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ABBREVIATIONS 

KB, Kirkwood-Buff; KBI, Kirkwood-Buff integral; CMC, Critical micelle concentration 

 

ABSTRACT 

 

Determinations of solute-cosolute interactions from chromatography have often resulted in 

problems, such as the “antibinding” (or a negative binding constant) between the solute and micelle 

in micellar liquid chromatography (MLC) or indeterminacy of salt-ligand binding strength in high-

performance affinity chromatography (HPAC). This shows that the stoichiometric binding models 

adopted in many chromatographic analyses cannot capture the non-specific nature of solvation 

interactions. In contrast, an approach using statistical thermodynamics handles these complexities 

without such problems and directly links chromatographic data to, for example, solubility data via 

a universal framework based on Kirkwood-Buff integrals (KBI) of the radial distribution functions. 

The chromatographic measurements can now be interpreted within this universal theoretical 

framework that has been used to rationalize small solute solubility, biomolecular stability, binding, 

aggregation and gelation. In particular, KBI analysis identifies key solute-cosolute interactions, 

including excluded volume effects. We present (i) how KBI can be obtained directly from the 

cosolute concentration dependence of the distribution coefficient, (ii) how the classical binding 

model, when used solely as a fitting model, can yield the KBIs directly from the literature data, 

and (iii) how chromatography and solubility measurements can be compared in the unified 

theoretical framework provided via KBIs without any arbitrary assumptions about the stationary 

phase. To perform our own analyses on multiple datasets we have used an “app”. To aid readers’ 
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understanding and to allow analyses of their own datasets, the app is provided with many datasets 

and is freely available on-line as an open-source resource. 

 

1. Introduction  

 

The way that solutes interact in the aqueous environment can be modulated through the addition 

of small molecules (“cosolutes”), leading to solubility enhancement,1–4 stabilizing biopolymer 

folding, controlling protein-ligand interaction and controlling protein aggregation and gelation.5–8 

To this end, many different cosolutes (salts, small organic molecules, hydrotropes, micelles and 

polymers) have been used. These can exhibit different degrees of self-aggregation (micellar 

surfactants, hydrotropes and cosolvents) and different modes of interaction specificity with the 

solute (e.g. encapsulation by cyclodextrins, incorporation into micelles, electrostatic interactions 

with salts, and weak, non-specific interactions with osmolytes).9–11  

 

Chromatography is a powerful technique to quantify solute-cosolute interaction due to its 

superiority in speed and simplicity compared to thermodynamic techniques, which are often slow 

and painstaking.5,12 Different chromatographic approaches, targeting a particular range of self-

aggregation and specificity, have been developed, including   

(i) micellar liquid chromatography (MLC) to quantify micelle-solute affinities;13–17 

(ii) high performance affinity chromatography (HPAC) to measure protein-ligand 

affinities18–26  

However, the interpretations of the data from these techniques are still based on ideas of 

stoichiometric solute-cosolute binding,13–20 which have not only been invalidated and superseded 
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in the recent development in complex solutions, but have also been shown to contradict the actual 

chromatographic data.  

 

Indeed, “antibinding” or negative solute-cosolute binding constants have been reported in MLC 

for decades,27–29 which is contradictory in principle to the basic assumption, i.e., the stoichiometric 

binding between the solute and cosolute. Moreover, the salt-ligand binding constant, one of the 

fundamental parameters for HPAC, sometimes turned out to be indeterminate18 by experimental 

data; several different binding constants may also be required for some systems.18 Analysing 

chromatographic data by stoichiometric binding models has thus led to fundamental difficulties.  

 

Such fundamental difficulties cannot be resolved by data acquisition. What is needed instead is 

a reconsideration of the theoretical foundation upon which the experimental data are analysed.  

Here we show that the stoichiometric binding models can be replaced by a general molecular 

(statistical) thermodynamic theory, which enables the quantification of non-specific interactions 

based on the realistic picture of such interactions in solutions.3,4 Instead of the binding constant 

which, by definition, can only be positive (and where rectifying this has led to more complex 

assumptions),30–32 we advocate the use of the Kirkwood-Buff integrals (KBIs),33–35 defined from 

the distribution of molecules around the solute, for the following advantages:  

• Non-specific interactions are defined directly from a fundamental property of solution 

structure, i.e., molecular distribution functions3,4  

• Association and exclusion of the cosolutes around the solute can both be treated36–38  

• The analysis does not depend on any presumed linearity of any plot39 
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In addition, characterising the non-specific and non-stoichiometric nature of solute-cosolute 

interactions by KBIs has resolved decades-long confusions and controversies in other scientific 

disciplines which had previously used stoichiometric modelling of non-stoichiometric 

interactions.8,10,36,37 There, as here, the key for resolution was to abandon the stoichiometric models 

and to replace them with molecular distribution functions.3,4,8 Despite the clarity attained in other 

fields of research, chromatographic analysis on cosolute effects still suffers from the lack of clarity. 

We will demonstrate that analysing chromatographic data based on the molecular distribution 

functions will lead to a novel, universal method that do not suffer from the fundamental difficulties 

of the traditional methods.18,27–29     

 

Hence the goal of this paper is fourfold:  

1. To establish a universal theory of cosolvent effects in chromatography regardless of the 

degree of cosolvent self-association, solute-cosolvent binding strength and specificity.  

2. To link the previous theoretical models to the universal theory so that all the fitting 

parameters reported in the literature can immediately be useful in quantifying the cosolvent 

effect on a molecular basis in the framework of the universal theory.  

3. To clarify the presumed relationship between chromatography and solubility for MLC in 

terms of KBIs, thereby providing the criterion to judge whether chromatography can 

facilitate high-throughput determination of solute-micelle affinities.  

4. To highlight the problem of the necessary assumption made by stoichiometric models that 

the cosolute does not interact with the stationary phase. 

Thus, the main focus of this paper is to propose a new approach to chromatographic data analysis 

and interpretation, in order to overcome the difficulties and paradoxes arising from the traditional 
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analysis methods. As in our previous papers,3,39,40 the calculations, based directly on our novel 

approach, throughout have been performed using an “app”, which is freely available on-line, along 

with all the datasets used, so that readers can check the approach for themselves and load and 

analyse their own datasets. 

