b) ≥ E
[
u
(
w̃0 + zY

)]
−C2 E

[(
1 + u

(
w̃0 + bX

)
− u

(
w̃0 + zY

))
11{zY<bX}

]
.

Arguing as in (i),U (z, b) ≥ −C′ (1 + |z|), where

C′ ≔ max
{∣∣∣u(w̃0

)∣∣∣ +C2

(
1 + |b|E[|X|]E

[
u′

(
w̃0 + zY

)])
, (1 +C2)E

[
u′

(
w̃0 + zY

)
|Y |

]}
.

In particular,U (z, b) > −∞ for all (z, b) ∈ R2.

(iii) We show separately that Ξ0(·) is continuous at z = 0, and differentiable on R \ {0} with left and

right derivatives at z = 0.

(a) Let {zn}n∈N ⊆ R be a sequence converging to zero. Without loss of generality, assume that

|zn| ≤ 1 for all n ∈ N. The continuity of both u(·) and ν(·) implies that the sequence

{
u
(
w̃0 + znY

)
+ ν

(
u
(
w̃0 + znY

)
− u

(
w̃0

))}
n∈N

converges a.s. (as n → +∞) to u
(
w̃0

)
. In addition, it is dominated a.s. by the integrable random

variable

G ≔ C1 +C2 +
∣∣∣u(w̃0

)∣∣∣ +C1u′
(
w̃0

)
|Y | + (1 +C2) u′

(
w̃0 − |Y |

)
|Y | ,

where C1 and C2 are the strictly positive constants obtained in steps (i) and (ii). Hence,

lim
n→+∞

Ξ0(zn) = E
[
u
(
w̃0

)]
= Ξ0(0) .
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(b) To see that Ξ0(·) is differentiable on (0,+∞), let z > 0 be given, and consider an arbitrary

sequence {zn}n∈N of real numbers different from z and converging to z. Assume further that every

zn is strictly between z
2

and 3z
2

. Then, for all n ∈ N,

Ξ0(zn) − Ξ0(z)

zn − z
= E

[
u
(
w̃0 + znY

)
− u

(
w̃0 + zY

)

zn − z

]

+ E

[
ν+

(
u
(
w̃0 + znY

)
− u

(
w̃0

))
− ν+

(
u
(
w̃0 + zY

)
− u

(
w̃0

))

zn − z
11{Y>0}

]

− E
[
ν−

(
u
(
w̃0

)
− u

(
w̃0 + znY

))
− ν−

(
u
(
w̃0

)
− u

(
w̃0 + zY

))

zn − z
11{Y<0}

]
. (A.8)

The sequence {
u
(
w̃0 + znY

)
− u

(
w̃0 + zY

)

zn − z

}

n∈N

converges a.s. to u′
(
w̃0 + zY

)
Y , and is dominated a.s. by the random variable G1 ≔ u′

(
w̃0 − 3z

2
|Y |

)
|Y |,

which is integrable because (recall Assumption 2.1(ii) and Hölder’s inequality)

E

[
u′

(
w̃0 −

3z

2
|Y |

)
|Y |

]

≤ E
[
u′

(
w̃0 −

3z

2
|Y |

)] 1
2

E

u′
(
w̃0 −

3z

2
|Y |

)1+ǫ

|Y |2+2ǫ



1
2(1+ǫ)

E

[
1

2(1+ǫ)
ǫ

] ǫ
2(1+ǫ)

< +∞.

Thus, the first expectation on the right-hand side of (A.8) tends to E
[
u′

(
w̃0 + zY

)
Y
]

as n → +∞.

Two more applications of the dominated convergence theorem, with dominating random variables

G2 ≔ ν′+(0) u′
(
w̃0 +

z
2
Y
)
|Y | and G3 ≔ ν′−(0) u′

(
w̃0 +

3z
2

Y
)
|Y |, give that the second and third ex-

pectations on the right-hand side of (A.8) have limits

E
[
ν′+

(
u
(
w̃0 + zY

)
− u

(
w̃0

))
u′

(
w̃0 + zY

)
Y11{Y>0}

]

and

−E
[
ν′−

(
u
(
w̃0

)
− u

(
w̃0 + zY

))
u′

(
w̃0 + zY

)
Y11{Y<0}

]
,

respectively. Hence, the difference quotients in (A.8) tend (as n → +∞) to the second expression

given in (A.4). Differentiability of Ξ0(·) on (−∞, 0) follows similarly.

(c) Let {zn}n∈N be a sequence of strictly negative real numbers convergent to zero. Also, zn > −1

for all n ∈ N. By (b),

Ξ
′
0(zn) = E

[
u′

(
w̃0 + znY

) (
1 + ν′+

(
u
(
w̃0 + znY

)
− u

(
w̃0

)))
Y11{Y<0}

]

+ E
[
u′

(
w̃0 + znY

) (
1 + ν′−

(
u
(
w̃0

)
− u

(
w̃0 + znY

)))
Y11{Y>0}

]

for all n ∈ N. Using the dominated convergence theorem twice, we derive the last equality in (A.5).

The non-differentiability of Ξ0(·) at z = 0 is evident upon observing

Ξ
′
0(0+) − Ξ′0(0−) = u′

(
w̃0

)
(µ+ + µ−)

[
ν′+(0) − ν′−(0)

]
< 0.

(iv) Let b ∈ R \ {0}. An analogous argument to the one given in (iii)(a) establishes the continuity of

Ξb(·) at z = 0. We show below that Ξb(·) is differentiable.

(a) With D as in Lemma A.1, define g1 : R2 → R and g2 : R2 → R respectively as

g1(x, y) ≔

{
ν+

(
u
(
w̃0 + y

)
− u

(
w̃0 + x

))
, if (x, y) ∈ D,

0, otherwise,

g2(x, y) ≔

{
ν−

(
u
(
w̃0 − x

)
− u

(
w̃0 − y

))
, if (x, y) ∈ D,

0, otherwise,
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and denote by Γi(·) the function defined by (A.1) associated with gi(·, ·), for i ∈ {1, 2}. Straightfor-

ward computations show, for all z ∈ R, (x, y) ∈ R2, and 0 < |h| < 1,

∣∣∣∣∣
g1(bx, (z + h) y) − g1(bx, zy)

h

∣∣∣∣∣ 11{(z+h)y−bx>0} ≤ ν′+(0) u′
(
w̃0 − (|z| + 1) |y|

)
|y| ,

∣∣∣∣∣
g2(bx, (z + h) y) − g2(bx, zy)

h

∣∣∣∣∣ 11{(z+h)y−bx>0} ≤ ν′−(0) u′
(
w̃0 − (|z| + 1) |y|

)
|y| .

