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Abstract

Following recent advances in direct modeling of the speech

waveform using a deep neural network, we propose a novel

method that directly estimates a physical model of the vocal

tract from the speech waveform, rather than magnetic resonance

imaging data. This provides a clear relationship between the

model and the size and shape of the vocal tract, offering consid-

erable flexibility in terms of speech characteristics such as age

and gender. Initial tests indicate that despite a highly simpli-

fied physical model, intelligible synthesized speech is obtained.

This illustrates the potential of the combined technique for the

control of physical models in general, and hence the generation

of more natural-sounding synthetic speech.

Index Terms: speech synthesis, digital waveguide mesh, deep

neural network

1. Introduction

Recent studies on speech synthesis have been heavily focused

upon statistical parametric techniques [1, 2]. This is a power-

ful text-to-speech method, which produces increasingly natural

synthetic speech. One of the advantages of the method is that

characteristics of speech such as speaker individuality, speaking

style, and emotion, can be controlled by transforming the model

parameters [3, 4]. However, the relationship between these pa-

rameters and actual vocal tract shapes is unclear. This makes it

difficult to synthesize speech with different speaker character-

istics such as age and gender. Although the transformation can

be estimated using data-driven techniques, reliable estimation

requires a large amount of speech data containing the desired

characteristics. A more flexible approach is therefore desirable.

Another speech synthesis technique, known as physical

modeling, aims to reproduce the physics of the vocal system.

If sufficiently detailed, such a model will inherently produce

natural-sounding synthetic speech. Physical modeling has be-

gun to receive significant attention (see, e.g. [5, 6]) as increas-

ing computational power makes detailed three-dimensional

(3D) vocal tract modeling more feasible. True physical mod-

els offer great potential for natural output and intuitive gestural

control. Furthermore, changes to speaker characteristics may be

implemented simply, by changing the size, shape, and other pa-

rameters of the modeled vocal tract. However, physical models

require detailed vocal tract shape information, which is typi-

cally obtained from magnetic resonance imaging (MRI) data.

MRI data is costly and inconvenient to obtain, so large datasets

representative of multiple speakers are not available. In ad-

dition, the long data acquisition times, equipment noise, and

supine posture required, lead to unnatural articulations [7] and

an inability to capture simultaneous high quality audio record-

ings. For these reasons, a method of obtaining reliable vocal

tract shape information by other means is required.

In this paper, we propose a novel method to directly esti-

mate a physical model from speech waveforms rather than MRI

data. Although a previous attempt has been made to obtain vo-

cal tract shape data from speech recordings using a genetic algo-

rithm [8], this was not linked to a text-to-speech front end sys-

tem. The proposed method optimizes a physical model based

on a framework of neural networks representing the relation be-

tween speech waveforms and linguistic features derived from

text. Deep neural networks (DNNs) have been shown to be ef-

fective for modeling speech waveforms in [9, 10]. Inspired by

them, we utilize a DNN with a specially designed output layer

as an estimator of a physical model. Note that as far as we know,

this is the first attempt to combine statistical parametric and

physical modeling approaches. Detailed 3D vocal tract mod-

els such as [5, 6] require hundreds of thousands of variables.

This results in computations that are thousands of times slower

than real-time, and presents too many degrees of freedom for

use with DNN methods at present. Therefore, the proposed

method makes use of a simpler, two-dimensional (2D) digi-

tal waveguide mesh (DWM) model based on [11]. The DWM

is a technique used to simulate acoustic propagation that has

previously been successfully used to generate synthetic speech

[11, 12]. The proposed technique allows model parameters to be

inferred directly, with no reduction in dimensionality required.

Although this is a highly simplified model, intelligible speech

is obtained, illustrating the potential of the proposed method for

the control of physical models.

The remainder of this paper is laid out as follows: Section 2

introduces the digital waveguide mesh, and Section 3 describes

the method of controlling the DWM model using a DNN. Sec-

tion 4 describes the experimental procedure and discusses the

results, and conclusions and avenues of further investigation are

presented in Section 5.

