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CLOSED EXTENDED r-SPIN THEORY AND THE GELFAND–DICKEY

WAVE FUNCTION

ALEXANDR BURYAK, EMILY CLADER, AND RAN J. TESSLER

Abstract. We study a generalization of genus-zero r-spin theory in which exactly one inser-
tion has a negative-one twist, which we refer to as the “closed extended” theory, and which is
closely related to the open r-spin theory of Riemann surfaces with boundary. We prove that
the generating function of genus-zero closed extended intersection numbers coincides with the
genus-zero part of a special solution to the system of differential equations for the wave function
of the r-th Gelfand–Dickey hierarchy. This parallels an analogous result for the open r-spin
generating function in the companion paper [5] to this work.

1. Introduction

Witten’s conjecture [26], which was proposed in 1991 and soon proven by Kontsevich [18],
states that the generating function for the integrals of the cotangent line classes ψ1, . . . , ψn ∈
H2(Mg,n) on the moduli space of curves is governed by the Korteweg–de Vries (KdV) hierarchy.
At around the same time, Witten also proposed a generalization of his conjecture [27], in which

the moduli space of curves is enhanced to the moduli space M1/r

g,{α1,...,αn} of r-spin structures.
The latter is a natural compactification of the space of smooth marked curves (C; z1, . . . , zn)
with a line bundle S and an isomorphism

S⊗r ∼= ωC

(
−

n∑

i=1

αi[zi]

)
,

where αi ∈ {0, 1, . . . , r−1}. This space admits a virtual fundamental class cW , which is referred
to as Witten’s class and is defined in genus zero by

cW := e((R1π∗S)∨),

with π : C →M1/r

0,{α1,...,αn} the universal curve and S the universal r-spin structure; constructions
of cW in higher genus have now been given by a number of authors [22, 8, 19, 15, 7]. Let tαd
and ε be formal variables, for 0 ≤ α ≤ r − 1 and d ≥ 0. The r-spin Witten conjecture states
that if

F
1
r
,c(t∗∗, ε) :=

∑

g≥0, n≥1
2g−2+n>0

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

ε2g−2

n!

(
r1−g

∫

M1/r
g,{α1,...,αn}

cW ∩ ψd1
1 · · ·ψdn

n

)
tα1
d1
· · · tαn

dn

is the generating function of ψ-intersection numbers against Witten’s class, then exp(F
1
r
,c)

becomes, after a certain rescaling of the variables tαd , a tau-function of the r-th Gelfand–Dickey
(r-GD) hierarchy in the standard normalization of flows [13]. The superscript “c”, which stands
for “closed”, is to distinguish this theory from the open theory discussed below. This result
was proven by Faber–Shadrin–Zvonkine [14].

If one allows that exactly one of the indices αi is equal to −1 and the rest lie in the range

{0, 1, . . . , r − 1}, then the spaceM1/r

0,{α1,...,αn} is still defined and R1π∗S is still a vector bundle
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for New Scientists of Weizmann Institute, and by Dr. Max Rössler, the Walter Haefner Foundation and the
ETH Zürich Foundation.
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in genus zero, so genus-zero r-spin intersection numbers can be defined exactly as above. This
kind of intersection number was first considered in the paper [16]. We refer to this theory as
closed extended r-spin theory, and we define a genus-zero generating function by

F
1
r
,ext

0 (t∗∗) :=
∑

n≥2

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

1

n!

(
r

∫

M1/r
0,{α1,...,αn,−1}

cW ∩ ψd1
1 · · ·ψdn

n

)
tα1
d1
· · · tαn

dn
.

In the current paper, we prove that F
1
r
,ext

0 coincides with the genus-zero part of a special
solution of the system of differential equations for the wave function of the r-GD hierarchy.
The proof of this result proceeds by verifying that the closed extended r-spin correlators satisfy
certain topological recursion relations that allow the entire theory to be recovered from just
two initial conditions that can be explicitly calculated. We then verify that the genus-zero part
of the special solution satisfies the same recursions and the same initial conditions.