Furthermore,

g1(zy − |y| , zy) ≤ ν′+(0) u′
(
w̃0 − (|z| + 1) |y|

)
|y| ,

g2(zy − |y| , zy) ≤ ν′−(0) u′
(
w̃0 − (|z| + 1) |y|

)
|y| .

Since Ξb(z) = E
[
u
(
w̃0 + zY

)]
+ Γ1(b, z) − Γ2(−b,−z) for all z ∈ R, it follows from (A.1) that Ξ′

b
(z)

is given by the expression on the right-hand side of (A.6) for all z ∈ R \ {0}.
(b) By the result in (a) and the dominated convergence theorem,

lim
z→0
Ξ
′
b(z) = u′

(
w̃0

)
µE

[(
1 + ν′+

(
u
(
w̃0

)
− u

(
w̃0 + bX

)))
11{bX<0}

]

+ u′
(
w̃0

)
µE

[(
1 + ν′−

(
u
(
w̃0 + bX

)
− u

(
w̃0

)))
11{bX>0}

]
.

Hence, Ξb(·) is not only continuous but differentiable at z = 0. Also, note that Ξ′
b
(0) has the same

sign as µ.

(v) The proof thatΠ(·) is continuous at z = 0 and differentiable on R\{0} follows similar steps to those

of (iii)(a) and (iii)(b), so we omit the details. Another application of the dominated convergence

theorem shows that the limits Π′(0±) exist and are given by (A.7). Finally,

Π
′(0+) − Π′(0−) = −u′

(
w̃0

)
∆
η (1 − λ)

1 − η
< 0,

thus Π(·) is not differentiable at z = 0. �

The following lemma establishes necessary first-order conditions for a portfolio to be a personal

equilibrium. These conditions are sufficient provided that we specify an additional relation between u(·)
and ν−(·) (recall Assumption 3.9 above). It was shown by Kőszegi and Rabin (2007, Proposition 11(i))

that the safe portfolio is a personal equilibrium only if (3.3) holds.

Lemma A.3. Let Assumption 2.1 hold.

(i) If 0 ∈ PE(w0), then

1 + ν′+(0)

1 + ν′−(0)
≤ µ+

µ−
≤

1 + ν′−(0)

1 + ν′+(0)
. (3.3)

Conversely, if in addition to (3.3) Assumption 3.9 holds, then 0 ∈ PE(w0).

(ii) For any risky portfolio φ, if φ ∈ PE(w0), then

E

[
u′

(
w̃0 + φY

) (
1 + ν′+

(
u
(
w̃0 + φY

)
− u

(
w̃0 + φX

)))
Y11{φ(Y−X)>0}

]

= −E
[
u′

(
w̃0 + φY

) (
1 + ν′−

(
u
(
w̃0 + φX

)
− u

(
w̃0 + φY

)))
Y11{φ(Y−X)<0}

]
. (A.9)

Conversely, if in addition to (A.9) Assumption 3.9 holds, then φ ∈ PE(w0).

Proof. By Lemma A.2, Ξ′
b
(b) exists for all b ∈ R \ {0}. As the left and right derivatives of Ξ0(·) differ at

0, the safe portfolio must be dealt with separately from the risky portfolios.
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(i) If (3.3) fails, then either Ξ′
0
(0+) > 0 (thus U

(
V
ϕ

T

∣∣∣ V0
T

)
> U

(
V0

T

∣∣∣ V0
T

)
for some ϕ > 0) or Ξ′

0
(0−) < 0

(thus U
(
V
ϕ

T

∣∣∣ V0
T

)
> U

(
V0

T

∣∣∣ V0
T

)
for some ϕ < 0), where Ξ0(·) is the function of Lemma A.2. Hence,

the safe portfolio is not optimal given the safe reference.

On the other hand, assume that (3.3) and (3.9) both hold. Then Ξ0(·) has a (relative) maximum at

z = 0. Moreover, for all z1, z2 ∈ (−∞, 0] and ϑ ∈ [0, 1],

Ξ0(ϑz1 + (1 − ϑ) z2)

≥ ϑE
[
u
(
w̃0 + z1Y

)
11{Y<0}

]
+ (1 − ϑ)E

[
u
(
w̃0 + z2Y

)
11{Y<0}

]

+ ϑE
[
ν+

(
u
(
w̃0 + z1Y

)
− u

(
w̃0

))
11{Y<0}

]
+ (1 − ϑ)E

[
ν+

(
u
(
w̃0 + z2Y

)
− u

(
w̃0

))
11{Y<0}

]

+ ϑE
[(

u
(
w̃0 + z1Y

)
− ν−

(
u
(
w̃0

)
− u

(
w̃0 + z1Y

)))
11{Y>0}

]

+ (1 − ϑ)E
[(

u
(
w̃0 + z2Y

)
− ν−

(
u
(
w̃0

)
− u

(
w̃0 + z2Y

)))
11{Y>0}

]

= ϑΞ0(z1) + (1 − ϑ)Ξ0(z2) .

where we use that u(·) is concave, ν+(·) is strictly increasing and concave, and the mapping x 7→
u(x)− ν−(u(y) − u(x)) is concave on (−∞, y

]
for every fixed y ∈ R. Hence, Ξ0(·) is concave on the

half-interval (−∞, 0]. Likewise, Ξ0(·) is concave on [0,+∞) .

(ii) Let φ , 0. If Ξφ(·) attains its absolute maximum at z = φ, then Ξ′φ(φ) = 0. Conversely, assume

that (A.9) and (3.9) both hold. For all z1, z2 ∈ R such that z1 < z2,

Ξ
′
φ(z1) ≥ E

[
u′

(
w̃0 + z2Y

) (
1 + ν′+

(
u
(
w̃0 + z2Y

)
− u

(
w̃0 + φX

)))
Y11{Y<0,φX<z2Y}

]

+ E
[
u′

(
w̃0 + z1Y

) (
1 + ν′+

(
u
(
w̃0 + z1Y

)
− u

(
w̃0 + φX

)))
Y11{Y<0,z2Y<φX<z1Y}

]

+ E
[
u′

(
w̃0 + z2Y

) (
1 + ν′+

(
u
(
w̃0 + z2Y

)
− u

(
w̃0 + φX

)))
Y11{Y>0,φX<z1Y}

]

+ E
[
u′

(
w̃0 + z2Y

) (
1 + ν′−

(
u
(
w̃0 + φX

)
− u

(
w̃0 + z2Y

)))
Y11{Y<0,z1Y<φX}

]

+ E
[
u′

(
w̃0 + z1Y

) (
1 + ν′−

(
u
(
w̃0 + φX

)
− u

(
w̃0 + z1Y

)))
Y11{Y>0,z1Y<φX<z2Y}

]