2. The Digital Waveguide Mesh

The digital waveguide mesh (DWM) is a time-domain algo-

rithm for simulating acoustic wave propagation within a do-

main. It is equivalent to the finite difference time domain

(FDTD) method under certain conditions [13]. The domain

to be simulated is approximated by a regular grid of scatter-

ing junctions connected by unit waveguides. Although a do-

main may be simulated in any number of dimensions using the

DWM technique, we use a 2D rectilinear mesh for this proof-

of-concept study. The construction of such a mesh is illustrated

in Figure 1. For every temporal sample, the sound pressure (or

other acoustic variable) must be updated for every scattering
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Figure 1: A two-dimensional digital waveguide mesh, illustrat-

ing connections between scattering junctions, input and output

locations, and the construction of admittance vector B.

junction in the simulation domain [14]:

pJ(n) =
2
∑

I∈Jnei
BJ,I pI(n− 1)

∑

I∈Jnei
BJ,I

− pJ(n− 2) (1)

where pJ(n) is the acoustic pressure at scattering junction J at

time step n, BJ,I is the admittance of the waveguide connecting

junction J to neighbouring junction I , and Jnei is the set of

scattering junctions immediately adjacent to junction J . For a

2D rectilinear mesh, |Jnei| = 4. At the edge of the simulation

domain, energy is reflected according to boundary conditions.

For the simplest DWM boundaries, as described in [14], with a

boundary junction connected to the mesh by a single waveguide,

boundary pressures are updated as:

pJb
(n) = (1− r)pIb(n− 1)− rpJb

(n− 2) (2)

where pJb
(n) is the acoustic pressure at boundary junction Jb at

time step n, Ib denotes the single neighbouring scattering junc-

tion connected to the boundary junction (see Figure 1), and r is

the reflection coefficient at the boundary. The 2D DWM vocal

tract model uses reflection coefficient values of 0.92, −0.90,

and 0.97 at glottis, lips, and walls, respectively [11].

The admittance term BJ,I in (1) indicates scattering within

the mesh, and hence the effective mesh shape, may be altered

by changing the acoustic admittance BJ,I - or its reciprocal,

acoustic impedance ZJ,I - in the waveguides connecting any

junctions J and I [14]. Therefore, the scattering behaviour of a

fixed-size mesh is completely described by its admittance val-

ues and boundary reflection coefficients. In [11], vocal tract

shape is specified by mapping a vocal tract area function to

raised-cosine impedance contours across a fixed-size rectangu-

lar mesh, with minimum impedance at the mesh centre and area-

function dependent impedance at the mesh edges. Impedance is

inversely proportional to the cross-sectional area of the vocal

tract, so the maximum impedance values (and conversely, the

minimum admittance values) represent the narrowest constric-

tions. An example admittance map generated using this proce-

dure is presented as a filled contour plot in Figure 2. The area

(a) Area function.

(b) Admittance map.

Figure 2: Construction of a 2D raised-cosine admittance map

from a vocal tract area function, for an English vowel /i/.

function in Figure 2a illustrates the varying cross-sectional area

of the vocal tract along its length, which is then interpolated to a

suitable length and converted to admittance values as described

above to produce Figure 2b. This technique creates a central

channel of high admittance, with the effective vocal tract width

governed by the lower admittance values at the tract edges.

The resolution of the DWM depends on the temporal sam-

pling frequency of the output signal. The relationship between

mesh spacing, d, and the temporal sampling frequency of the

output signal, fs, is given by

fs =
c
√
2

d
(3)

for a 2D DWM mesh [14], where c is the speed of sound. The

mesh spacing d therefore must be selected under the constraint

of the size of the human vocal tract. Values given in [15] for an

adult male vocal tract place the length at between 15.88cm and

18.25cm. The mesh must also be an odd number of junctions

wide to allow for a central channel of maximum admittance. In

this study, to obtain an acceptable trade-off between the reso-

lution of the mesh and the computational cost, fs = 24kHz is

selected with c = 350m/s, giving d ≈ 2cm. We therefore use a

mesh size of 9 × 5 junctions, corresponding to a physical size

of approximately 16cm × 8cm. While this resolution is suffi-

cient as proof-of-concept, more accurate and natural-sounding

2D DWM vocal tract models will necessarily require higher grid

resolution and therefore more parameters for estimation. In ad-

dition, the DWM method has a usable bandwidth of fs/4 [14],

and in practice even lower due to dispersion error [14], so the

synthetic speech output in this study is valid to less than 6kHz:

this is sufficient for intelligibility, but a higher fs, and hence ad-

ditional parameters, are necessary for natural-sounding output.