 

2. A statistical thermodynamic foundation for chromatography 

 

2.1 High Performance Affinity Chromatography (HPAC) 

 

We consider the mobile phase comprised of dilute ligand (𝑖 = 𝑢), water (𝑖 = 1) and cosolute (𝑖 =2) molecule. Proteins, that bind ligand in a specific manner, have been fixed onto the stationary 

phase. Let us denote the concentration of the species 𝑐𝑖. At a given 𝑐2, the number of receptor 

active sites n, the volume of the mobile phase 𝑉𝑚, and the retention factor k can all be measured, 

from which the distribution constant 𝐾 of the solute can be calculated using a well-known formula 

as  𝑘 = 𝐾 𝑛𝑉𝑚            (1) 

The distribution coefficient 𝐾, under the instantaneous equilibrium assumption, signifies ligand 

partitioning between the mobile and stationary phases, as   𝐾 = 𝑐𝑢𝑠𝑐𝑢            (2) 

where 𝑐𝑢𝑠  is the ligand concentration in the stationary phase. Consequently, 𝐾 can be linked via 

statistical thermodynamics to the free energy Δ𝜇𝑢∗  of transferring a ligand from a fixed centre of 

mass position in the stationary phase to that in the mobile phase as  
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Δ𝜇𝑢∗ = −𝑅𝑇 ln 𝑐𝑢𝑐𝑢𝑠 = 𝑅𝑇 ln 𝐾        

 (3) 

 

With the above setup, chromatographic measurements can now be analysed in the framework of 

statistical thermodynamics. To do so, the distribution constant 𝐾 of ligands is measured along with 

the concentration of non-micellar cosolutes, 𝑐2. Then a rigorous statistical thermodynamic 

result7,36,37 can be used to interpret the distribution constant when the cosolutes are dilute − 1𝑅𝑇 (𝜕Δ𝜇𝑢∗𝜕𝑐2 )𝑇,𝑃,𝑐𝑢→0 = − (𝜕 ln 𝐾𝜕𝑐2 )𝑇,𝑃,𝑐𝑢→0 = Δ𝐺𝑢2 − Δ𝐺𝑢1     

 (4) 

in terms of the change Δ of the Kirkwood-Buff integral (KBI) that accompanies ligand 

dissociation. The KBI between the solute and the species 𝑖 at state 𝛼, either “𝑏” for bound ligand-

protein pair or “𝑑” for dissociated, is defined as  𝐺𝑢𝑖𝛼 = 4𝜋 ∫ 𝑑𝑟 𝑟2 [𝑔𝑢𝑖(𝑟) − 1]        

 (5) 

in which 𝑔𝑢𝑖(𝑟) is the radial distribution function between the solute and the species 𝑖.33–35 Hence Δ𝐺𝑢𝑖 is defined as the difference in KBI between the dissociated and bound states, i.e., Δ𝐺𝑢𝑖 =𝐺𝑢𝑖𝑑 − 𝐺𝑢𝑖𝑏 .36,37 Such a KBI difference can be evaluated from how the retention factor 𝑘 depends 

on cosolute concentration 𝑐2, because the 𝑐2 dependence of 𝐾 in Eq. (4) comes from the 𝑐2 

dependence of 𝑘.  

 

It is natural to consider that water and cosolute both interact not only with the ligand but also 

with the protein, hence the chromatographic distribution coefficient 𝐾 should correspond to the 

ligand-protein dissociation constant in the thermodynamics of protein-ligand binding. This is 
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indeed in line with Eq. (4) in which the cosolute effect on protein-ligand binding is driven by the 

differences of KBIs. However, earlier literature on the cosolute effect considered the mutual 

binding of cosolutes (or “displacers”) and ligands to a common site on the stationary phase,41–43 

which does not directly consider cosolute-ligand interaction in the mobile phase. The 

thermodynamic binding model was later extended to rectify this shortcoming, only to result in 

indeterminate binding constant (see Section 3.1).18  

 

Thus, we advocate that KBIs be used as the universal measure to quantify affinities from 

chromatographic measurements, instead of a number of different models and conventions 

developed for particular applications.13–20 The universality of KBIs comes from its definition as 

net affinity, based directly on solution structure.33–35 To appreciate its meaning, let us first note 

that solute-cosolute distribution function, 𝑔𝑢2(𝑟), tends to 1 far away from the solute (at large 𝑟), 

where the solution structure is no longer affected by the presence of the solute and therefore is the 

same as the bulk solution. The attractive regions (i.e., 𝑟 with 𝑔𝑢2(𝑟) > 1) contributes positively to 

KBIs whereas repulsion (i.e., 𝑟 with 𝑔𝑢2(𝑟) < 1) contributes negatively. In summary, the KBI 

(Eq. (5)) signifies the net increase in the concentration of species 𝑖 around the solute compared to 

the bulk solution.3,39 

 

Thus, the increment of protein-cosolute and protein-water interactions that accompany ligand 

dissociation, Δ𝐺𝑢2 and Δ𝐺𝑢1, competitively contribute to drive the ligand dissociation. To identify 

which of the two is the dominant contribution, Eq. (4) from chromatographic should be combined 

with the partial molar volume change Δ𝑣𝑢0 that accompanies protein-ligand dissociation, which is 

known to yield Δ𝐺𝑢1 via7,36,37  
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Δ𝐺𝑢1 = −Δ𝑣𝑢0          (6) 

Note that Eqs. (4) and (6) have been derived under dilute cosolute concentration as has been 

commonly performed in chromatographic measurements, and can be generalized straightforwardly 

to higher cosolute concentrations.7,36,37  

 

To extract KBI from experimental data of retention factor, 𝑘, versus cosolute concentration, the 

following steps are required:  

(i) fit the data to a convenient function,  

(ii) use the analytical derivative of that function at any concentration to calculate Δ𝐺𝑢2 from 

Eq. (4) as Δ𝐺𝑢1 is negligibly small.  