+ E
[
u′

(
w̃0 + z2Y

) (
1 + ν′−

(
u
(
w̃0 + φX

)
− u

(
w̃0 + z2Y

)))
Y11{Y>0,z2Y<φX}

]
,

as u(·) and ν+(·) are both strictly increasing and concave, and x 7→ u(x) − ν−(u(y) − u(x)) is de-

creasing on (−∞, y
]

for every fixed y ∈ R. Finally, combining the above inequality with

E

[
u′

(
w̃0 + z1Y

) (
1 + ν′+

(
u
(
w̃0 + z1Y

)
− u

(
w̃0 + φX

)))
Y11{Y<0,z2Y<φX<z1Y}

]

≥ E
[
u′

(
w̃0 + φX

) (
1 + ν′+(0)

)
Y11{Y<0,z2Y<φX<z1Y}

]
≥ E

[
u′

(
w̃0 + φX

) (
1 + ν′−(0)

)
Y11{Y<0,z2Y<φX<z1Y}

]

≥ E
[
u′

(
w̃0 + z2Y

) (
1 + ν′−

(
u
(
w̃0 + φX

)
− u

(
w̃0 + z2Y

)))
Y11{Y<0,z2Y<φX<z1Y}

]

and

E

[
u′

(
w̃0 + z1Y

) (
1 + ν′−

(
u
(
w̃0 + φX

)
− u

(
w̃0 + z1Y

)))
Y11{Y>0,z1Y<φX<z2Y}

]

≥ E
[
u′

(
w̃0 + φX

) (
1 + ν′−(0)

)
Y11{Y>0,z1Y<φX<z2Y}

]
≥ E

[
u′

(
w̃0 + φX

) (
1 + ν′+(0)

)
Y11{Y>0,z1Y<φX<z2Y}

]

≥ E
[
u′

(
w̃0 + z2Y

) (
1 + ν′+

(
u
(
w̃0 + z2Y

)
− u

(
w̃0 + φX

)))
Y11{Y>0,z1Y<φX<z2Y}

]

yields Ξ′
b
(z1) ≥ Ξ′

b
(z2). �

The result below is the key to determining risky personal equilibria and deriving their properties.

We introduce the auxiliary function Λ(·) defined by Λ(φ) = Ξ′φ(φ) for all φ ∈ R \ {0}, so that Λ(φ) = 0

effectively corresponds to the first-order condition (A.9) derived in the preceding lemma. In other words,

the only candidates for risky personal equilibria are precisely the roots ofΛ(·). Moreover, by studying the

continuity, monotonicity, and limiting behavior of Λ(·), we can determine the number of risky personal

equilibria as well as their relative location.
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Lemma A.4. Let Assumption 2.1 hold. Define Λ : R→ R as

Λ(z) =



E
[
u′

(
w̃0 + zY

) (
1 + ν′−

(
u
(
w̃0 + zX

)
− u

(
w̃0 + zY

)))
Y11{Y−X>0}

]

+ E
[
u′

(
w̃0 + zY

) (
1 + ν′+

(
u
(
w̃0 + zY

)
− u

(
w̃0 + zX

)))
Y11{Y−X<0}

]
, if z < 0,

0, if z = 0,

E
[
u′

(
w̃0 + zY

) (
1 + ν′−

(
u
(
w̃0 + zX

)
− u

(
w̃0 + zY

)))
Y11{Y−X<0}

]

+ E
[
u′

(
w̃0 + zY

) (
1 + ν′+

(
u
(
w̃0 + zY

)
− u

(
w̃0 + zX

)))
Y11{Y−X>0}

]
, if z > 0.

(A.10)

(i) The function Λ(·) is continuous on R \ {0}, with

Λ(0±) ≔ lim
z→0±

Λ(z) = u′
(
w̃0

)
µ
(
1 + ν′−(0)

)
− u′

(
w̃0

)
ν′−(0) (1 − λ)

2µ ± ∆
4

. (A.11)

(ii) If u(·) is linear, then

Λ(±∞) ≔ lim
z→±∞

Λ(z) = u′
(
w̃0

)
µ
(
1 + ν′−(+∞)

)
− u′

(
w̃0

) (
ν′−(+∞) − ν′+(+∞)

) 2µ ± ∆
4

.

If, in addition, Assumption 2.3 holds, then Λ(·) is constant on each of the intervals (−∞, 0) and

(0,+∞).

(iii) If u(·) is strictly concave with u′(−∞) = +∞, then Λ(±∞) = ∓∞. If, in addition, Assumption 2.3

holds, then Λ(·) is strictly decreasing on each of the intervals (−∞, 0) and (0,+∞).

Proof. Define the functions Θ± : R→ R and Θ̄± : R→ R as, respectively,

Θ±(z) ≔ E
[
u′

(
w̃0 + zY

)
Y11{±(Y−X)>0}

]
, for all z ∈ R,

Θ̄±(z) ≔



E
[
u′

(
w̃0 + zY

) (
1 + ν′±

(
u
(
w̃0 + zY

)
− u

(
w̃0 + zX

)))
Y11{∓(Y−X)>0}

]
, if z < 0,

0, if z = 0,

E
[
u′

(
w̃0 + zY

) (
1 + ν′±

(
u
(
w̃0 + zY

)
− u

(
w̃0 + zX

)))
Y11{±(Y−X)>0}

]
, if z > 0.

Note that, for all z ∈ R, independence of X and Y gives Θ−(z) = E
[
u′

(
w̃0 + zY

)
Y (1 − F(Y))

]
, where F(·)

denotes the cumulative distribution function of X. In particular, this implies

Θ−(z) < (1 − F(0))E
[
u′

(
w̃0 + zY

)
Y
]
≤ 0 (A.12)

for all z ≥ θ, with θ the unique solution of (3.6).

(i) The idea to show that Θ±(·) are continuous on R and Θ̄±(·) are continuous on R \ {0} is to apply the

dominated convergence theorem (we omit the proof, as it is a variation of the proof given above).

Thus, it follows immediately from

Λ(z) = Θ̄−(z) + Θ̄+(z) for all z ∈ R

thatΛ(·) is continuous onR\{0}. The proof of (A.11) uses equation (2.2) together with E
[
Y11{±(Y−X)>0}

]
=

(2µ ± ∆) /4, and follows along the same lines of the proof of (A.5).

