
This is a repository copy of Recurrent neural network language model adaptation for 
multi-genre broadcast speech recognition and alignment.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/140330/

Version: Accepted Version

Article:

Deena, S. orcid.org/0000-0001-5417-0556, Hasan, M., Doulaty, M. et al. (2 more authors) 
(2019) Recurrent neural network language model adaptation for multi-genre broadcast 
speech recognition and alignment. IEEE/ACM Transactions on Audio, Speech and 
Language Processing, 27 (3). pp. 572-582. ISSN 2329-9290 

https://doi.org/10.1109/TASLP.2018.2888814

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 1

Recurrent Neural Network Language Model

Adaptation for Multi-Genre Broadcast Speech

Recognition and Alignment
Salil Deena, Madina Hasan, Mortaza Doulaty, Oscar Saz and Thomas Hain

Abstract—Recurrent neural network language models
(RNNLMs) generally outperform n-gram language models
when used in automatic speech recognition. Adapting RNNLMs
to new domains is an open problem and current approaches
can be categorised as either feature-based or model-based. In
feature-based adaptation, the input to the RNNLM is augmented
with auxiliary features whilst model-based adaptation includes
model fine-tuning and the introduction of adaptation layer(s)
in the network. In this paper, the properties of both types of
adaptation are investigated on multi-genre broadcast speech
recognition. Existing techniques for both types of adaptation
are reviewed and the proposed techniques for model-based
adaptation, namely the linear hidden network (LHN) adaptation
layer and the K-component adaptive RNNLM, are investigated.
Moreover, new features derived from the acoustic domain
are investigated for RNNLM adaptation. The contributions
of this paper include two hybrid adaptation techniques: the
fine-tuning of feature-based RNNLMs and a feature-based
adaptation layer. Moreover, the semi-supervised adaptation
of RNNLMs using genre information is also proposed. The
ASR systems were trained using 700h of multi-genre broadcast
speech. The gains obtained when using the RNNLM adaptation
techniques proposed in this work are consistent when using
RNNLMs trained on an in-domain set of 10M words and on
a combination of in-domain and out-of-domain sets of 660M
words, with approx. 10% perplexity and 2% relative word
error rate improvements on a 28.3h. test set. The best RNNLM
adaptation techniques for ASR are also evaluated on a lightly
supervised alignment of subtitles task for the same data, where
the use of RNNLM adaptation leads to an absolute increase in
the F–measure of 0.5%.

Index Terms—speech recognition, RNNLM, language model
adaptation, multi-domain ASR

I. INTRODUCTION

LANGUAGE models (LMs) are a major component of au-

tomatic speech recognition (ASR) systems as they ensure

that the output is consistent with the language in question.

n-gram LMs were dominant until neural network language

models (NNLMs) [1] and recurrent neural network language

models (RNNLMs) [2] were introduced. Moreover, it has been

found that n-gram LM and NNLM/RNNLM contributions are

complementary and an interpolation between the two types of

models [2], [3], [4], [5], [6], [7], [8], [9] usually lead to the

best results. In this paper, we will be focussing on RNNLMs,
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which have the ability to model longer temporal dependencies

than n-grams and NNLMs.

In ASR, word context is generally heavily influenced by

the domain, which is mostly characterised by the topic of the

discourse and speaking style. Generally, RNNLMs provide an

implicit modelling of domain. However, it has been found

that the adaptation of NNLMs/RNNLMs to small amounts

of matched in-domain text data can yield a decrease in both

perplexity (PPL) and word error rate (WER) [10], [3], [4],

[11], [6]. This work investigates adaptation strategies for

RNNLMs in the context of both ASR and lightly supervised

alignment (LSA).

LSA [12], [13] is a task which is related to speech

transcription and involves aligning a given text to an audio

recording by identifying words that match the audio and pro-

vide their timings. Typical alignment systems perform speech

recognition with language models that are biased towards the

target material using interpolation with a background language

model, which is followed by matching the transcribed output

to the input text. This paper explores the use of RNNLMs as

biased language models, through the fine-tuning of RNNLMs

to subtitle text, used in conjunction with a background n-

gram language model biased towards the subtitles text. The

use of domain adaptation for such RNNLMs allow for the

ASR output to be better matched to the input text, which in

turn leads to better alignment results.

The adaptation techniques proposed in this work are in-

vestigated on both the ASR and LSA tasks of the multi-

genre broadcast challenge [14]. The structure of the paper

is as follows. Section II reviews existing work, including

RNNLMs and its variants as well as language model domain

adaptation. Section III describes the multi-genre broadcast data

used in this work. Section IV then explores RNNLM adapta-

tion techniques for multi-genre broadcast data, where novel

techniques are proposed. In section V, the RNNLM domain

adaptation techniques are investigated for ASR whilst section

VI investigates the RNNLM domain adaptation techniques

for LSA. In section VII, the experimental setup is described

and results are presented and discussed. Finally concluding

remarks are given in section VIII.

II. RELATED WORK

In this section, we first review RNNLMs, which is followed

by a review of language model adaptation techniques, so as

to better motivate the techniques proposed in this work.
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A. Recurrent Neural Network LMs

RNNLMs include a recurrent layer which can represent the

full history hi =< wi−1, . . . , w1 > for word wi using a

concatenation of word wi−1 and the remaining context vector

vi−2. A 1-of-K encoding is used to represent each word wi.

RNNLMs offer the following advantages over n-gram LMs: 1)

the full, non-truncated history of words in an utterance can be

modelled and 2) the continuous representation of the history

means that they do not suffer from sparsity issues of n-gram

LMs, which require the use of techniques such as back-off[15],

[16], when some contexts do not occur in the data.

The structure of a RNNLM is shown in Figure 1. In order to

represent any input word that is not in the chosen vocabulary,

an out-of-vocabulary (OOV) node [10], [4], [6] can be included

at the input. Similarly, an out-of-shortlist (OOS) node [10],

[4], [6] can be included at the output. The aim is to reduce

the computational cost at the output layer by limiting the

vocabulary to the most frequent words. In order to allow for

feature-based adaptation [3], [6], an auxiliary feature vector f

can be provided as input to the network.