Indeed, evidence in the literature7,8,36,37 shows that that Δ𝐺𝑢1 is usually in the order of 101-102 cm3 mol−1, which, as can be seen from the app, is several orders of magnitude smaller than Δ𝐺𝑢2. 

Such an order-of-magnitude analysis, which has led to a drastic simplification in data analysis, 

was made possible via a novel link between the chromatographic 𝑘 and KBIs, which has made it 

possible to be compared with the volumetric data on binding. Such a negligibility of Δ𝐺𝑢1 

simplifies the application of Eq. (4) to salts as cosolutes. Δ𝐺𝑢2 per salt has been calculated by 

taking 𝑐2 as the concentration of salts whereas the per-ion Δ𝐺𝑢2, commonly employed in the 

literature of KBI calculation, can be obtained simply multiplying per-salt Δ𝐺𝑢2 by the number of 

ions per salt.38,44,45  

 

The process is conveniently done via the app shown in Figure 1 which can perform the analysis 

of data from a wide range of different systems assembled and placed into a uniform format by the 

Peyrin group,18 though, of course, our analysis is different from theirs. We emphasise that the app, 
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which already contains at least 4 different classes of data sets, is provided here to enable the readers 

to test this new, universal approach. The data used in the app is necessarily of limited quality 

because it has been extracted from the graphs and converted from the log-log format of the original. 

Users can also load their own data in the simple format specified in the app. To fit the wide variety 

of data, a pragmatic choice of fitting equation was made that is generally robust and does a 

reasonable job with the 11 examples extracted from the paper.  

 

Figure 1. An interactive statistical thermodynamic analysis of High Performance Affinity 

Chromatography (HPAC) data taken from Slama et al.18 for medetomide-R-1-glycoprotein-

sodium phosphate in the presence of salts. The raw data are shown in the table in the app. The  ln 𝑘 

versus salt concentration (𝑐2) data are fitted to a convenient function and the solute-cosolute KBI 

(Δ𝐺𝑢2) values are extracted from the analytical derivative of the curve. Per-salt Δ𝐺𝑢2 has been 

reported for salt. The app is available at https://www.stevenabbott.co.uk/practical-

chromatography/HPAC.php  

 

2.2. Micellar Liquid Chromatography (MLC) 

https://www.stevenabbott.co.uk/practical-chromatography/HPAC.php
https://www.stevenabbott.co.uk/practical-chromatography/HPAC.php
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The universality of the statistical thermodynamic foundation presented in Section 2.1 can be 

demonstrated by seeing how easy it is to adapt it to a different chromatographic technique, 

specializing exclusively in micellar cosolutes, which previously had been analyzed using a 

separate theoretical model. MLC deals with micellar cosolutes, for which we consider surfactant 

monomer (𝑖 = 2) and surfactant micelle (𝑖 = 3), whose aggregation number is 𝑚,4,9 under micelle-

monomer equilibrium above the critical micelle concentration (CMC). Due to the micelle-

monomer equilibrium, the solvent mixture (water, monomer and micelle) still behaves like an 

effective two-component mixture; indeed, chromatographic measurements are conducted in the 

concentrations much larger than CMC where surfactants are predominantly in a micellar form.4,9  

In addition to the concentration 𝑐𝑖 defined in Section 2, we also use 𝑐2′  as the total concentration 

of surfactant monomer, such that 𝑐2′ = 𝑚𝑐3 for the case of predominant micelle formation.4,9  

 

In MLC, the solute’s distribution coefficient 𝐾 is measured along with the surfactant 

concentration, 𝑐2′ , which can be linked to KBIs via a rigorous statistical thermodynamic result 

derived under the condition that the surfactants are predominantly in the micellar form,9 as − 1𝑅𝑇 (𝜕Δ𝜇𝑢∗𝜕𝑐3 )𝑇,𝑃,𝑐𝑢→0 = Δ𝐺𝑢3 − Δ𝐺𝑢1        (7) 

where Δ𝐺𝑢𝑖 signifies the difference of KBI between the mobile (𝛼 = 𝑚) and stationary (𝛼 = 𝑠) 

phases, i.e., Δ𝐺𝑢𝑖 = 𝐺𝑢𝑖𝑚 − 𝐺𝑢𝑖𝑠 .  

 

Note, according to the implicit assumption of MLC, that the surfactant predominantly affects 

the mobile phase, so 𝐾, according to MLC, is the measure of solute affinity to the mobile phase, 

independent of surfactant concentration. If this is true, then the right-hand side of Eq. (7) actually 
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involves the mobile phase only (i.e., 𝐺𝑢3𝑚 − 𝐺𝑢1𝑚 ). This means that it can also be determined from 

how solubility (measured by classical techniques) depends on surfactant concentration.  If this 

chain of logic is true then there is a common foundation for solubility and chromatographic 

measurements, leading to an expectation that micellar solubilization can be measured much more 

efficiently using chromatography than from solubility measurements. In Section 3.3., the 

comparison between some MLC-based and solubility-based values is made. The evidence suggests 

that this fast-track method is not currently reliable. 

 

Eq. (7) shows that micellar solubilization is due to the stronger solute-cosolute interaction 

increase (upon stationary to mobile transfer of a solute) compared to solute-water.9 In quantifying 

micellar solubilization, the accumulating evidence for the multiple possible locations (from 

interior to the surface) for a solute in the micellar system46–49 has posed much difficulties. 

However, Eq. (7) is valid regardless of the solute location.4,9 If the solute is buried inside, then 𝑔𝑢3(𝑟) has a sharp peak near 𝑟 = 0. If the solute is bound between the hydrophobic chains of the 

surfactant molecules, then 𝑔𝑢3(𝑟) peak shifts to a larger r but still less than the micelle radius. If 

the solute is bound on the surface, a sharp 𝑔𝑢3(𝑟) peak is observed at the micelle-solute contact 

distance. Wherever the solute is located, KBI can link solute-micelle affinity to solubilization.  