3. DNN-driven DWM

Inspired by recent work [9, 10] that directly models speech

waveforms using cepstral coefficients based on a DNN frame-

work, we propose a method to derive a physical model based

on a 2D DWM from speech waveforms using a DNN with a

specially designed output layer. In the proposed method, the
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cosine-mapping constraint used in [11] is removed, taking ad-

vantage of the 2D structure by permitting the generation of

asymmetrical admittance maps such as those required for nasal

sounds.

Let us define a vector, B, that concatenates the admittances

throughout the mesh as illustrated in Figure 1. A 2D DWM vo-

cal tract model is completely described by the admittance vector

B and a set of reflection coefficients. In the proposed method,

the admittance vector at frame t, Bt, is represented as an inter-

mediate output of a DNN whose input is a linguistic feature vec-

tor, lt, introducing a physically-informed relationship between

the text and the output speech waveform1:

Bt = H(lt) (4)

where H denotes the nonlinear function represented by a DNN.

The objective function to be maximized with respect to Bt is

the log likelihood computed using the following Gaussian dis-

tribution:

P (st |Bt) = N (st;0,ΣBt
) (5)

where st ∈ R
M is a discrete-time widowed speech signal based

on a zero-mean stationary Gaussian process [16], 0 ∈ R
M is the

zero vector, and ΣBt
∈ R

M×M is the covariance matrix that

can be decomposed as follows:

ΣBt
= H

T

Bt
HBt

(6)

where

HBt
=
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(7)

and ht(n) is the impulse response of the 2D DWM, and N de-

notes the impulse response length. The impulse response ht(n)
is calculated in a recursive manner based upon (1):

ht(n) =
1

|Jout|
∑

J∈Jout

pJ(n) (8)

where Jout is a set of scattering junctions near the lips (see

Figure 1). The initial conditions of the pressures at n = 0 are

pJ(0) =

{

1 / |Jin|, if J ∈ Jin

0, otherwise
(9)

where Jin is a set of scattering junctions near the glottis. In this

framework, speaker characteristics can be controlled by using

adaptation techniques, e.g., feeding speaker codes [17] to the

DNN H, used in the standard DNN-based speech synthesis.

In order to generate a smooth speech trajectory, the dynamic

behaviour of the mesh must be captured by a model. However,

since the present study focuses only on a proof-of-concept of

the proposed system, the DNN is optimized in a frame-by-frame

manner rather than sequence-to-sequence one. In the synthesis

stage, a speech waveform is produced using the DWM method

with the values of B predicted by the DNN, or the impulse re-

sponse of the estimated DWM system, and a suitable excitation

signal.

1Although reflection coefficients can also be modeled by a DNN,
they are held constant in this study for simplicity.

(a) DNN-generated admittance map for /i/.

(b) DNN-generated admittance map for /n/.

(c) DNN-generated admittance map for /k/.

Figure 3: DNN-generated admittance maps.

4. Experiments

4.1. Experimental conditions

The experiment used 503 Japanese sentences uttered by a male

speaker. The contents of the data were the same as the B-set of

the ATR phonetically balanced Japanese speech database [18].

A subset of 450 utterances were used for training, with the re-

maining 53 utterances used for testing. The speech signals were

downsampled at 24kHz and split into 25ms frames windowed

with a Blackman window, with a 5ms shift between frames.

The impulse response length N was set to be 700. The net-

work output was the windowed waveform in 600 (= 24kHz ×
25ms) points, given the 52-dimensional admittance vector. A

411-dimensional linguistic feature vector, consisting of 408 lin-

guistic features including binary features and numerical features

for contexts and three duration features, was used as the net-

work input. The architecture of the network was 3-hidden-layer

with 256 units per layer. The parameters of the network were

randomly initialized, and were optimized using an Adam opti-

mizer [19] with dropout [20]. The network used sigmoid activa-

tions. The fundamental frequency and the duration of synthetic

speech were derived from natural speech at the synthesis stage.
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(a) Welch PSDs for /i/.

(b) Welch PSDs for /n/.

(c) Welch PSDs for /k/.

Figure 4: Welch power spectral density (PSD) graphs for syn-

thesized and natural speech.