The LM probability for the next word P (wi+1|wi, vi−1)
is computed as follows. A full history vector is obtained by

concatenating wi and vi−1, the hidden layer activation from

the previous time step. The hidden layer takes this as input and

produces a new representation of the history, vi using a non-

linear activation function (sigmoid in our case). This is then

passed to the softmax activation function at the output layer

to produce RNNLM probabilities. In order to compute the

probability for the following word, the hidden layer activation

is returned to the input layer, given that it encodes the word

history and the process is repeated.

Back propagation through time (BPTT) [17] is used for

training the RNNLM, which involves back-propagating the

error through the recurrent connection for a specific number

of time steps. The output softmax layer involves the most

expensive computation when using cross entropy (CE) train-

ing, as it requires normalising the probabilities over the whole

output vocabulary. Various approximation strategies have been

proposed to address this. These include: noise contrastive

estimation (NCE) [18], hierarchical softmax (HS) [19], and

class-based structuring of the softmax layer [20]. We use the

approach proposed by Chen et al.[5] with GPU-based mini-

batch training using spliced sentence bunch, which allows

full CE-training based softmax computation of the output,

thus not relying on approximations to the softmax, which can

compromise performance.

In this work, RNNLMs are interpolated with n-gram LMs,

which have a larger vocabulary than the RNNLM. The words

that are in the n-gram vocabulary and not in the RNNLM

vocabulary are replaced by the <UNK> symbol and modelled

using the OOV node. The OOV probabilities are then re-

normalised according to the method described in [21]. Linear

interpolation is used to interpolate the probabilities of the n-

gram LM and RNNLM.

Fig. 1: Feature-based RNNLM with OOV and OOS nodes.

B. Review of Language Model Adaptation

Language model adaptation for specific domains is particu-

larly important for ASR because the pattern of word sequences

is heavily influenced by the subject matter. Natural language

encodes both short and long term word sequence dependencies

with often rapid changes in topic and theme. In addition,

different domains involve relatively disjoint concepts with

different word sequence statistics. In the context of multi-genre

broadcast speech recognition, the domain is known beforehand

and thus adapting a generic language model to a specific

domain should help with the recognition rate.

1) n-gram Language Model Adaptation: n-gram language

models are based on relative frequencies of n-gram events

and according to [22] adaptation techniques can be broadly

classified as:

• Model interpolation, where probabilities are combined

either at the word or sentence level between a background

language model and domain-specific language models

[23].

• Constraint specification, which involve integrating mul-

tiple sources of information in the form of features

using techniques such as exponential models using the

maximum entropy criterion [24].

• Mixture language models, using topic information which

are extracted from the underlying text data and used to

determine the weights of each sub-model [25].

Neural network-based language models use a different ar-

chitecture and as such, the adaptation strategies are different,

as discussed next.

2) Neural Network Language Model Adaptation:

NNLM/RNNLM adaptation can be broadly categorised as

feature-based [3], [6] or model-based [10], [4], [11], [9].

Whilst the former augments the input with auxiliary features

that encodes domain information, the latter adapts the

network to the new domain. Model-based adaptation can be

further categorised into: fine-tuning, which involves further

training the language model on the in-domain data and; the

introduction of adaptation layer(s) to the network.

In [10], [4], [26], [27], domain-specific adaptation layers

were introduced, which took the form of either a multiplicative

[10], [27] or an additive [4] transform of the neural network

weights. In the case of a multiplicative transform, a new

adaptation layer is cascaded between either the input and the

hidden layer (Linear Input Network/LIN), between the hidden
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layer(s) and output layer (Linear Hidden Network/LHN) or

as a linear transform to the output layer (Linear Output

Network/LON). The layer is initialised to the identity matrix

with a linear activation and at the time of adaptation, only

the weights associated with the adaptation layer are updated,

whilst the rest of the network is kept fixed. In addition, fine-

tuning [28], [29] can also be used for adaptation, where the

structure of the network is kept fixed, but the network is further

trained on domain-specific text data.

3) Recurrent Neural Network Language Model Adaptation:

Recurrent neural network language adaptation can also be

model-based as in the case of NNLMs [11]. Feature-based

RNNLM adaptation has also been proposed [3], [6], where

an auxillary feature vector is appended at the input layer to

encode the domain.

Feature-based RNNLM adaptation requires that the auxil-

iary features be known at the time of training and can be

inflexible, requiring for the whole model to be re-trained

should altered features become available. This is not practical

as training an RNNLM on large amounts of data can take

several days or weeks to complete, depending on the amount of

data and computing infrastructure available. On the other hand,

domain fine-tuning does not require retraining of the whole

RNNLM as the RNNLM is only fine-tuned on newly available

domain-specific data. In addition, it was shown by Chen et

al.[6] that feature-based RNNLM adaptation can outperform

domain fine-tuning in ASR. A combination of feature and

model-based adaptation can provide a solution that is both

flexible and effective at leveraging on shared information

between domains.

In this paper, a detailed comparison of both types of

adaptation is presented. This includes the linear hidden net-

work (LHN) [30] adaptation layer, which was first proposed

for RNNLM adaptation in [31]. Moreover, hybrid adaptation

methods that combine the strengths of feature and model-based

adaptation, are proposed and evaluated on a broadcast media

transcription task [14].

III. MULTI-GENRE BROADCAST DATA

In this work, the data provided by the British Broadcasting

Corporation (BBC) for the Multi-Genre Broadcast (MGB)

challenge 2015 [14], is used in experiments to demonstrate

the proposed methods. Task 1 of the challenge involved the

automatic transcription of a set of BBC shows whilst Task

2 involved lightly supervised alignment. The BBC shows

were chosen to cover the multiple genres in broadcast TV

and were categorised as 8 genres, namely: advice, children’s,

comedy, competition, documentary, drama, events and news.