(ii) Suppose that u(·) is linear. Since Θ±(z) = Θ±(0) = u′
(
w̃0

)
E
[
Y11{±(Y−X)>0}

]
for all z ∈ R, it is trivial

that limz→−∞ Θ±(z) = limz→+∞ Θ±(z) = Θ±(0). Furthermore,

Θ̄+(z) =

{
u′

(
w̃0

)
E
[(

1 + ν′+
(
u′

(
w̃0

)
(Y − X) z

))
Y11{Y−X<0}

]
, if z < 0,

u′
(
w̃0

)
E
[(

1 + ν′+
(
u′

(
w̃0

)
(Y − X) z

))
Y11{Y−X>0}

]
, if z > 0,

so using the dominated convergence theorem twice with the dominating random variable
(
1 + ν′+(0)

)
|Y |

yields limz→±∞ Θ̄+(z) =
(
1 + ν′+(+∞)

)
Θ±(0). Using an analogous dominating argument, limz→±∞ Θ̄−(z) =(

1 + ν′−(+∞)
)
Θ∓(0). If, in addition, Assumption 2.3 holds, then

(1 − η)Λ(z) =

{
Θ+(0) + (1 − η (1 − λ))Θ−(0) , if z < 0,

Θ−(0) + (1 − η (1 − λ))Θ+(0) , if z > 0.
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(iii) Suppose that u′(·) is strictly decreasing with u′(−∞) = +∞. Each of the events {Y < 0,Y − X < 0}
and {Y > 0,Y − X > 0} has strictly positive probability, since the monotonicity of the probability

measure together with the independence and identical distribution of the random variables X and

Y yields

P{Y < 0,Y − X < 0} ≥ P{Y < 0, X > 0} = P{X < 0}P{X > 0} ,
P{Y > 0,Y − X > 0} ≥ P{Y > 0, X < 0} = P{X > 0}P{X < 0} .

On the other hand, limn→+∞ P
{
X < − 1

n

}
= P{X < 0} > 0 by continuity from below, thus the set

S ≔ {y ∈ (−∞, 0) : P{X < y} > 0} is non-empty. Note that (m, 0) ⊆ S , where m ≔ inf(S ) ∈
[−∞, 0) . Moreover, if m > −∞, then P{X < m} = limn→+∞ P

{
X < m − 1

n

}
= 0. Consequently,

P{Y < 0,Y − X > 0} =
∫ 0

m

P{X < y} dPY (y) > 0.

Likewise, P{Y > 0,Y − X < 0} > 0. We complete the proof in the following steps.

(a) Let {zn}n∈N be a sequence of real numbers diverging to +∞. Without loss of generality,

zn > 1 for all n ∈ N. Since the sequence
{
u′

(
w̃0 + znY

)
Y11{Y>0,±(Y−X)>0}

}
n∈N converges a.s. to

u′(+∞) Y11{Y>0,±(Y−X)>0}, and is dominated by the integrable random variable u′
(
w̃0 + Y

)
|Y |, we

can use the dominated convergence theorem to obtain limn→+∞ E
[
u′

(
w̃0 + znY

)
Y11{Y>0,±(Y−X)>0}

]
=

u′(+∞)E
[
Y11{Y>0,±(Y−X)>0}

]
< +∞. In addition, by Fatou’s lemma,

lim inf
n→+∞

E
[
u′

(
w̃0 + znY

)
(−Y) 11{Y<0,±(Y−X)>0}

]
≥ +∞.

Hence,

lim sup
n→+∞

Θ±(zn) ≤ lim sup
n→+∞

E
[
u′

(
w̃0 + znY

)
Y11{Y>0,±(Y−X)>0}

]

+ lim sup
n→+∞

E
[
u′

(
w̃0 + znY

)
Y11{Y<0,±(Y−X)>0}

]
= −∞.

A similar argument shows limz→−∞ Θ±(z) = +∞.

(b) Let {zn}n∈N be a sequence such that limn→+∞ zn = +∞ and zn > 1 for all n ∈ N. It follows

from

lim sup
n→+∞

E
[
u′

(
w̃0 + znY

) (
1 + ν′+

(
u
(
w̃0 + znY

)
− u

(
w̃0 + znX

)))
Y11{Y<0,Y−X>0}

]

≤
(
1 + ν′+(+∞)

)
lim sup

n→+∞
E
[
u′

(
w̃0 + znY

)
Y11{Y<0,Y−X>0}

]
= −∞

and

lim sup
n→+∞

E
[
u′

(
w̃0 + znY

) (
1 + ν′+

(
u
(
w̃0 + znY

)
− u

(
w̃0 + znX

)))
Y11{Y>0,Y−X>0}

]

≤
(
1 + ν′+(0)

)
lim sup

n→+∞
E
[
u′

(
w̃0 + znY

)
Y11{Y>0,Y−X>0}

]
< +∞

that limz→+∞ Θ̄+(z) = −∞. The proofs of limz→−∞ Θ̄+(z) = +∞ and limz→±∞ Θ̄−(z) = ∓∞ are

analogous.

(c) By the results of (a) and (b),

lim sup
z→+∞

Λ(z) ≤ lim sup
z→+∞

Θ̄−(z) + lim sup
z→+∞

Θ̄+(z) = −∞,

lim inf
z→−∞

Λ(z) ≥ lim inf
z→−∞

Θ̄−(z) + lim sup
z→−∞

Θ̄+(z) = +∞.
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(d) Let, in addition, Assumption 2.3 hold. As the distribution of X is atomless and u′(·) is strictly

decreasing, Θ±(z1)−Θ±(z2) = E
[(

u′
(
w̃0 + z1Y

)
− u′

(
w̃0 + z2Y

))
Y11{±(Y−X)>0}

]
> 0 for all z1, z2 ∈ R

such that z1 < z2. Hence,

Λ(z) =

{
Θ+(z) / (1 − η) + (1 − η (1 − λ))Θ−(z) / (1 − η) , if z < 0,

Θ−(z) / (1 − η) + (1 − η (1 − λ))Θ+(z) / (1 − η) , if z > 0,

is strictly decreasing on R \ {0}. �

Remark A.5. Suppose that µ > 0, and let φ < 0. As in the proof of Lemma A.3, Ξ′φ(·) is a decreasing

function under (3.9), therefore

Λ(φ) = Ξ′φ(φ) ≥ Ξ′φ(0) > 0. (A.13)

This means that an investor expecting to short-sell the stock is actually better off buying a small amount

of stock. Likewise, Λ(φ) = Ξ′φ(φ) ≤ Ξ′φ(0) < 0 for all φ > 0 if µ < 0, meaning that a portfolio with a

long position in the stock is never a personal equilibrium when the risk premium is negative.

The following lemma complements Remark 3.8 by providing an example where, even though pref-

erences converge to linear, the results of Theorem 3.4 do not recover the ones in Theorem 3.1.