The reason for our interest in the closed extended generating function arises from an intriguing
connection to open r-spin theory, which is the generalization of r-spin theory to Riemann

surfaces with boundary. In [5], we construct a moduli space M1/r

0,k,l of “graded r-spin disks”

that generalizes M1/r

0,n to genus-zero curves C equipped with an involution that realizes C as
two copies of a Riemann surface with boundary Σ, glued along their common boundary. The

moduli spaceM1/r

0,k,l itself has boundary and is not necessarily canonically oriented, so one must
prescribe boundary conditions for sections of bundles and specify relative orientations in order
to ensure that integration of their relative top Chern class is well-defined. After carrying out
this technical work, we obtain in [5] a definition of open r-spin correlators. When calculating
recursions for open genus-zero correlators, the closed extended correlators appear naturally,
and in fact, there is an intimate relation between the genus-zero sectors of the two theories that
we call the open-closed correspondence; see Section 5 below. The origin of this correspondence
is at present mysterious.

1.1. Plan of the paper. In Section 2, we recall the relevant background information on closed
(non-extended) r-spin theory. Section 3 then generalizes the definitions to closed extended
r-spin theory, proves the topological recursion relations, and calculates the two correlators

that form the initial conditions for the potential F
1
r
,ext

0 . We turn to a detailed treatment of
the integrable hierarchy in Section 4, which allows us to state the main result of the paper,
Theorem 4.6, and to prove it. Finally, in Section 5, we explain the correspondence between
closed extended and open r-spin theory.

2. Background on r-spin theory

We begin by reviewing the relevant background on the moduli space of r-spin structures and
its intersection theory, referring the reader to [9, 17], among many other references, for more
details.

Throughout what follows, fix an integer r ≥ 2. An r-spin structure on a smooth marked
curve (C; z1, . . . , zn) of genus g is a line bundle L on C together with an isomorphism

(2.1) L⊗r ∼= ωC,log := ωC

(
n∑

i=1

[zi]

)
.

There is a smooth Deligne–Mumford stack M1/r
g,n parameterizing such objects, equipped with

a finite étale morphism to (indeed, a torsor structure over) the moduli spaceMg,n of smooth
curves. Some care must be taken in the compactification in order to preserve these properties
of the moduli space of r-spin structures, and there are several ways to do so, as summarized
in [12, Section 2.2]. In our case, we compactify by allowing orbifold structure.
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More precisely, following [1], we define an orbifold curve as a one-dimensional Deligne–
Mumford stack with a finite ordered collection of marked points and at worst nodal singularities
such that

(a) the only points with nontrivial isotropy are marked points and nodes;
(b) all nodes are balanced—i.e., in the local picture {xy = 0} at a node, the action of the

distinguished generator of the isotropy group Zk is given by

(x, y) 7→ (ζk, ζ
−1
k y),

where ζk is a primitive kth root of unity.

An orbifold curve is said to be r-stable, following [9], if the coarse underlying marked curve is
stable and the isotropy group is Zr at every special point.
Let (C; z1, . . . , zn) be an r-stable curve. An r-spin structure on C is an orbifold line bundle L

together with an isomorphism as in (2.1). If z0 ∈ C is either a marked point or a branch of
a node, then the multiplicity of L at z0 is defined as the integer m ∈ {0, 1, . . . , r − 1} such
that, in local coordinates (z, v) on the total space of L near z0, the action of the distinguished
generator of the isotropy group Zr at z0 is given by

(z, v) 7→ (ζrz, ζ
m
r v).

A standard but crucial fact about the multiplicities is that they determine the relationship
between L and its pushforward |L| to the coarse underlying curve. Specifically, suppose that
C ′ ⊂ C is an irreducible component with special points {zk} at which the multiplicities of L
are {mk}. Then, if ρ : C ′ → |C ′| is the natural map to the coarse underlying curve, we have

L|C′ = ρ∗
(
|L|
∣∣
|C′|

)
⊗OC′

(
∑

k

mk

r
[zk]

)
.