For acoustic modelling (AM), the training data was fixed to

more than 2,000 shows, broadcast by the BBC during 6 weeks,

from April to May of 2008. The development data provided

consisted of 47 shows that were broadcast by the BBC during

a week in May 2008. Finally, evaluation data was released only

at the time of the challenge. Table I shows the distribution of

the data in terms of shows for the training, development and

evaluation sets.

TABLE I: MGB Data distribution.
Dataset Number of ShowsBroadcast Time

Training 2,193 1,580.4 h.
Development 47 28.4 h.

Evaluation 16 11.2 h.

Table II shows the numbers of shows and the associated

broadcast time for the training and development sets across

the 8 genres.

TABLE II: Amount of training and development data for

ASR Experiments.
Train Development

Genre Shows Time Shows Time

Advice 264 193.1h. 4 3.0h.
Children’s 415 168.6h. 8 3.0h.
Comedy 148 74.0h. 6 3.2h.

Competition 270 186.3h. 6 3.3h.
Documentary 285 214.2h. 9 6.8h.

Drama 145 107.9h. 4 2.7h.
Events 179 282.0h. 5 4.3h.
News 487 354.4h. 5 2.0h.

Total 2,193 1580.5h. 47 28.3h.

Language Model (LM) training was also released for the

challenge. These were in the form of subtitles of BBC shows

broadcast from 1979 to March 2008, with a total of 650 million

words, and referred to as LM1 in this work. We also use the

subtitles from the 2,000+ shows for acoustic modelling for LM

training, and refer to it as LM2. Table III shows the statistics

for these two sets.

TABLE III: Language model data.
Subtitles #sentences #words #unique words

LM1 (1979-2008) 72.9M 648.0M 752.9K
LM2 (Apr/May ’08) 633.6K 10.6M 32.3K

IV. RNNLM ADAPTATION FOR MULTI-GENRE

BROADCAST MEDIA

A. Feature-Based RNNLM Adaptation

In feature-based RNNLM adaptation, a feature vector f is

appended to the input of the RNNLM as shown in Figure 1.

Feature-based RNNLM adaptation has proven to be effective

at adapting RNNLMs for the MGB challenge task [6] as they

augment the RNNLM with domain-specific information, thus

providing an extra level of representation than text. Whilst

previous work has investigated the use of genre and topic

information derived from text [6], in this work the use of topic

information derived from acoustic data is investigated. We

also investigate whether text-based and acoustic-based topic

information can be combined when used for RNNLM domain

adaptation.
1) Genre Auxiliary Features: Genre information can be

represented as a 1-hot vector, using a 1-of-K encoding. In

MGB data, genre information is available for each show.

Hence the genre 1-hot vectors can be input to the RNNLM as

a feature vector both for training and test. The genre auxiliary

codes can thus help to structure the diversity in the data by

encoding explicit domain information in the model.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 4

2) Text-based LDA Auxiliary Features: Latent Dirichlet

Allocation (LDA) [32] allows text to be represented by a set of

unobserved topics, through the use of generative probabilistic

modelling. LDA models are first trained by extracting term

frequency-inverse document frequency (TF-IDF) vectors on

the text. LDA features are then derived by computing Dirichlet

posteriors over the topics. In this work, the LDA features

are extracted at show level. Chen et al.[6] showed that LDA

features outperformed genre features when used for RNNLM

adaptation on the MGB data. This could be because the LDA

features provide a continuous feature space representation and

over a larger number of latent topics, than can be achieved

with genre 1-hot vectors.

One disadvantage when using text-based LDA features for

domain adaptation is that it needs to be done in a two-pass

decoding system. In the first pass decoding stage, a baseline

ASR system needs to generate an ASR output, from which

LDA features are extracted. The LDA features are then used

in the second-pass decoding stage to give an improved tran-

scription with a LDA-adapted RNNLM. Another disadvantage

of this method is that the LDA features used for training the

RNNLM are usually generated using ground truth text whilst

in the decoding stage, the ASR output is used for extracting

LDA features. This leads to a mismatch between training and

testing. The acoustic LDA features that are described next can

help address both of these issues.

3) Acoustic-based LDA Auxiliary Features: The main dif-

ficulty in extracting LDA features from the acoustic data is

that LDA is a model to describe latent factors in sets of

discrete symbols [32] which are here interpreted as “domains”,

while acoustic features are continuous. In order to fit into that

concept speech signals need to be converted into such a form.

Typically speech is represented using continuous features such

as Mel frequency cepstral coefficients (MFCCs), and has

variable length. In our previous work [33] we used the Linde-

Buzo-Gray vector quantization algorithm [34] to represent

each speech frame with a discrete symbol, equivalent to an

acoustic word or phone label.

In this paper an approach similar to that used in [35]

has been implemented and utilised. A GMM model with V

components is trained using all of the training data. The model

is then used to get the posterior probabilities of the Gaussian

components to represent each frame with index of the Gaus-

sian component with the highest posterior probability. Frames

of every speech segment of length T , x = {x1, ...,xt, ...,xT }
are represented as:

x̃t = argmax
i

P (Gi|xt) (1)

where Gi (1 ≤ i ≤ V ) is the ith Gaussian component. After

applying this process to each utterance, each speech segment

is represented as {x̃1, ..., x̃t, ..., x̃T } where xt is index of the

Gaussian component and thus a natural number (1 ≤ xt ≤
V ). Here we refer to each speech utterance as an acoustic

document.

With this information, a fixed length vector x̂ =
{a1, ..., ai, ..., aV } of size V is constructed to represent the

count of every Gaussian component in an acoustic document.

This leads to a bag-of-sounds representation. The sounds

would normally be expected to relate to phones, however given

the acoustic diversity of background conditions many other

factors may play a role. Once these bag-of-sounds represen-

tations of acoustic documents are derived, LDA models can

be trained. After training the LDA acoustic model, a similar

procedure is followed to extract acoustic LDA features from

test data.

B. Model-Based RNNLM Adaptation

The most common model-based adaptation of RNNLMs

used is fine-tuning, where the RNNLM is further trained

on domain-specific text data. In addition to fine-tuning, this

work proposes the introduction of a linear hidden network

(LHN) adaptation layer to the RNNLM, for domain adaptation.