 

In the current analysis of experimental data, surfactant concentration is commonly used instead 

of the micellar concentration. The use of total surfactant concentration 𝑐2′ , with the use of the 

aggregation number 𝑚 yields the expression conforming to this practice4,9  − (𝜕 ln 𝐾𝜕𝑐2′ )𝑇,𝑃,𝑐𝑢→0 = 1𝑚 (Δ𝐺𝑢3 − Δ𝐺𝑢1)        (8) 

Eq. (8) clarifies the two competing driving forces at work for solubilization.  
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(i) The large 𝑚, which refers to the effective reduction in the number of hydrotropes, hence 

an apparent inefficiency due to micellization.9  

(ii) The large Δ𝐺𝑢3 more than compensates for this factor, making many micellar hydrotropes 

effective solubilizers.9  

Note, due to the existence of monomer-micelle equilibrium, that solute-micelle and solute-

monomer KB integrals cannot be determined independently.4,11 However, solute-micelle and 

solute-water KBIs can both be determined. To do so, just like HPAC, the change of partial molar 

volume 𝑣𝑢0 of the solute accompanying the transfer from stationary to mobile phases, should be 

used in conjunction,4,9,36 as Δ𝐺𝑢1 = −Δ𝑣𝑢0          (9) 

 

To extract KBI from experimental data of retention factor, 𝑘, versus concentration of surfactant 

just two steps are required: fit the data (ln K versus 𝑐2′ ) to a convenient polynomial, then use the 

analytical derivative of that polynomial at any concentration to calculate Δ𝐺𝑢3 from Eq. (8), using 

any convenient estimate of Δ𝐺𝑢1. Although 𝐾 requires 𝑛/𝑉𝑚, because this appears only as a small 

constant (e.g. ln(100)~5), it can be ignored in calculation of the relatively large Δ𝐺𝑢3 values. 

Similarly, the Δ𝐺𝑢1 term is usually negligible9,36 and is not required for the app. The process is 

conveniently done via the app shown in Figure 2 which is performing the analysis of some classic 

data from Armstrong and Stine. The user can select one of the many datasets we have analysed, or 

users can load their own datasets if provided in a simple format described in the app. Moreover, 

readers are encouraged to use this free application to check the validity of new approach using 

their own experimental data. 
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Figure 2. A statistical thermodynamic analysis of Micellar Liquid Chromatography (MLC) data, 

taken from literature,13,29,50–52 which interactively shows the route from raw data to fitting to 

calculation of solute-micelle KBI (Δ𝐺𝑢3) values. The sliders allow users to change the estimates 

of potentially uncertain values such as aggregation number. The significance of the lower part of 

the app is discussed below. The app is available at https://www.stevenabbott.co.uk/practical-

chromatography/MLC.php 

 

3.  Statistical thermodynamics versus stoichiometric binding models 

 

3.1. Breakdown of stoichiometric binding in HPAC 

 

https://www.stevenabbott.co.uk/practical-chromatography/MLC.php
https://www.stevenabbott.co.uk/practical-chromatography/MLC.php
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As demonstrated in Section 2, KBIs, the universal affinity measure, can be calculated 

straightforwardly from experimental data on the dependence of retention factor k on cosolute 

concentration. Such a clarity, generality and universality cannot be obtained from the traditional 

analysis based on thermodynamic models, as will be demonstrated below.  

 

Prior to the statistical thermodynamic theory, the effect of cosolutes on solvation had long been 

modelled using the competitive solvent binding model.31,32,53–56 Here we do not discuss many 

fundamental difficulties and confusions that necessitated the replacement of this model by 

statistical thermodynamics, for which our reviews may be consulted.3,4,8  

 

We focus instead on the difficulties encountered by the previous analysis of cosolute (salt) effect 

on protein-ligand binding conducted via the competitive solvent binding model.18–20 According to 

this model, the number of cosolutes released on protein-ligand dissociation, Δ𝑛2, as well as the 

average binding constant of each cosolute 𝜅, are the key to parameters to be quantified from 

experiments, via18,54,55  ln 𝑘 = ln 𝑘0 + Δ𝑛2 ln(1 + 𝜅𝑐2)        (10) 

where 𝑘0 is a constant. In the analysis, however, a linear dependence of ln 𝑘 on ln 𝑐2 has been 

reported for the ligand-protein combinations of aspartame and 𝛼-chymotrypsin, medetomide and 𝛼-1-glycoprotein, and beraprost and 𝛼-1-glycoprotein,18 that have led to the determination of  Δ𝑛2 

via   

𝜕 ln 𝑘𝜕 ln 𝑐2 ≃ Δ𝑛2            (11) 
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Note that Eq. (11) is the 𝜅 → ∞ limit of Eq. (10). This relationship, however, is problematic for 

the following reasons: (i) 𝜅, another key parameter for the model, is rendered undeterminable; (ii) 

Eqs. (4) and (11) leads to the KBI,  Δ𝐺𝑢2 − Δ𝐺𝑢1 = − 𝜕 ln 𝑘𝜕𝑐2 = − 𝜕 ln 𝑘𝜕 ln 𝑐2 𝜕 ln 𝑐2𝜕𝑐2 = − Δ𝑛2𝑐2         

(12)  

which diverges at 𝑐2 → 0, which is unphysical, showing the difficulty with regards to this linear 

relationship between ln 𝑘 and ln 𝑐2. Moreover, highly non-linear relationships, whenever 

observed, have been fitted by assuming multiple strengths of salt binding constants, which 

complicates the analysis with arbitrary assumptions.18  

 

In contrast, as has been demonstrated in Section 2, the calculation of KBIs is so much simpler 

and universal. Firstly, unlike the KBI approach which uses the same model, the thermodynamic 

model for salts as cosolutes adopted by HPAC18–20,54,55 is completely different from that for 

surfactant cosolutes developed for MLC (Section 3.2). Secondly, although calculation of KBIs still 

requires fitting functions, unlike the traditional binding models which require the data to be forced 

into linear plots (such as the Hill or Klotz plot57), the fitting functions are solely for the purpose of 

calculating the gradient of ln 𝑘 with respect to 𝑐2. Thirdly, KBIs can be used regardless of cosolute 

self-association.4,9   

 

3.2. Obtaining KBIs from existing MLC binding model values 

 



 17 

There is a further advantage to the KBI approach: we can convert, with obvious limitations, 

previously published data into KBI values enabling the wealth of data in the literature to be used 

within the KBI context.  