Table 1: Errors in formant frequencies for synthesized /i/ and

/n/ compared to natural speech

Phoneme Formant Error (%)

F1 F2 F3

/i/ +100% -0.6% -6.25%

/n/ +34.8% -13.1% +8.56%

4.2. Experimental results

The 53 test utterances were used to assess the performance of

the simulation technique. Synthesized versions of these sen-

tences were found to be intelligible and example natural and

synthesized speech are included as accompanying multimedia

files. Examples of admittance maps, reconstructed from the

DNN-generated vector B for individual frames, are provided

in Figure 3. Dark areas represent high admittance, while lighter

areas represent low admittance, indicating a constriction. Note

that the admittance values exist in the waveguides, and are in-

terpolated across the rest of the image for illustration only.

It is immediately apparent from Figure 3 that the admittance

maps for different phonemes show several similarities, includ-

ing a region of high admittance at x > 8. As the lip output is

taken at x = 8, the area beyond this represents lip radiation.

Similarly, at x < 2 the maps show some indication of a re-

gion of higher admittance centered on y = 3, indicative of the

subglottal tract. Admittance in the vocal tract region x = 2 to

x = 8 is predictably higher than outside this area, and shows

some phoneme-dependent variation in both dimensions.

Figure 4 presents power spectral density (PSD) curves for

the same frames as Figure 3, providing an estimate of the spec-

trum. The PSD plots were calculated using a 4096-point FFT

with a 300-sample window and 250-sample overlap. Figure 4a

compares the PSDs of natural and synthesized /i/ vowels. De-

spite some error, quantified in Table 1, the formant locations

are sufficiently close to those of natural speech that the vowel

/i/ is clearly identifiable in the synthesized speech. Figure 4b

presents the spectrum for the phoneme /n/. Again, this follows

the spectrum of natural speech quite closely, with formant er-

rors given in Table 1. Nevertheless, the phoneme /n/ is occa-

sionally mistaken for /m/ in the output speech. This may be

because the synthesized speech features an antiformant at ap-

proximately 1.2 kHz, which is characteristic of an /m/ [21]. It

is of interest to note that an acceptable nasal consonant is pro-

duced, and Figure 3b illustrates a region of higher admittance

at x = 7, y = 1.5 which may be acting as a side branch to

facilitate this. Finally, Figure 4c illustrates the spectra of nat-

ural and synthesized versions of the phoneme /k/. Although

a broadband spectrum is preserved by the synthesized version,

there are a large number of deviations from the spectrum of nat-

ural speech, and notably reduced energy above 4 kHz compared

with natural speech. As a result, /k/ is identifiable as a plosive

in the synthesized speech, but not necessarily as /k/. The ad-

mittance map for /k/ in Figure 3c contains some indications of

a /k/-like constriction at x = 4 to x = 5 but this is clearly in-

sufficient for accurate reproduction of /k/.

The observations made above are largely generalizable to

the respective phoneme categories across all test sentences:

vowels are quite well estimated by the model, nasal and lateral

consonants are less well estimated, and turbulent consonants are

least well estimated. This may relate to the physical modeling

paradigm used, as in general, physical models of vowel repro-

duction have been highly successful, but consonants have not

yet been synthesized reliably. Further investigation into reliable

consonant reproduction techniques is therefore expected to im-

prove the model.

All of the B vectors generated with the proposed tech-

nique display a much larger range of admittance values than the

raised-cosine mapping technique [11], far exceeding the maxi-

mum characteristic acoustic admittance for a tube the size of a

vocal tract. In addition, many of the DNN-generated admittance

maps, including all of those illustrated in Figure 3, have a region

of high admittance centered on x = 3, y = 4.5 which has no

apparent physical equivalent. It is evident that, in order to ob-

tain physically-meaningful output, some constraints will be re-

quired upon the generated parameters, for example by including

the positions and admittances of articulators like the teeth, hard

palate and velum. Nevertheless, the synthesized speech has a

spectrum similar to natural speech and is sufficient for intelligi-

bility. With further refinement it is anticipated that the quality

of the synthesized speech will improve.

5. Conclusions

This study has illustrated the potential of a combined statistical

parametric and physical modeling approach for the generation

of intelligible synthetic speech. An important priority for future

study is a subjective assessment of the intelligibility of the syn-

thesized speech produced using the proposed method. Future

work will also involve controlling the speaker characteristics of

synthetic speech by feeding metadata to the proposed model,

and constraining the parameter generation based on real vocal

tract geometries.
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