In addition, a modified version of a previously proposed

K-component adaptive RNNLM adaptation method [36] is

proposed and evaluated on multi-genre speech recognition.

1) Model Fine-tuning: Model fine-tuning involves further

training the RNNLM on genre-specific data, thus yielding a

separate model per genre. These models can then be used at

test time to evaluate text where genre labels are known a-priori,

which is the case for MGB data.

2) LHN Adaptation Layer: A hidden layer can be cascaded

in the network at adaptation time and only the weights

connecting the adaptation layer and the next layer are updated

at the time of fine-tuning. Park et al.[10] proposed a simi-

lar approach for NNLM, by cascading the adaptation layer

between the projection and hidden layers. For RNNLMs, a

projection layer is not needed and thus, the adaptation layer

is cascaded between the hidden and output layers as shown

in Figure 2. The adaptation layer has a linear activation and

provides a linear transform to the hidden layer and is thus

equivalent to the linear hidden network (LHN) [30] transform

used in DNN acoustic models [37]. The weights connecting

the hidden and adaptation layers are initialised as the identity

matrix. This provides an equivalent network to the unadapted

RNNLM. At the time of fine-tuning, the rest of the network

is kept fixed and only the weights connecting the hidden and

adaptation layers are updated.

Fig. 2: RNNLM with LHN adaptation layer.

3) K-Component Adaptive RNNLMs: The K-Component

Adaptive RNNLM was first proposed in [25] for n-gram LMs

and in [36] for RNNLMs, where language model training text
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data was clustered into K clusters, where K is the number

of topics in a LDA model [36]. The LDA posteriors were

used to partition the text data into clusters by assigning the

topic with the highest posterior probability to each sentence in

the language model corpus. In [36], K separate topic-specific

RNNLMs, {Mk}
K
k=1

, were obtained by training models on

the text derived from clustering. In this work, the topic-based

RNNLMs are derived by fine-tuning baseline RNNLMs on

the topic-specific text. As a result, the K-Component Adaptive

RNNLM described in this paper is a special version of model-

based adaptation.

At test time, the K topic-dependent RNNLMs are used in

an n-best rescoring framework by interpolating a background

language model with the topic-dependent RNNLMs and com-

puting the interpolated probabilities at the sentence level. The

sentence probability is computed by linearly combining all the

k-component models to assign the sentence probability using

the following equation:

p(s) =
∏

i

∑

k

λkp(wi|hi,Mk) (2)

where λk is the interpolation weight of the component

model k and can be obtained by perplexity-based optimisation

on held-out data, wi is the current word and hi the history of

words, MK is the kth component model.

In this work, the interpolation weights are taken to be LDA

posteriors on the ASR output obtained from a baseline system

in first-pass decoding, which gives a more representative

distribution similar to that which was used to train the models.

C. Hybrid RNNLM Adaptation

Two hybrid RNNLM adaptation approaches are proposed

and investigated in this paper. Both approaches are aimed

at leveraging on show-based topic and genre information.

The first approach involves fine-tuning LDA feature-adapted

RNNLMs on genre-specific text data. The second approach

involves introducing a domain-specific genre adaptation layer

to a LDA feature-adapted RNNLM.

1) Fine-tuning Feature-Based RNNLM: One way of using

topic and genre information effectively for RNNLM adaptation

is by fine-tuning LDA-adapted feature-based RNNLMs to

genre-specific text, thus also leveraging on the strengths of

model and feature-based adaptation.

2) Feature-based RNNLM with Adaptation Layer: The

LHN adaptation layer fine-tuning can lead to overfitting if the

amount of genre-specific data is not adequate with respect to

the model size. Tilk et al.[11] showed that the adaptation layer

can be made to provide an additive rather than a multiplicative

transform (as in the case of the LHN transform). This was

achieved by inputting a domain vector d in the form of a

1-of-K encoding, to the adaptation layer. This is equivalent

to using genre 1-hot vectors as input to the adaptation layer.

Auxiliary features such as LDA, can also be input to the hidden

layer as before and this configuration is shown in Figure 3.

The advantage of using such a configuration is that shared

information between genres is modelled at the adaptation layer

and a single model is needed for decoding, as compared to

having separate fine-tuned models for each genre.

Fig. 3: RNNLM with feature-based adaptation layer.

D. Semi-supervised RNNLM Adaptation

In the MGB challenge data, genre information is only

available for the transcripts of the acoustic data (LM2) and not

for the larger (650M words) language model (LM1) subtitle

text. Genre labels thus need to be automatically derived if we

want to apply genre adaptation when using LM1 text. It was

found that good genre classification can be achieved using

support vector machines (SVM), using the LDA features as

input, on the LM2 text.

V. RNNLM ADAPTATION FOR ASR

The stages involved in using RNNLM adaptation for

ASR are as follows. Voice Activity Detection (VAD) is first

applied to the audio in order to identify speech segment

boundaries. The input text is then converted to a mono-

phone/triphone/senome representation and aligned to the seg-

mented audio using a baseline ASR system. The segmented

audio and aligned text are fed to a DNN-HMM system which

can be either a Hybrid or Bottleneck system [38]. In the Hybrid

system, a DNN is used to predict monophone/triphone/senome

states from audio features, which in most cases are log

Filterbank features. This results in posteriors over these states,

which are integrated as observation probabilities in a hidden

Markov model (HMM), and used to predict the optimal path

by also taking into account dynamical constraints arising from

an underlying language model. In a Bottleneck system, the

log Filterbank features are fed to the DNN as input and the

monophone/triphone/senome states as output. A Bottleneck

layer is introduced between the final layer of the DNN and

the output layer which generally has a lower dimension than

the final layer. The activation values of that layer are then

extracted as Bottleneck features. These Bottleneck features

are used as input to a standard GMM-HMM system and have

been found to outperform GMM-HMM systems with MFCC

or PLP features [38], due to the discriminative nature of the

input features.