 

The idea is to use binding model data as an empirical28 fitting model for experimental data. This 

enables us to obtain KBIs directly from the results in the literature that have relied upon the 

stoichiometric model. To do so, let us start from the distribution/partition coefficient 𝐾, and rewrite 

it in the language of the binding coefficients of Armstrong and Stine,28 while using the molarity 

concentration throughout, as  

𝐾 = 𝑐𝑢𝑠𝑐𝑢 = 𝑐𝑢𝑠𝑐𝑢𝑎𝑞+𝑐𝑢𝑚 = 𝑐𝑢𝑠𝑐𝑢𝑎𝑞𝑐𝑢𝑚𝑐𝑢𝑎𝑞+1          (13) 

where 𝑐𝑢𝑎𝑞 and 𝑐𝑢𝑚 represent the solute concentrations in the “aqueous” (bulk water) (sub)phase 

and in the micelle, respectively. Following Armstrong and Stine, Eq. (13) can be rewritten using 

the volume fraction of the micelle, 𝑐3𝑣3 (where 𝑣3 is the partial molar volume of the micelle), as 

well as the solute’s micelle-water and stationary-water partition constants, 𝐾𝑚𝑤 and 𝐾𝑠𝑤, as28  𝐾𝑚𝑤 = 1−𝑐3𝑣3𝑐3𝑣3 𝑐𝑢𝑚𝑐𝑢𝑎𝑞          (14) 

𝐾𝑠𝑤 = 𝑐𝑢𝑠 (1−𝑐3𝑣3)𝑐𝑢𝑎𝑞            (15) 

What is important here is the factors 
1−𝑐3𝑣3𝑐3𝑣3  and (1 − 𝑐3𝑣3) used in deriving Eqs. (14) and (15); 

note that 
𝑐𝑢𝑚𝑐𝑢𝑎𝑞 depends not only on the relative affinity of the solute in two subphases but also the 

relative amounts of the micellar subphase in the solution.27–29 To extract the relative affinity 

information only, the subphase amounts must be normalized, which has led to the factors 1 − 𝑐3𝑣3 

and 𝑐3𝑣3 in Eqs. (14) and (15). Combining Eqs. (13)-(15) yields  
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𝐾 = 𝐾𝑠𝑤1+(𝐾𝑚𝑤−1)𝑣3𝑐3          (16) 

Substituting Eq. (16) into Eq. (8) yields  Δ𝐺𝑢3 − Δ𝐺𝑢1 = (𝐾𝑚𝑤−1)𝑣31+(𝐾𝑚𝑤−1)𝑣3𝑐3        (17) 

 

Thus, the micelle-water binding constant, 𝐾𝑚𝑤, from the stoichiometric model, when used solely 

as a fitting parameter, can directly yield the KBI difference via Eq. (17), thereby enabling an 

evaluation of weak, non-specific interactions realistically via statistical thermodynamics. This 

analysis remains valid even when 𝐾𝑚𝑤 is negative, i.e. the antibinding state. The app allows the 

user to input 𝐾𝑚𝑤 at a chosen surfactant concentration 𝑐2′  plus an estimate of v3 to perform the 

conversion to Δ𝐺𝑢3, again assuming that the Δ𝐺𝑢1 term is negligible. The value shown in Figure 

3 (the lower portion of the app in Figure 2) using Armstrong and Stine’s own value of 𝐾𝑚𝑤 is 

similar (see the mouse read-out at 10.2 mM) to the values calculated via the full theory. 

 

Figure 3. Calculation of solute-micelle KBI (Δ𝐺𝑢3) from empirically-determined 𝐾𝑚𝑤 values 

reported in the literature, along with experimentally-determined properties of surfactant and solute 

28,29 required for KBI determination. This is part of the MLC app presented in Figure 2.  

 

Not only does Eq. (17) serve as a convenient method for quantifying weak, non-specific 

interactions through the evaluation of KBIs using the stoichiometric binding model purely as a 
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fitting model for experimental data; it also clarifies the key differences in molecular picture 

between stoichiometric binding and statistical thermodynamics. In addition, the important 

limitation of the stoichiometric approach, which has posed severe difficulties in the understanding 

of protein denaturation and stability from 1970s to early 2000s,6,30,31,58,59 has come to the fore.   

  

Firstly, while the negative 𝐾𝑚𝑤 (“antibinding”) in the framework of the binding model signifies 

the failure and limitation of the model, statistical thermodynamics interprets this as a negative Δ𝐺𝑢3 − Δ𝐺𝑢1, which represents a net depletion of cosolute around the solute as compared to the 

bulk.36  Unlike the solvent exchange model, that attempted to incorporate cosolute exclusion within 

stoichiometric model, statistical thermodynamics is free from assumptions, such as how many 

water molecules should replace cosolute on solvation shell or the thickness of the solvation shell. 

8,36  Cosolute exclusion in general has been well-documented around macromolecules as well as 

around small solutes,7–11 and Eq. (17) now makes it possible to quantify micelle exclusion from 

chromatographic data. However, experimental results on antibinding analysed via our theory yield 

cosolute exclusion far larger than micelle-solute exclusion volume. This supports the common-

sense notion, contrary to the implicit assumption required by MLC theory, that surfactants not only 

affect the interaction between the solute and the mobile phase but also between the solute and the 

stationary phase. The evidence from NMR,60 suggesting the capability of anionic surfactants to 

bind to some mobile phases, seems to be consistent with this reasoning.  