Lemma A.6. Let Assumption 2.3 hold, and fix η, λ ∈ (0, 1) such that (3.5) holds. If X has asymmetric

Laplace distribution with scale parameter ς > 0 and asymmetry parameter κ ∈ (0, 1), i.e.,

f (x) =
ς

κ + 1/κ

{
eςx/κ , if x < 0,

e−ςκx , if x > 0,

then there exists a sequence of utility functions {un(·)}n∈N such that:

(i) u′n(·) is strictly decreasing with u′n(−∞) = +∞ for all n ∈ N;

(ii) limn→+∞ un(x) = x for all x ∈ R;

(iii)
{∣∣∣θ∗n

∣∣∣
}
n∈N

remains bounded, where each θ∗n denotes the unique risky personal equilibrium for the

reference-dependent problem (2.4) with utility un(·).

Proof. First, note that

µ =
1 − κ2

ςκ
> 0.

Next, let ε ∈ (0, 1), and for all n ∈ N define the continuous and concave function un : R→ R as

un ≔



−n + (1 + δn) (x + n) , if x < −n,

x, if x ∈ [−n, n] ,

n + (1 − ε) (x − n) , if x > n,

where

δn ≔

εκ2e−ςn/κ
(
ςκn + κ2

)
+ 1 − κ4

e−ςκn (ςκn + 1)
> 0.

Note that limn→+∞ δn = +∞. Direct computations yield, for all n ∈ N and z > 0,

E[un(zX)] =
εκ2

ς (κ + 1/κ)
e−

ςn
κz z +

1

ςκ2 (κ + 1/κ)

(
1 − κ4

)
z − δn

1

ςκ2 (κ + 1/κ)
e−

ςκn
z z,

therefore

d

dz
E[un(zX)] =

εκ2

ς (κ + 1/κ)
e−

ςn
κz

(
ςn

κz
+ 1

)
+

1

ςκ2 (κ + 1/κ)

(
1 − κ4

)
− δn

1

ςκ2 (κ + 1/κ)
e−

ςκn
z

(
ςκn

z
+ 1

)
.
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Since by construction of δn,

d

dz
E[un(zX)]

∣∣∣∣∣
z=1

=
εκ2

ς (κ + 1/κ)
e−

ςn
κ

(
ςn

κ
+ 1

)
+

1

ςκ2 (κ + 1/κ)

(
1 − κ4

)
− δn

1

ςκ2 (κ + 1/κ)
e−ςκn (ςκn + 1) = 0,

we conclude that θn = 1 is the unique classical utility maximizer for an investor with preferences given

by un(·) and zero initial capital.

It is clear that un(·) is neither strictly concave nor differentiable; moreover, u′n(−∞) = 1 + δn < +∞.

Nevertheless, it is possible to locally regularize the function in such a way that it satisfies property (i)

without affecting the optimizer θn. Then, θ∗n > 0 exists and is unique by Theorem 3.4, while (3.7) gives

θ∗n < θn = 1.

Hence, we have obtained a sequence {un(·)}n∈R converging pointwise to the (linear) identity function,

whose corresponding sequence
{
θ∗n

}
n∈N of risky personal equilibria is bounded above by 1. �

We conclude this subsection with alternative expressions for the Gini index which, in addition to

being computationally convenient, facilitate the interpretation of our results.

Lemma A.7. Let µ , 0, and let Assumption 2.1 hold. Then,

G =
∆

2 |µ|
=
E[X ∨ Y]

|µ|
− 1 = 1 − E[X ∧ Y]

|µ|
. (A.14)

Moreover,

G ≤ 1

|S |
√

3
.

Proof. Refer, e.g., to Yitzhaki and Schechtman (2013, Chapter 2). �

A.2 Proofs of Sections 3 and 4

Proof of Theorem 3.1. We prove the result for µ > 0 only, as the other case is analogous. First, observe

that 1−η (1 − λ) < 1 < µ+/µ−. Thus, in light of Lemma A.3, the safe portfolio is a personal equilibrium if

and only if µ+/µ− ≤ 1/ (1 − η (1 − λ)). Turning to the risky personal equilibria, they can be characterized

in terms of the roots of the function Λ(·) defined in Lemma A.4. Due to Remark A.5, no short-position

portfolio can be a personal equilibrium. The remainder of the proof is carried out in three steps.

(i) Suppose that G ≤ 1. Because Λ(z) = Λ(0+) ≥ u′
(
w̃0

)
µ (1 − η (1 − λ)) / (1 − η) > 0 for all z > 0,

there can be no personal equilibria with a long position in the stock either. Consequently, the safe

portfolio is the only candidate for an equilibrium.

(ii) Suppose that G > 1. Clearly, Λ(0+) , 0 is equivalent to (3.2). Also, it follows from ∆ ≤
2 (µ+ + µ−) that (3.1) failing implies

1 − η (1 − λ) >
µ−
µ+
≥ ∆−2µ

∆+2µ
=

G − 1

G + 1
. (A.15)

(iii) Suppose that (3.2) fails and consequently (3.1) holds, whence any long portfolio position (includ-

ing zero) is a personal equilibrium. As u(·) is linear, the function Π(·) of Lemma A.2 is affine on

each of the half-intervals (−∞, 0] and [0,+∞) . In addition,

Π
′(z) = Π′(0+) = u′

(
w̃0

)
µ

(
1 − 2G

(1 − η) (G + 1)

)
< 0

for all z > 0, so Π(·) attains its absolute maximum on [0,+∞) at z = 0. �
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Proof of Theorem 3.4. Consider the case where µ > 0 (a proof for µ < 0 follows along the same lines),

and let η, λ ∈ (0, 1) be given. By Lemma A.4, Λ(·) is continuous and strictly decreasing on R \ {0} with

Λ(θ) = η (1 − λ)Θ−(θ) / (1 − η) < 0 (recall (A.12)). Moreover, the inequality in (A.13) shows that Λ(·)
is strictly positive on (−∞, 0). We treat three cases.

(i) Suppose that G ≤ 1. In this case Λ(0+) > 0, so Λ(·) takes the value zero at exactly one point

θ∗ ≡ θ∗(η, λ) ∈ (0, θ). Therefore, θ∗ is the only personal equilibrium if (3.1) fails, otherwise

PE(w0) = {0, θ∗}.

(ii) Suppose that G > 1. It follows from (A.15) that (3.5) holds if (3.1) fails. Moreover, (3.5) is

equivalent to Λ(0+) > 0. Then there are three possible scenarios: (3.5) fails, thus (3.1) holds,

whence Λ(·) never attains zero (and 0 is the only personal equilibrium); or (3.1) fails, thus (3.5)

holds, whence Λ(θ∗) = 0 for some unique θ∗ ≡ θ∗(η, λ) ∈ (0, θ); or (3.1) and (3.5) both hold,

whence PE(w0) = {0, θ∗}.