At decoding stage, input audio is given and segmented using

the VAD system similarly as for training. This allows log

Filterbank features to be extracted from the audio segments.

These features are fed to the DNN-HMM system together with

a baseline n-gram, out of which a hypothesis ASR output is

generated either in the form of lattices or n-best lists. These

lattices or n-best lists can then be rescored using an adapted
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RNNLM where the language model scores are interpolated

between the n-gram scores and the RNNLM scores and a 1-

best output is produced.

Whilst segmentation using VAD was performed in our

systems for the MGB challenge [14], for the purpose of this

paper, manual segmentations provided for the training and

development sets are used, as this factors out any errors that

are introduced from automatic segmentation.

VI. RNNLM ADAPTATION FOR LSA

In LSA [39], [40], [41], [42], the input audio is first

processed by VAD. Meanwhile, the input subtitles are also

processed using standard text normalisation and tokenisation.

This is followed by training a biased language model adapted

to these subtitles. For n-gram LMs, this can be achieved by

interpolating the larger background language model with a

subtitle language model [41]. The adapted language model

is then used in the decoding of the input audio. This stage is

usually referred to as lightly supervised decoding [39], since

it uses a language model biased to the subtitles. Multiple

decoding passes and speaker adaptation can be carried out

as necessary.

In this work RNNLM adaptation is used as part of the lightly

supervised decoding process, in order to get an output that

most closely matches the ground truth. The lightly supervised

decoding is thus performed in 3 stages. First decoding is

performed using a set of previously trained hybrid DNN-

GMM-HMM acoustic models used for ASR and a baseline

3-gram language model trained on LM1&LM2 text. This

generates a set of lattices which are then rescored using

the biased n-gram language model. The rescoring process

generates a set of n-best lists, which can then be further

rescored using adapted RNNLMs. The RNNLMs need to be

biased to each show and this can be performed using show-

based fine-tuning. In this work, the show subtitle text is used

both as the training and development sets and using 10 epochs

of further training in order to prevent overfitting. The same

learning rate used to train the model is also used for fine-

tuning. This step was found to be crucial for biasing the

RNNLM whilst setting the learning rate to the level reached

at the last epoch led to poor convergence.

An alignment stage then aligns the transcript hypothesis

given by the lightly supervised decoding stage, to the original

input text. Dynamic programming approaches can be used

for this, where sequences of words from the subtitles are

assigned to the speech segments, based on how well they

match the output of the lightly supervised decoding, using a

distance metric such as Levenshtein distance [40]. The lightly

supervised alignment stage results in a set of speech segments

whose transcripts contain words from the original subtitle text.

This is then followed by a second alignment stage to provide

precise word-boundaries for the output, thus completing the

process.

VII. EXPERIMENTS AND RESULTS

For both ASR and LSA experiments, the MGB development

data was used as the test set, so as to allow comparison with

previous work [6], [43] and also because it has been shown

that the ASR results on the development and evaluation sets

are highly correlated [14]. A partitioning of the LM2 text

into a training and development set was carried out by first

shuffling the lines for each programme and selecting 90% of

text for each programme for training and the remaining 10%
for development.

A. ASR Results

1) Experimental Setup: For training the baseline 4-gram

LM, a vocabulary of 200k words was built. This was taken

from all the words in the LM2 text (32k) and topping it up

with the most frequently occuring words in LM1. The aim

of this procedure is to use all words in the in-domain set and

increase the vocabulary to include words in the out-of-domain

set, so as to provide wider coverage. For acoustic modelling,

we selected 700h. of speech from the training set based on

word matching error rate (WMER) and confidence scores [44].

The acoustic models used in this work were Bottleneck DNN-

GMM-HMM trained using TNet [45] and HTK [46] toolkits,

where TNet was used for extracting 26 bottleneck features

using a DNN. The DNN consisted of 4 hidden layers of

1, 745 neurons plus the 26-neuron Bottleneck layer and an

output layer of 8, 000 triphone state targets. It took as input 15
contiguous log-filterbank frames. Discriminative training in the

form of state-level Minimum Bayes Risk (sMBR) [47], [48]

was used as the DNN target function. 65-dimensional feature

vectors were used for training the GMM-HMM systems, which

included the 26 dimensional Bottleneck features, as well as 13
dimensional PLP features together augmented with first and

second derivatives. 16 Gaussian components per state were

used for training the GMM-HMM models, which had about

8k distinct triphone states.

The SRILM toolkit [49] was used for training our baseline

4-gram language model on LM1&LM2 text, using the 200k

vocabulary. Kneser-Ney smoothing is used for building the

4-gram LM using the corresponding options provided in

SRILM. The RNNLMs were trained used a modified version

of the CUED-RNNLM toolkit [50]. For training the baseline

RNNLM, we used the full LM1&LM2 text, together with a

60k vocabulary for the input word list and a 50k vocabulary

for the output word list. Both the 60k and 50k wordlists

were obtained by frequency-based shortlisting of the 200k

vocabulary and the main reason is to reduce computational

complexity in computing of the RNNLM output softmax layer.

The OOV and OOS nodes deal with words in the original

vocabulary but not in the shortlisted 60k and 50k vocabularies

respectively. The RNNLM training regime used was with mini-

batch of 128 and learning rate of 2.0, which resulted in an

effective learning rate of 0.0156 per mini-batch. The learning

rate was halved for each subsequent epoch if the change in

entropy on the development data from the previous epoch to

the current is less than 1% and model training stopped upon

convergence.