 

 Secondly, the 𝐾𝑚𝑤 − 1 term in Eq. (17) shows that even a weak positive binding constant (for 

which 𝐾𝑚𝑤 < 1) gives rise to a negative Δ𝐺𝑢3 − Δ𝐺𝑢1, which again signifies the exclusion of 

micelles. That weakly-binding cosolutes can nevertheless lead to preferential exclusion posed a 
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serious paradox in the elucidation of protein denaturation and stabilitzation.6,30,31,58,59 The clue to 

resolving this paradox, albeit phenomenologically, came from considering the competitive binding 

of cosolute and water on the shared binding sites on biomolecules.31 The chromatographic binding 

model also takes into account both the binding of water and cosolutes, which has given rise to 𝐾𝑚𝑤 − 1. This has at least captured the basic relationship between weak binding and preferential 

exclusion right, albeit in a primitive model.  

 

The lower portion of the MLC app shown in Figure 3 allows this translation to be made. From 

the user’s 𝐾𝑚𝑤, concentration and molar volume of the surfactant, and the concentration of the 

solute, the 𝐺𝑢3 and other values are calculated. 

 

The key limitation of this approach is that the values are based on a linear average across 

concentrations whereas the KBI approach creates values from the real-world, non-linear 

dependency at each concentration. So, the mining of literature data needs to be done with due 

regard to this (modest) limitation. 

 

3.3 Comparing MLC to solubility data 

 

One of the major hindrances towards the high-throughput measurements of micellar solubilization 

comes from the different theoretical models used in analyzing such properties as solubility and 

chromatographic behavior in the framework of stoichiometric binding models. Since there is now 

a common theoretical framework for these two, the results from the binding model for 

chromatography and the partitioning model for solubility can be compared directly. To this end, 
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here we briefly revisit the two key parameters used in the partitioning model for solubility 𝜅.48,61,62 

The first is the molar solubilization ratio (MSR) 𝜅 at a total surfactant concentration 𝑐2′ , which has 

been defined as  𝑐𝑢 = 𝑐𝑢0 + 𝜅(𝑐2′ − 𝑐2𝑐𝑚𝑐′)         (18) 

where 𝑐𝑢 is the solubility of the solute and 𝑐𝑢0 is that at CMC (𝑐2𝑐𝑚𝑐′).48,61,62 The second is the molar 

micelle-water partition coefficient 𝐾𝑀, which appears in the context of rewriting Eq. (18) as 49  

𝑐𝑢𝑐𝑢0 = 1 + 𝜅(𝑐2′ −𝑐2𝑐𝑚𝑐′)𝑐𝑢0 = 1 + 𝐾𝑀(𝑐2′ − 𝑐2𝑐𝑚𝑐′) ≃ 1 + 𝐾𝑀𝑐2′      (19) 

where 𝑐2′ ≫ 𝑐2𝑐𝑚𝑐′
 is usually the concentration region used for solubilization.48,61,62 The “partition 

coefficient” 𝐾𝑀 here refers to the partitioning of solute molecules between water and micellar 

interior, which is a further simplification of the stoichiometric modelling of solute-surfactant 

complexation.63 Using Eq. (19) as 𝐾 in Eq. (7), we obtain49  𝐺𝑢30 − 𝐺𝑢10 = 𝑚𝐾𝑀1+𝑚𝐾𝑀𝑐3         (20)  

 

Thus, there is a one-to-one correspondence between the chromatographic micelle-water binding 

constant and the solubility-based micelle-water partitioning coefficient, as can be seen by 

comparing Eqs. (17) and (20):  𝑚𝐾𝑀 = 𝑣3(𝐾𝑚𝑤 − 1)          (21) 

Thus, by treating 𝐾𝑀 and 𝐾𝑚𝑤 as purely fitting parameters, the experimental data in the literature 

can now be used to yield solute-micelle KBIs both from the solubility and chromatographic 

measurements. Thus, if the assumptions underlying MLC are correct, solubility and 

chromatographic behaviour, expressed in terms of 𝐾𝑀 and 𝐾𝑚𝑤, are complementary to one another 

in determining the solute-micelle affinities quantified via KBIs.  
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However, a systematic comparison (necessarily limited by the difficulties of finding values for 

the same solutes and surfactants) between solubility expressed by 𝑚𝐾𝑀 and MLC parameter  𝑣3(𝐾𝑚𝑤 − 1) in Figure 4 shows the discrepancy between the two, underscoring our doubts on the 

basic assumption of MLC (no interaction of the surfactant with the stationary phase) presented in 

Section 3.2.  

 

Figure 4. Correlation between micelle-water partition coefficients determined from MLC 

(𝑀𝑚𝑤)51,64 and solubility (𝐾𝑀)65 for substituted phenols in the presence of SDS. A poor correlation 

raises questions on the basic assumption of MLC.  

 

3.4. A universal statistical thermodynamic measure of chromatographic affinity  
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We have chosen, in the present paper, the two chromatographic techniques that deal with cosolutes 

with different degrees of self-association. Until recently, understanding the mechanism of 

solubilization through the addition of cosolutes had long been hampered severely by the lack of a 

general theory. Cosolutes have been categorized by the degrees of self-association, from 

“cosolvents” (whose with weak self-association) to “hydrotropes” (self-associating but not strong 

enough to form micelles) and micelles.2,66,67 Each category of solubilization was modelled and 

explained differently, often posing questions as to which theory to adopt for a given cosolute (e.g., 

urea as a hydrotrope).68–70 Our recent universal theory of cosolute solubilization,4,9 as well as the 

universal formulation of the cosolute effect in the present paper, forces us to reconsider how we 

should approach micelle-solute interactions.   

 

The discrepancy is due to the following difference in perspective:  

a. incorporation of solute into a micelle; 

b. distribution of (non-aggregating) cosolutes around a solute. 

Statistical thermodynamics endorses (b), and advocates that micellar solubilization should also be 

formulated according to (b), thereby establishing a unified approach applicable to all cosolutes 

regardless of their self-aggregation. Indeed, solubilization is the change of insertion free energy 

(i.e., Ben-Naim’s pseudochemical potential) of a solute molecule,71 which can be explained by the 

distribution of cosolutes around a solute molecule.1,2 These two perspectives are equivalent when 

one deals with KBIs, due to their symmetry, 𝐺𝑢𝑖 = 𝐺𝑖𝑢,3 which shows that cosolute distribution 

around a solute is equivalent to solute distribution around a micelle. However, this equivalence 

breaks down when we explicitly consider the excess coordination number, defined as 𝑁𝑖𝑗 =
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𝑐𝑗𝐺𝑖𝑗.68 This means that the excess coordination number of micelles around a solute, 𝑁𝑢3 is 

different from that of solutes around a micelle, 𝑁3𝑢,66,69 as can easily be proven from its definition. 