(iii) To show that 0 is the unique preferred personal equilibrium if (3.1), (3.5) and G ≥ 1 are all

binding, first note that ψ(x) ≔ E[x ∨ Y] ≥ x∨E[Y] for all x ∈ R, by Jensen’s inequality. Therefore,

E[X ∨ Y] = E[E[ X ∨ Y | X]] = E
[
ψ(X)

]
≥ E

[
X ∨ µ

]
≥ E[X ∨ 0] = E

[
X+

]
, which is equivalent to

G−1 ≤ µ/µ−. This inequality together with (3.1) yields

η (1 − λ)

1 − η
≥ 1

G
. (A.16)

Finally, assume that Π(θ∗) ≥ Π(0), with Π(·) as in Lemma A.2. It follows from Π
′(θ∗) =

−1+ηλ

1−η E
[
u′

(
w̃0 + θ

∗Y
)

Y
]
< 0 that there exists at least one ξ ∈ (0, θ∗) such that Π′(ξ) = 0, that

is, (
1 − η

(1 − λ)

1 − η

)
Θ+(ξ) = −

(
1 +

η (1 − λ)

1 − η

)
Θ−(ξ) .

Combining this identity with Θ−(ξ) < Θ−(0) ≤ 0 and Θ+(ξ) > Θ+(θ∗) > 0 gives
η(1−λ)

1−η < 1, so

Π
′(·) is strictly decreasing on (0,+∞) and Π′(0+) > 0. Hence, (A.16) implies Π(θ∗) < Π(0). �

Proof of Theorem 3.7. Let µ > 0 (the case µ < 0 is similar, so we omit the details). First, note that

0 < θ∗(η, λ) < θ for all suitable η, λ ∈ (0, 1) by the proof of Theorem 3.4, therefore the mapping

(η, λ) 7→ θ∗(η, λ) is bounded. We break the rest of the proof into several parts.

(i) (a) To show that (η, λ) 7→ θ∗(η, λ) is continuous, fix an arbitrary (η, λ) for which (3.5) holds, and

let {(ηn, λn)}n∈N be a sequence converging to (η, λ). Without loss of generality, ηn and λn satisfy

(3.5) for all n ∈ N. Next, consider any convergent subsequence
{
θ∗

(
ηnk
, λnk

)}
k∈N of the bounded

sequence {θ∗(ηn, λn)}n∈N. By continuity of Θ±(·),

1

1 − η
Θ−

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))
+

1 − η (1 − λ)

1 − η
Θ+

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))

= lim
k→+∞

Λ
(
ηnk
, λnk

; θ∗
(
ηnk
, λnk

))
= 0,

therefore limk→+∞ θ
∗(ηnk

, λnk

)
> 0 (otherwise Θ−(0) + (1 − η (1 − λ))Θ+(0) = 0, that is, 1 −

η (1 − λ) = G−1
G+1

). Consequently, Λ
(
η, λ; limk→+∞ θ

∗(ηnk
, λnk

))
= 0 = Λ(η, λ; θ∗(η, λ)), which in

turn gives limk→+∞ θ
∗(ηnk

, λnk

)
= θ∗(η, λ).

(b) In this step, we investigate how the unique risky equilibrium varies with η and λ. We claim

that θ∗(η, λ) is strictly decreasing in η, for any λ ∈ (0, 1) fixed. To see this, let η1, η2 ∈ (0, 1) such

that η1 < η2 and (3.5) holds. Combining E
[
u′

(
w̃0 + θ

∗(η1, λ) Y
)

Y
]
= η1 (1 − λ)Θ+(θ∗(η1, λ)) with

θ∗(η1, λ) < θ yields Θ+(θ∗(η1, λ)) > 0. Then,

Λ
(
η2, λ; θ∗(η1, λ)

)
=

(η1 − η2) (1 − λ)

1 − η2

Θ+
(
θ∗(η1, λ)

)
< 0,

so θ∗(η1, λ) > θ∗(η2, λ). Likewise, λ 7→ θ∗(η, λ) is strictly increasing for any fixed η ∈ (0, 1).
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(c) Next, we show that the risky equilibrium is close to the EUT-optimal portfolio when the

gain-loss sensitivity is close to zero. Indeed, let λ ∈ (0, 1) be given, and consider a sequence

{(ηn, λn)}n∈N with limit (0, λ). Without loss of generality, ηn and λn satisfy (3.5) for all n ∈ N. If{
θ∗

(
ηnk
, λnk

)}
k∈N is a convergent subsequence, then

E

[
u′

(
w̃0 + lim

k→+∞
θ∗

(
ηnk
, λnk

)
Y

)
Y

]
= Θ−

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))
+ Θ+

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))

= lim
k→+∞

Λ
(
ηnk
, λnk

; θ∗
(
ηnk
, λnk

))
= 0,

and so limk→+∞ θ
∗(ηnk

, λnk

)
= θ. Analogously, limλ→1 θ

∗(η, λ) = θ for all η.

(d) Finally, we study the limiting behavior of the risky equilibrium when the gain-loss sensitivity

and loss aversion are both large.

(i’) Suppose that G ≤ 1. Let {(ηn, λn)}n∈N be a sequence tending to (1, 0), and consider any con-

vergent subsequence
{
θ∗

(
ηnk
, λnk

)}
k∈N. Then limk→+∞ θ

∗(ηnk
, λnk

)
= θ̄, where θ̄ ≥ 0 denotes

the unique root of Θ−(·), because

Θ−

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))
+ (1 − 1)Θ+

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))

= lim
k→+∞

(
1 − ηnk

)
Λ
(
ηnk
, λnk

; θ∗
(
ηnk
, λnk

))
= 0.

Noticing that Θ−(0) has the same sign as 1−G gives θ̄ > 0 if G < 1, and θ̄ = 0 otherwise. Fur-

thermore, (1 − η)Λ(θ∗) = (1 − η (1 − λ))E
[
u′

(
w̃0 + θ

∗Y
)

Y
]
+ η (1 − λ)Θ−(θ∗) together with

θ∗(η, λ) < θ implies θ∗(η, λ) > θ̄ for all η, λ ∈ (0, 1).

(ii’) Suppose that G > 1. Fix an arbitrary
(
η̄, λ̄

)
satisfying (3.2). Let {(ηn, λn)}n∈N be a sequence of

vectors for which (3.5) holds and limn→+∞ (ηn, λn) =
(
η̄, λ̄

)
. Also, define the strictly decreas-

ing function Λ̄ : R→ R as

Λ̄(z) ≔ Θ−(z) +
G − 1

G + 1
Θ+(z) , for all z ∈ R.