A 3-stage process was following for decoding with Bottle-

neck systems. In the first stage, lattices were generated using a

2-gram LM. This was followed by lattice rescoring with the 4-

gram LM to generate new lattices. Further lattice rescoring of
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TABLE IV: RNNLM baseline ASR results.
Genre → Adv. Child.Comed.Compet.Docum. Dram.Even. News Global

System Adaptation WER PPL WER

LM1&LM2 4-gram and RNNLM baselines

4-gram None 24.6 30.4 43.5 25.8 28.0 41.5 34.1 15.7 100.1 30.1

4-gram+RNNLM interp (lattice rescoring) None 23.8 29.4 43.1 25.5 27.3 41.5 32.9 14.8 88.6 29.4

4-gram+RNNLM interp (n-best rescoring) None 23.7 29.2 43.2 25.0 26.9 41.7 32.7 14.5 88.6 29.2

TABLE V: RNNLM adaptation results using only in-domain (LM2) RNNLM.
Genre → Adv. Child.Comed.Compet.Docum. Dram.Even. News Global

System Adaptation WER PPL WER

LM1&LM2 4-gram + LM2 RNNLM (0.3 interp) with RNNLM adaptation

RNNLM Baseline None 24.2 29.8 43.6 25.5 27.7 42.2 33.3 14.9 93.7 29.8

Genre feat. at hidden layer Feature 24.3 29.6 43.5 25.2 27.6 42.0 33.1 14.9 91.9 29.7

Genre fine-tuning Model 24.3 29.6 43.4 25.3 27.5 41.6 33.2 14.8 90.6 29.6

Genre LHN adaptation layer fine-tuning Model 24.1 29.5 43.3 25.2 27.6 41.7 33.1 15.0 90.4 29.6

K-Component Adapative Topic fine-tuning using LDA posteriors Model 24.3 30.0 43.6 25.5 27.9 41.7 33.4 15.3 93.8 29.9

Genre feat. at adaptation layer Hybrid 23.9 29.6 43.5 25.3 27.4 42.0 33.2 14.9 90.7 29.6

Text LDA feat. at hidden layer Feature 23.9 29.4 43.6 25.1 27.6 41.4 32.7 14.7 88.3 29.5

Acoustic LDA feat. at hidden layer Feature 24.3 29.5 43.5 25.4 27.6 41.8 33.1 14.9 92.9 29.7

Acoustic+Text LDA feat. at hidden layer Feature 24.0 29.5 43.6 25.5 27.5 41.7 33.1 15.0 90.4 29.6

Text LDA feat. at hidden layer and genre fine-tuning Hybrid 23.9 29.3 43.6 24.8 27.5 41.3 32.7 14.8 86.7 29.4

Text LDA feat. at hidden layer and no feat. at adapt. layer Hybrid 23.7 29.2 43.3 25.1 27.3 41.6 32.8 14.7 87.5 29.4

Text LDA feat. at hidden layer, no feat. at adapt. layer and genre fine-tuning Hybrid 23.7 29.0 43.2 24.8 27.2 41.7 32.7 14.6 87.1 29.3

Text LDA feat. at hidden layer and genre feat. at adapt. layer Hybrid 23.6 28.9 43.4 24.9 27.3 41.2 32.5 14.6 86.9 29.2

TABLE VI: RNNLM adaptation results using in-domain and out-of-domain (LM1&LM2) RNNLM.
Genre → Adv. Child.Comed.Compet.Docum. Dram.Even. News Global

System Adaptation WER PPL WER

LM1&LM2 4-gram + LM1&LM2 RNNLM (0.5 interp) with RNNLM adaptation

RNNLM Baseline None 23.7 29.2 43.2 25.0 26.9 41.7 32.7 14.5 88.6 29.2

Genre feat. at hidden layer Feature 23.5 29.1 42.6 24.6 26.9 40.5 32.9 14.6 85.4 29.0

Genre fine-tuning Model 23.6 28.9 42.7 24.5 26.9 41.2 32.5 14.3 82.2 29.0

Genre LHN adaptation layer fine-tuning Model 23.4 28.8 42.6 24.6 26.9 41.2 32.4 14.2 81.9 28.9

K-Component Adapative Topic fine-tuning using LDA posteriors Model 23.5 28.9 42.8 24.6 26.8 41.2 32.4 14.1 81.8 28.9

Genre feat. at adaptation layer Hybrid 23.1 28.6 42.4 24.2 26.5 40.4 32.6 14.3 83.4 28.7

Text LDA feat. at hidden layer Feature 23.1 28.7 42.5 24.5 26.5 40.4 32.3 14.5 81.6 28.7

Text LDA feat. at hidden layer and genre fine-tuning Hybrid 23.0 28.7 42.5 24.4 26.5 40.4 32.3 14.4 80.4 28.7

Text LDA feat. at hidden layer and no feat. at adapt. layer Hybrid 23.0 28.5 42.7 24.5 26.5 40.5 32.5 14.3 80.9 28.7

Text LDA feat. at hidden layer, no feat. at adapt. layer and genre fine-tuning Hybrid 22.9 28.6 42.5 24.2 26.4 40.3 32.3 14.5 79.9 28.7

Text LDA feat. at hidden layer and genre feat. at adapt. layer Hybrid 22.9 28.6 42.5 24.2 26.4 40.3 32.3 14.1 79.4 28.6

the 4-gram lattices was then performed using the RNNLM,

according to the nth-order truncation method described in

[51], with n being set to 6, in line with what was reported

in [51]. We compared this against n-best list rescoring by

first converting the lattices to n-best lists, followed by 1-best

computation. n was set to 100 after varying n from 100 to

1000 in increments of 100 and computing 1-best WER on the

development set. It was found that for n higher than 100, there

is only marginal improvements in the WER and thus n was

fixed to 100.

The baseline results, used to investigate the performance of

lattice-rescoring vs. n-best list scoring are shown in Table IV.

The adaptation results using LM2 RNNLM are given in Table

V whilst adaptation results using LM1 + LM2 RNNLM are

given in Table VI. All the results were obtained by scoring

using the official MGB scoring package [14], which gives

word error rate decompositions across the 8 genres. Perplexi-

ties (PPL) are also reported on the reference text. 512 nodes

were used for both the hidden layer and adaptation layers as

this was found to give good performance whilst remaining

computationally efficient. For LM1&LM2 RNNLMs, it was

found that n-best list rescoring gives an improvement of 0.2%
in the WER over lattice rescoring. As a result, we used n-

best list rescoring for all RNNLM adaptation experiments. The

interpolation weight with the 4-gram baseline LM was set to

0.5 and 0.3 respectively for LM1&LM2 and LM2 RNNLMs,

as this was found to give the lowest PPL on our development

set.