Most importantly, for sparingly soluble solutes, 𝑁𝑢𝑖 is useful but 𝑁𝑖𝑢 is not, because the latter tends 

to zero at 𝑐𝑢 → 0. For convenience, the key 𝑁𝑖𝑗 values are provided in the apps. We might prefer 

to think of excess solutes in a micelle, but the thermodynamics tells us that we must get used to 

thinking of it the other way round.  

 

Thus, we have shown that, for clarity, cosolute distribution around a solute should be adopted 

as a universal measure of chromatographic affinity.  

 

4. Conclusion  

 

Quantifying non-specific interactions in aqueous solutions is crucial for controlling aqueous 

solvation and solubility through the change of solvent composition, and chromatography offers a 

route to high-throughput determination of such interactions. However, the analysis and 

interpretation of chromatographic data has long been reliant upon the assumption of stoichiometric 

solute-water and solute-cosolute binding, which has given rise to paradoxes, such as the 

“antibinding” (negative solute-cosolute binding constant)27–29 and the indeterminacy of salt-ligand 

affinity.18 Such paradoxes have posed a great difficulty, because they are contradictory to the 

binding models themselves and have shown their serious limitations.  

 

Hence, we propose a rigorous statistical thermodynamic approach, which can capture non-

specific interactions, free from stoichiometric binding assumptions. Both solute binding on (or in) 
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the cosolute and cosolute exclusion from the solute (or, equivalently, solute exclusion from the 

cosolvent) can be quantified and captured in terms of the Kirkwood-Buff integrals,33–35 which 

represent a net excess or depletion of cosolute around the solute as compared to the bulk, based on 

the molecular distribution function. The chromatographic measurements, regardless of the degree 

of cosolute self-association, can now be interpreted in a universal theoretical framework that has 

also been used to rationalize small solute solubility,4,9,68–70 biomolecular stability, binding, 

aggregation and gelation.7,8,36,37 In addition, arbitrary assumptions regarding the stationary phase, 

or even the neglect thereof, have also been eliminated by statistical thermodynamics. To allow this 

general approach to be widely used, we have provided two open-source apps which analyse a 

number of representative datasets from the literature and where users can load and analyse their 

own datasets. 

 

In view of the decades-long tradition of analysing chromatographic data based on stoichiometry, 

we have also demonstrated how KBIs can directly be obtained from such an analysis, by treating 

the binding model merely as a model for data fitting.39 Such an approach has paved a way towards 

utilizing the wealth of literature data in a straightforward manner, while eliminating any concern 

about the problems of the stoichiometric model itself.  

 

Acknowledgements 

We are grateful to Dr Alina Koneva and colleagues at St Petersburg State University for providing 

the raw MLC data accompanying their rather full analysis of MLC effects in the context of NMR 

and light scattering data with a range of solutes and two surfactants. We thank Dr. Laura Waters 



 26 

for bringing our attention to the antibinding problem in MLC and Professor Jane Thomas-Oates 

for continuous encouragements. 



 27 

References 

 

1 S. E. Friberg, Curr. Opin. Colloid Interface Sci., 1997, 2, 490–494. 

2 W. Kunz, K. Holmberg and T. Zemb, Curr. Opin. Colloid Interface Sci., 2016, 22, 99–107. 

3 S. Abbott, J. J. Booth and S. Shimizu, Green Chem., 2017, 19, 68–75. 

4 S. Shimizu and N. Matubayasi, Phys. Chem. Chem. Phys., 2017, 19, 23597–23605. 

5 S. N. Timasheff, Adv. Protein Chem., 1998, 51, 355–432. 

6 S. N. Timasheff, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 9721–6. 

7 S. Shimizu and N. Matubayasi, J. Phys. Chem. B, 2014, 118, 3922–3930. 

8 S. Shimizu, R. Stenner and N. Matubayasi, Food Hydrocoll., 2017, 62, 128–139. 

9 S. Shimizu and N. Matubayasi, J. Phys. Chem. B, 2014, 118, 10515–10524. 

10 S. Shimizu and N. Matubayasi, Biophys. Chem., 2017, 231, 111–115. 

11 S. Shimizu and N. Matubayasi, Phys. A Stat. Mech. its Appl., 2018, 492, 1988–1996. 

12 J. C. Lee, K. Gekko and S. N. Timasheff, Methods Enzymol., 1979, 61, 26–49. 

13 A. S. Koneva, E. Ritter, Y. A. Anufrikov, A. A. Lezov, A. O. Klestova, N. A. Smirnova, E. 
A. Safonova and I. Smirnova, Colloids Surfaces A, 2018, 538, 45–55. 

14 A. Boichenko, L. Loginova and A. Kulikov, Методы И Объекты Химического Анализа, 
2007, 2, 92–116. 

15 E. M. Basova, V. M. Ivanov and O. A. Shpigun, in Encyclopedia of Separation Science, 

Vol. II, eds. M. Cooke and C. F. Poole, Academic Press, London, 2000, pp. 726–737. 

16 N. Memon, H. I. Shaikh and A. R. Solangi, Chromatogr. Res. Int., 2012, 2012, 1–6. 

17 T. M. Kalyankar, P. D. Kulkarni, S. J. Wadher and S. S. Pekamwar, J. Appl. Pharm. Sci., 
2014, 4, 128–134. 

18 I. Slama, C. Ravelet, C. Grosset, A. Ravel, A. Villet, E. Nicolle and E. Peyrin, Anal. Chem., 
2002, 74, 282–287. 

19 E. Peyrin, Y. C. Guillaume and C. Guinchard, Biophys. J., 1999, 77, 1206–12. 

20 Y. C. Guillaume, E. Peyrin, A. Villet, A. Nicolas, C. Guinchard, J. Millet and J. F. Robert, 
Chromatographia, 2000, 52, 753–757. 