For any convergent subsequence
{
θ∗

(
ηnk
, λnk

)}
k∈N,

Λ̄

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))
= Θ−

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))
+

G − 1

G + 1
Θ+

(
lim

k→+∞
θ∗

(
ηnk
, λnk

))

= lim
k→+∞

(
1 − ηnk

)
Λ
(
ηnk
, λnk

; θ∗
(
ηnk
, λnk

))
= 0 = Λ̄(0) ,

hence limk→+∞ θ
∗ (ηnk

, λnk

)
= 0.

(ii) Straightforward computations show that (3.8) implies u′
2
(x) = ρ′(u(x)) u′(x) for all x ∈ R. This

identity, together with the monotonicity of u1(·) as well as the concavity of ρ(·), leads to

u′2
(
w̃0 + θ

∗
1Y

)
Y = ρ′

(
u1

(
w̃0 + θ

∗
1Y

))
u′1

(
w̃0 + θ

∗
1Y

)
Y ≤ ρ′

(
u1

(
w̃0

))
u′1

(
w̃0 + θ

∗
1Y

)
Y.

As a consequence,

Λ2

(
θ∗1

)
≤ 1

1 − η
EP

[
ρ′

(
u1

(
w̃0

))
u′1

(
w̃0 + θ

∗
1Y

)
Y11{Y<X}

]
+

1 − η (1 − λ)

1 − η
EP

[
ρ′

(
u1

(
w̃0

))
u′1

(
w̃0 + θ

∗
1Y

)
Y11{Y>X}

]

= ρ′
(
u1

(
w̃0

))
Λ1

(
θ∗1

)
= 0 = Λ2

(
θ∗2

)
,

where Λi(·), i ∈ {1, 2}, is the function given by (A.10) with associated utility ui(·).
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(iii) The function defined by

G(w0, z) ≔ E
[
u′

(
w̃0 + zY

)
Y11{Y−X<0}

]
+ (1 − η (1 − λ))E

[
u′

(
w̃0 + zY

)
Y11{Y−X>0}

]
,

for all (w0, z) ∈ R × (0,+∞), is continuously differentiable with12

∂G

∂z
= E

[
u′′

(
w̃0 + zY

)
Y211{Y−X<0}

]
+ (1 − η (1 − λ))E

[
u′

(
w̃0 + zY

)
Y211{Y−X>0}

]
< 0.

Thus, by the Implicit Function Theorem, the partial derivative ∂θ∗/∂w0 has the same sign as

∂G/∂w0. Note also that

∂G

∂w0

= − (1 + r)E
[
ARAu

(
w̃0 + zY

)
u′

(
w̃0 + zY

)
Y11{Y−X<0}

]

− (1 − η (1 − λ)) (1 + r)E
[
ARAu

(
w̃0 + zY

)
u′

(
w̃0 + zY

)
Y11{Y−X>0}

]
,

and ARAu

(
w̃0 + zY

)
Y ≤ ARAu

(
w̃0

)
Y (respectively, ARAu

(
w̃0 + zY

)
Y = ARAu

(
w̃0

)
Y or ARAu

(
w̃0 + zY

)
Y ≥

ARAu

(
w̃0

)
Y) if u(·) displays non-increasing absolute risk aversion (respectively, constant absolute

risk aversion or non-decreasing absolute risk aversion). Recalling the first-order condition

1

1 − η
E
[
u′

(
w̃0 + θ

∗Y
)

Y11{Y−X<0}
]
+

1 − η (1 − λ)

1 − η
E
[
u′

(
w̃0 + θ

∗Y
)

Y11{Y−X>0}
]
= 0

gives the intended conclusion. �

Proof of Lemma 3.10. We deal with the case where µ > 0, the other one being identical. We proceed in

two separate steps.

(i) Suppose first that u(·) is linear. It is immediate to see that (3.9) implies the linearity of ν−(·) as

well, thus in particular ν′−(0) = ν′−(+∞). As a consequence, λ∞ = ν′+(+∞) /ν′−(0) ≤ λ (with

equality if and only if ν′+(·) is linear).

Set Ŷ ≔ E[Y |Y − X], and let k > 0. Using the measurability of 11{Y−X>k} with respect to the

σ-algebra generated by the random variable Y − X, the definition of conditional expectation, and

the independence of X and Y ,

E

[
Ŷ11{Y−X>k}

]
= E

[
Y11{Y−X>k}

]
= E[YF(Y − k)] ≥ µF(−k) ≥ 0.

Since k > 0 is arbitrary, we see that

Ŷ ≥ 0 a.s. on {Y − X > 0} . (A.17)

This in turn implies that the function Λ(·) defined in Lemma A.4 is non-increasing on (0,+∞),

because for all 0 < z1 < z2,

Λ(z1) = u′
(
w̃0

) (
1 + ν′−(0)

)
E
[
Y11{Y−X<0}

]
+ u′

(
w̃0

)
E

[(
1 + ν′+

(
u′

(
w̃0

)
z1 (Y − X)

))
Ŷ11{Y−X>0}

]

≥ u′
(
w̃0

) (
1 + ν′−(0)

)
E
[
Y11{Y−X<0}

]
+ u′

(
w̃0

)
E

[(
1 + ν′+

(
u′

(
w̃0

)
z2 (Y − X)

))
Ŷ11{Y−X>0}

]

= Λ(z2) ,

where the first and last equalities follow from the tower property, while the inequality is a con-

sequence of the concavity of ν+(·) combined with (A.17).

Furthermore, note that Λ(0+) > 0 and Λ(+∞) < 0 are equivalent to (3.12) and

1 − ν−
(0) (1 − λ∞)

1 + ν−(0)
<

G − 1

G + 1
,

respectively. As a consequence, there are only three possible scenarios to consider.

12 This fact requires an additional integrability condition involving u′′(·) and X2.
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(a) If (3.10) holds (which can only occur for ν+(·) not linear), then the continuous function Λ(·)
must cross the horizontal axis at least once on (0,+∞). On the other hand, since Λ(·) may not

be strictly monotonic on the positive half-line, we cannot conclude anything about the number of

its zeros. What we can say, however, is that due to Λ(+∞) < 0 we must have Λ(z) < 0 for all z

sufficiently large; moreover, if the number of roots of Λ(·) is finite, then it must be odd (otherwise

Λ(+∞) > 0, a contradiction).

(b) If (3.11) holds, then either Λ(+∞) > 0 or Λ(0+) < 0, whence by monotonicity Λ(·) is always

strictly above or strictly below zero.