2) Feature-based Adaptation Results: We found text LDA

auxiliary features to be more effective than genre 1-hot fea-

tures for the adaptation of LM2 RNNLMs, similar to what

has been reported in the literature [6], [43]. In order to

choose the LDA feature dimensionality, we extracted LDA

features from the reference text for each show and varied

the number of topics from 10 to 150 and computed the PPL

on our development set. 100 topics was found to give the

best result and as a result, the number of LDA topics was

fixed to 100. It is to be noted that larger values for n result

only in marginal gains in PPL, at the expense of increased

computational cost. Chen et al.[6] showed that by using 30
LDA topics and computing the LDA features from the ASR

output instead of the reference text, a degration in WER of

about 0.1% was observed. In our case, it was found that with

100 topics, extracting LDA features on both reference and

ASR output, lead to the same overall WER result, albeit some

minor variations within genres. The ASR output text from
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first-pass decoding was thus used to compute LDA features,

as would be expected in a practical system. An improvement

in WER of 0.3% is obtained when using text LDA features

over the RNNLM baseline. For acoustic LDA, we similarly

varied the number of LDA topics but used exponents of 2
this time, in line with what was presented in [33]. 128 topics

was found to give the best results in terms of PPL. Acoustic

LDA features were found to give comparable performance to

genre 1-hot features with a WER of 29.7%. This shows that

acoustic LDA features do not provide as good a representation

of domain as text LDA features. However, they can be used in

single-pass decoding as opposed to two-pass decoding in the

case of text LDA features. Combining text and acoustic LDA

features gives a WER of 29.6%, which is slightly worse than

when using only text LDA features (29.5% WER). As a result,

it can be inferred that text LDA features provide a much better

representation of domain than acoustic LDA features and the

latter does not complement the former.

LDA feature-based adaption of LM1&LM2 RNNLM with

100 topics, was also found to result in a substantial drop

in WER of 0.5%. Moreover, the genre fine-tuning of LDA-

adapted RNNLMs lead to small but significant gains in WER.

For the LM2 RNNLM, this hybrid adaptation leads to a global

drop in WER from 29.5% to 29.4%.

3) Model-based Adaptation Results: The experiments show

that LHN adaptation layer fine-tuning of RNNLMs, outper-

forms full model fine-tuning in terms of PPL, for both LM2
and LM1&LM2 RNNLMs. For the RNNLM trained on

LM1&LM2 text, there is also a drop of 0.1% in the global

WER (28.9%) using the LHN adaptation layer, compared to

full model fine-tuning (29.0%). For K-component topic-based

RNNLM adaptation, K was fixed to 10 as this was found

to give optimal performance when K was varied from 2 to

20 in increments of 2. It was found that the K-component

topic-based RNNLM adaptation performs better when using

LM1&LM2 RNNLM with a WER of 28.9% and better than

the result obtained using genre fine-tuning. This shows that

topic-based fine-tuning together with an interpolation of topic-

dependent RNNLMs based on LDA posteriors gives better

results than when using genre fine-tuned RNNLMs, where a

hard decision is made about the genre-specific model to be

used for n-best list rescoring for each utterance in the test set.

On the other hand, the result obtained using K-Component

topic-based fine-tuning of LM2 RNNLM (WER 29.9%) is

slightly worse than the result obtained with genre fine-tuning

(WER 29.7%), thus pointing out to the technique perform-

ing less well when using an RNNLM trained on smaller

amounts of data. This was found to be due to the adapted

model over-fitting to the topic-dependent data and loosing its

generalisation ability, when using a smaller unadapted model

(LM2) compared to one trained on a larger set (LM1&LM2).

The non-interpolated training PPL for LM2 RNNLM was

found to be 101.4 using the K-component topic-based fine-

tuning compared to 106.7 for using text LDA adaptation

and 119.2 when not using adaptation (baseline), whereas

the non-interpolated test PPL was: 157.2, 136.4 and 150.8
respectively, which shows overfitting of the K-Component

RNNLM. Our results with the introduction of a domain-

specific adaptation layer showed that using an adaptation layer

with additive bias adaptation (feature-based adaptation layer),

better results are obtained than when using a multiplicative

transform (LHN adaptation layer), which is in line with similar

observations in acoustic modelling [52]. For LM1&LM2
RNNLMs, an additive transform gives a WER of 28.7%
whereas using a multiplicative transform leads to a WER of

28.9%. This improvement is however, not observed with LM2
RNNLM, with both additive and multiplicative transforms

giving comparable performance. One possibility for this could

be that a multiplicative transform is more prone to over-fitting,

especially when the amount of in-domain data is limited, as

is the case for genres such as comedy and drama. In order to

allow for a fair comparison, baselines have been added with

2-layer RNNLMs (no feat. at adaptation layer) which show

that adding an extra feed-forward layer with no adaptation

leads to improvements in the results as expected, but adding

the genre features at the adaptation layer lead to even further

improvements.

4) Semi-supervised and Hybrid Adaptation Results: When

using the SVM to predict genre labels on the official MGB

development set, it was found that 1024 topics gave the best

classification accuracy of 94.79%. We thus use this model to

predict the genre labels for LM1 text in order to provide the

genre feature input for LM1&LM2 RNNLMs.

It is shown by the results that genre labels obtained using

SVM classification on LM1 text, together with the LM2 text

genre labels, can be used as input features to the adaptation

layer for the LM1&LM2 RNNLM, leading to a drop in WER

of 0.5% from 29.2% to 28.7%. Moreover, it is also found that

for LM1&LM2 RNNLMs trained with those LDA-derived

genre labels at the adaptation layer, comparable results are

obtained to using LDA features input to the hidden layer with

a WER of 28.7% for both, although combining the two inputs

yields a further improvement to 28.6%.

The results show that the two domain representations, i.e.