21 J. Hermansson and I. Hermansson, J. Chromatogr. A, 1994, 666, 181–191. 

22 J. Hermansson and A. Grahn, J. Chromatogr. A, 1995, 694, 57–69. 

23 S. Allenmark, B. Bomgren and H. Boren, J. Chromatogr. A, 1984, 316, 617–624. 

24 G. Örn, K. Lahtonen and H. Jalonen, J. Chromatogr. A, 1990, 506, 627–635. 



 28 

25 L. A. Sly, D. L. Reynolds and T. A. Walker, J. Chromatogr. A, 1993, 641, 249–255. 

26 J. Yang and D. S. Hage, J. Chromatogr. A, 1996, 725, 273–285. 

27 D. W. Armstrong and F. Nome, Anal. Chem., 1981, 53, 1662–1666. 

28 D. W. Armstrong and G. Y. Stine, Anal. Chem., 1983, 55, 2317–2320. 

29 D. W. Armstrong and G. Y. Stine, J. Am. Chem. Soc., 1983, 105, 2962–2964. 

30 J. A. Schellman, Biopolymers, 1978, 17, 1305–1322. 

31 J. A. Schellman, Biopolymers, 1987, 26, 549–559. 

32 J. A. Schellman, Biophys. Chem., 2002, 96, 91–101. 

33 J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 1951, 19, 774–777. 

34 D. G. Hall, Trans. Faraday Soc., 1971, 67, 2516–2524. 

35 A. Ben-Naim, J. Chem. Phys., 1977, 67, 4884–4890. 

36 S. Shimizu, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 1195–1199. 

37 S. Shimizu and C. L. Boon, J. Chem. Phys., 2004, 121, 9147–9155. 

38 S. Shimizu, W. M. McLaren and N. Matubayasi, J. Chem. Phys., 2006, 124, 234905. 

39 S. Shimizu, S. Abbott and N. Matubayasi, Food Funct., 2017, 8, 2999–3009. 

40 S. Shimizu and S. Abbott, J. Phys. Chem. B, 2016, 120, 3713–3723. 

41 I. W. Wainer, J. Chromatogr. A, 1994, 666, 221–234. 

42 I. M. Chaiken, J. Chromatogr. B Biomed. Sci. Appl., 1986, 376, 5–9. 

43 A. J. Muller and P. W. Carr, J. Chromatogr. A, 1984, 284, 33–51. 

44 J. E. S. J. Reid, A. J. Walker and S. Shimizu, Phys. Chem. Chem. Phys., 2015, 17, 14710–
14718. 

45 J. E. S. J. Reid, R. J. Gammons, J. M. Slattery, A. J. Walker and S. Shimizu, J. Phys. Chem. 

B, 2017, acs.jpcb.6b10562. 

46 A. A. Dar, G. M. Rather and A. R. Das, J. Phys. Chem. B, 2007, 111, 3122–3132. 

47 P. A. Bhat, G. M. Rather and A. A. Dar, J. Phys. Chem. B, 2009, 113, 997–1006. 

48 C. De Oliveira, R. Yagui, A. Lineu Prestes, C. O. Rangel-Yagui, A. Pessoa-Jr and L. C. 
Tavares, J Pharm Pharm. Sci, 2005, 8, 147–163. 

49 N. Matubayasi, K. K. Liang and M. Nakahara, J. Chem. Phys., 2006, 124, 154908. 

50 Y. Shahzad, University of Huddersfield, 2013. 

51 M. L. Marina and M. A. García, J. Chromatogr. A, 1997, 780, 103–116. 

52 M. L. Marina and M. A. Garcia, in Handbook of methods and instrumentation in separation 



 29 

science, Vol II, eds. I. D. Wilson and C. F. Poole, Elsevier, Amsterdam, 2000, pp. 726–737. 

53 J. A. Schellman, Biopolymers, 1975, 14, 999–1018. 

54 K. C. Aune and C. Tanford, Biochemistry, 1969, 8, 4579–4585. 

55 K. C. Aune and C. Tanford, Biochemistry, 1969, 8, 4586–4590. 

56 E. F. Casassa and H. Eisenberg, Adv. Protein Chem., 1964, 19, 287–395. 

57 I. M. Klotz, Ligand-receptor energetics : a guide for the perplexed, Wiley, New York, 1997. 

58 S. N. Timasheff, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 7363–7367. 

59 V. A. Parsegian, R. P. Rand and D. C. Rau, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 3987–
3992. 

60 B. K. Lavine, S. Hendayana, Y. He and W. T. Cooper, J. Colloid Interface Sci., 1996, 179, 
341–349. 

61 D. Attwood and A. T. Florence, in Surfactant Systems, Springer Netherlands, Dordrecht, 
1983, pp. 229–292. 

62 F. A. Alvarez-Núñez and S. H. Yalkowsky, Int. J. Pharm., 2000, 200, 217–222. 

63 E. H. K. Shinoda, J. Phys. Chem., 1961, 66, 577–582. 

64 J. P. Foley, Anal. Chim. Acta, 1990, 231, 237–247. 

65 Y. P. Saraf and S. S. Bhagwat, Sep. Technol., 1995, 5, 207–212. 

66 S. E. Friberg, Curr. Opin. Colloid Interface Sci., 1997, 2, 490–494. 

67 P. Bauduin, A. Renoncourt, A. Kopf, D. Touraud and W. Kunz, Langmuir, 2005, 21, 6769–
6775. 

68 J. J. Booth, S. Abbott and S. Shimizu, J. Phys. Chem. B, 2012, 116, 14915–14921. 

69 S. Shimizu, J. J. Booth and S. Abbott, Phys. Chem. Chem. Phys., 2013, 15, 20625–20632. 

70 J. J. Booth, M. Omar, S. Abbott and S. Shimizu, Phys Chem Chem Phys, 2015, 17, 8028–
8037. 

71 A. Ben-Naim, Molecular theory of solutions, Oxford University Press, Oxford, 2006. 

 
  



 30 

Graphical abstract 

 