(c) The case where either

G − 1

G + 1
= 1 − ν−

(0) (1 − λ∞)

1 + ν−(0)
≤ 1 − ν−

(0) (1 − λ)

1 + ν−(0)

or

G − 1

G + 1
= 1 − ν−

(0) (1 − λ)

1 + ν−(0)
≥ 1 − ν−

(0) (1 − λ∞)

1 + ν−(0)

is inconclusive whenever ν+(·) is non-linear.

(ii) As seen above, condition (3.12) implies Λ(0+) > 0. This inequality together with continuity

and Λ(+∞) = −∞ entails the existence of at least one root for Λ(·) on (0,+∞). The remaining

conclusions follow as before. �

Proof of Lemma 3.11. The proof comprises two steps.

(i) Let ψ′ be an F ′
0
-measurable random variable that is independent of, and has the same distribu-

tion as ψ. Since X and Y are also independent and identically distributed, P{ψ′Y − ψX > 0} =
P{ψ′Y − ψX < 0}; moreover, P{ψ′Y = ψX} = P{ψ = 0}P{ψ′ = 0} < 1 because X has continuous

law and ψ is non-degenerate. These two observations imply that the events {ψ′Y − ψX > 0} and

{ψ′Y − ψX < 0} both occur with strictly positive probability.

Next, defining Ψ1(x, y, z) ≔ E
[
u
(
w̃0 + ψ

′y
)
+ ν

(
u
(
w̃0 + ψ

′y
)
− u

(
w̃0 + zx

))]
,

E
[
u
(
w̃0 + ψ

′Y
)
+ ν

(
u
(
w̃0 + ψ

′Y
)
− u

(
w̃0 + ψX

))]

= E
[
E

[
u
(
w̃0 + ψ

′Y
)
+ ν

(
u
(
w̃0 + ψ

′Y
)
− u

(
w̃0 + ψX

))∣∣∣ X,Y, ψ
]]
= E

[
Ψ1(X,Y, ψ)

]
,

where we use the tower property of conditional expectation to obtain the first equality, and the

second one is a consequence of ψ′ being independent of X, Y and ψ.

By Jensen’s inequality (recall Assumption 3.9, which ensures the global concavity of the mapping

ψ′ 7→ u
(
w̃0 + ψ

′y
)
+ ν

(
u
(
w̃0 + ψ

′y
)
− u

(
w̃0 + zx

))
),

Ψ1(x, y, z) ≤ E
[
u
(
w̃0 + ψ̄y

)
+ ν

(
u
(
w̃0 + ψ̄y

)
− u

(
w̃0 + zx

))]
.

Note that the equality above is never attained for u(·) strictly concave; when u(·) is linear, the

equality holds if and only if P{ψ′y − zx > 0} = 0 or P{ψ′y − zx < 0} = 0.
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Hence,

E
[
u
(
w̃0 + ψ

′Y
)
+ ν

(
u
(
w̃0 + ψ

′Y
)
− u

(
w̃0 + ψX

))]

< E
[
u
(
w̃0 + ψ̄Y

)
+ ν

(
u
(
w̃0 + ψ̄Y

)
− u

(
w̃0 + ψX

))]

(the strict inequality being due to the initial observation that P{ψ′Y − ψX > 0} = P{ψ′Y − ψX < 0} >
0).

(ii) That the supremum on the left-hand side of (3.13) does not exceed the supremum on the right-

hand side is trivial, since the former is taken over the smaller set R ⊆ R . To prove the reverse

inequality, let ψ ∈ R and observe as in the previous step that

U

(
V
ψ

T

∣∣∣∣ Vφ

T

)
= E[Ψ2(X,Y)] ,

where Ψ2(x, y) ≔ E
[
u
(
w̃0 + ψy

)
+ ν

(
u
(
w̃0 + ψy

)
− u

(
w̃0 + φx

))]
(recall that φ is a constant). Thus,

setting ψ̄ ≔ E
[
ψ
]
∈ R, another application of Jensen’s inequality yields

Ψ2(x, y) ≤ u
(
w̃0 + ψ̄y

)
+ ν

(
u
(
w̃0 + ψ̄y

)
− u

(
w̃0 + φx

))

and consequently U

(
V
ψ

T

∣∣∣∣ Vφ

T

)
≤ U

(
V
ψ̄

T

∣∣∣∣ Vφ

T

)
≤ supϕ∈RU

(
V
ϕ

T

∣∣∣ Vφ

T

)
. �

Proof of Proposition 4.2. The proof consists of finding explicit expressions for the functions defined in

Lemmata A.2 and A.4.

(i) We have

Ξ0(z) =



1
γ
+ 1

γ
e−γw̃0

(
ηλ

1−η +
η(1−λ)

1−η Φ
(
µ

σ

))

− 1
γ
e−γw̃0−γµz+ 1

2
γ2σ2z2

(
1 +

ηλ

1−η +
η(1−λ)

1−η Φ
(
µ

σ
− γσz

))
, if z < 0,

1
γ
+ 1

γ
e−γw̃0

(
η

1−η −
η(1−λ)

1−η Φ
(
µ

σ

))

− 1
γ
e−γw̃0−γµz+ 1

2
γ2σ2z2

(
1 +

η

1−η −
η(1−λ)

1−η Φ
(
µ

σ
− γσz

))
, if z ≥ 0.

(ii) Let b ∈ R \ {0}. For all z ∈ R,

Ξb(z) =
1

γ
+

1

γ
e−γw̃0−γµb+ 1

2
γ2σ2b2

(
η

1 − η
− η

(1 − λ)

1 − η
Φ

(
(z − b) µ + γσ2b2

σ
√

z2 + b2

))

− 1

γ
e−γw̃0−γµz+ 1

2
γ2σ2z2

(
1 +

ηλ

1 − η
+
η (1 − λ)

1 − η
Φ

(
γσ2z2 − (z − b) µ

σ
√

z2 + b2

))
.

(iii) For all z ∈ R,

Π(z) =
1

γ
− 1

γ
e−γw̃0−γµz+ 1

2
γ2σ2z2

(
1 − η

(1 − λ)

1 − η
+ 2

η (1 − λ)

1 − η
Φ

(
γσ |z|
√

2

))
.

(iv) For all z ∈ R,

Θ−(z) = e−γw̃0−γµz+ 1
2
γ2σ2z2

(
µ − γσ2z

)
Φ

(
γσz
√

2

)
− e−γw̃0−γµz+ 1

2
γ2σ2z2 σ

2
√
π

e−(
γσz

2 )
2

.

�
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B. Kőszegi and M. Rabin. Choices, situations, and happiness. Journal of Public Economics, 92(8):

1821–1832, 2008. doi:10.1016/j.jpubeco.2008.03.010.
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