LDA topic features and genre labels provided as part of the

MGB challenge. Combining topic and genre at the hidden and

adaptation layers respectively, gives the best results with a drop

in WER of 0.6% from 29.8% to 29.2% using a LM2 RNNLM

and from 29.2% to 28.6% using a LM1&LM2 RNNLM. It

should be noted that all the LM2 and LM1&LM2 RNNLM

adaptation results are statistically significant (p < 0.05) with

respect to the no adaptation baseline, using the Matched

Pair Sentence Segment, Signed Paired Comparison, Wilcoxon

Signed Rank and McNemar tests done with sc stats,

provided as part of the NIST SCTK package1.

B. Alignment Results

1) Experimental Setup: The lightly supervised decoding

stage operated as follows: first, a DNN–based speech segmen-

tation module is used to identify segments of speech in the

show. An initial transcription for these segments is obtained

from a speaker independent DNN–HMM system [38] trained

on 700 hours of acoustic training data using the Kaldi toolkit

[53]. This stage also uses the background 4-gram language

1https://www.nist.gov/itl/iad/mig/tools
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TABLE VII: Lightly supervised alignment results.
Language Model Configuration PPL WER PrecisionRecallF–measure

Show adapted N-gram 44.7 23.6 85.40 88.40 86.88
+Show adapted RNNLM 35.0 22.3 85.16 88.63 86.93

+Text (subtitle) LDA feat. at hidden layer 29.5 21.9 85.31 89.62 87.41
+Text (subtitle) LDA feat. at hidden layer and Genre feat. at adaptation layer26.6 21.8 85.10 89.68 87.33

model trained on the subtitle data using SRILM [54]. This

output is then used for re–segmentation, speaker clustering and

speaker adaptation to the second decoding stage, based on a

DNN–GMM–HMM system trained on 700 hours of speech.

This second stage uses an interpolation of a n-gram language

model, trained on LM1&LM2 text and biased towards the

subtitles as described in section VI, and a biased RNNLM

involving the fine-tuning of a baseline RNNLM to show-

specific text, with an interpolation weight of 0.5. Finally,

the output is aligned to the subtitles in a recursive lightly

supervised alignment stage. Boundary correction techniques

presented in [55] can further be applied as a post-processing

step, but they were not considered in this work.

Instead of evaluating all the RNNLM adaptation combina-

tions from the ASR experiments, the models that gave the

best results are evaluated for aligment. In particular, RNNLM

adaptation using LDA features derived from the subtitles as

input to the hidden layer, and the hybrid adaptation approach

using the combination of LDA features at the hidden layer and

genre 1-hot features at the adaptation layer, are evaluated.

The alignment results are reported as both the perplexity on

the reference show text and word error rate obtained by scoring

the ASR output obtained after decoding/rescoring using biased

language models against the reference, using the official MGB

ASR scoring package [14], and as precision, recall and F–

measure obtained using the official MGB alignment scoring

package [14] with further details given in [56]. Alignment is

framed as a word detection task, where words are individually

assessed to be correctly or incorrectly aligned. The precision,

recall and F–measure are computed as follows:

Precision =
Nmatch

Nhyp

(3)

Recall =
Nmatch

Nref

(4)

F = 2
Precision×Recall

Precision+Recall
(5)

where Nhyp is the number of words in the hypothesis/ASR

output that are also in the subtitles to be aligned, Nref is the

number of words in the reference that are also in the subtitles.

Nmatch is the number of matching word counts.

The results in Table VII show that the use of a show-

adapted RNNLM decreases the WER from 23.6% to 22.3%,

resulting in an increase in F–measure from 86.88% to 86.93%.

Using LDA features as input to the hidden layer results in a

further reduction of the WER to 21.9% and an increase in

the F–measure to 87.41%. Using LDA features at the hidden

layer and genre features at the adaptation layer leads to a

further reduction of the WER to 21.8% but F–measure drops

slightly 87.33% with a small decrease in precision but a small

improvement in recall. The WER results are consistent with

what was obtained in ASR experiments and show text LDA

features derived from subtitles to be effective for RNNLM

adaptation when using show-based fine-tuning for biasing the

RNNLM to each show. Using a combination of LDA and genre

information did not lead to an improvement in F–measure

but leads to a different distribution of the results in terms of

precision and recall.

VIII. CONCLUSION

In this work, various feature and model-based adaptation

methods for RNNLMs have been compared and combined on

multi-genre speech recognition and alignment. The two ap-

proaches were found to be complementary and a combination

of both types of adaptation generally improves performance.

For feature-based adaptation, the use of latent Dirichlet alloca-

tion (LDA) features as augmented feature input to the RNNLM

was found to be effective for both ASR and alignment, leading

to a reduction in WER of 0.5% for ASR and an increase in

F–measure of about 0.5% for alignment. The use of acoustic

LDA features have also been investigated for ASR and it

was found that text LDA features are more effective than

acoustic LDA features. However, it was demonstrated that

acoustic LDA features can be useful in a first-pass ASR system

as the text LDA features need to be extracted from a first-

pass ASR system and used for RNNLM rescoring of lattices

or n-best lists in the second pass. Model-based adaptation

techniques that have been investigated in this paper include:

the use of a feature-based adaptation layer which provide an

additive bias adaptation to specific genres; the use of linear

hidden network (LHN) adaptation layer for genre-based fine-

tuning; full model genre-based fine-tuning and a K-component

RNNLM adaptation using topic-based fine-tuning, where the

topic posteriors are derived using LDA. We proposed two

hybrid adaptation techniques that harness on the strengths of

feature and model-based adaptation, both of which leveraging

on the combination of topic and genre information for optimal

performance.

One limitation of the proposed hybrid methods is that it

assumes that the genres are known at training time. Unseen

genres can be dealt with by using a place-holder at training

time (e.g. a zero vector) and then introducing the genre

auxiliary code at fine-tuning once it becomes known. This

has been investigated in a recent paper by the same authors

[57]. This paper is based on a previous Interspeech paper

[31] which included the bulk of the results in Tables IV,

V and VI but with additional experiments and more detailed

investigations, as well as investigating the proposed methods

for lightly supervised alignment.
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