Given that ωC′,log = ρ∗ω|C′|,log, we find that |L|
∣∣
|C′| satisfies the equation

(2.2)
(
|L|
∣∣
|C′|

)⊗r ∼= ω|C′|,log

(
−
∑

k

mk[zk]

)
.

Using (2.2), one can prove (see, for example, the appendix of [11]) that there is an equivalence of
categories between r-spin structures as above and orbifold line bundles L with an isomorphism

L⊗r ∼= ωC

(
−

n∑

i=1

µi[zi]

)

for which µi ∈ {−1, 0, 1, . . . , r − 2} and the isotropy groups at all markings act trivially on
the fiber of L. Finally, replacing L by S := L(−

∑
µi=−1[zi]), we find that there is a further

equivalence with the category of orbifold line bundles satisfying

(2.3) S⊗r ∼= ωC

(
−

n∑

i=1

αi[zi]

)

with

αi ∈ {0, 1, . . . , r − 1},
where again, the isotropy groups at all markings act trivially on the fiber of S. We view r-spin
structures as in (2.3) in what follows, and we refer to the integers αi as twists. When αi = r−1,
we say that zi is a Ramond marked point, and otherwise, it is said to be Neveu–Schwarz.

There is a proper, smooth Deligne–Mumford stack M1/r

g,n of dimension 3g − 3 + n parame-
terizing r-stable curves together with an orbifold line bundle S satisfying (2.3). It is equipped
with a decomposition into open and closed substacks

M1/r

g,{α1,...,αn} ⊂M
1/r

g,n
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on which S has twist αi at zi for each i ∈ {1, . . . , n}. Furthermore, it is equipped with a
virtual fundamental class cW from which a beautiful intersection theory can be defined. The
construction of cW , which we refer to as Witten’s class, was first suggested by Witten in genus

zero. Specifically, it is straightforward to check that in genus zero, if π : C →M1/r

g,n denotes the

universal curve and S the universal line bundle, then R0π∗S = 0 and hence R1π∗S is a vector
bundle. We define the Witten bundle as

W := (R1π∗S)∨ = R0π∗(S∨ ⊗ ωπ)

and set cW to be its top Chern class:

cW := e(W).

Via the Riemann–Roch formula, one can check that the restriction of cW to M1/r

0,{α1,...,αn} has
complex codimension

−(r − 2) +
∑n

i=1 αi

r
,

which is a non-negative integer if and only ifM1/r

0,{α1,...,αn} is nonempty.
It is interesting and highly non-trivial to find the appropriate generalization of this definition

to higher genus. Various constructions have now been given, by Polishchuk–Vaintrob [22],
Chiodo [8], Mochizuki [19], Fan–Jarvis–Ruan [15], and Chang–Li–Li [7]. The result, in any of

these cases, is a class onM1/r

g,{α1,...,αn} of complex codimension

(2.4) e :=
(g − 1)(r − 2) +

∑n
i=1 αi

r
.

All of these constructions have been shown to agree after pushforward toMg,n [20, Theorem
3], at least when all insertions are Neveu–Schwarz (which, by the Ramond vanishing explained
below, is all that is needed).

One obtains correlators by integrating Witten’s class against ψ-classes on the moduli space.
Namely, for each i ∈ {1, . . . , n}, let Li be the cotangent line bundle to the coarse curve |C| at
the ith marked point. Then, in genus zero, we define closed r-spin correlators by

〈
n∏

i=1

ταi
di

〉 1
r

0

:= r

∫

M1/r
0,{α1,...,αn}

e

(
W ⊕

l⊕

i=1

L
⊕di
i

)
,

which is nonzero only if the equation

(2.5) e+
n∑

i=1

di = 3g − 3 + n

is satisfied with g = 0.

Remark 2.1. Putting the coefficient r in front of the integral in the definition of the correlators〈∏n
i=1 τ

αi
di

〉 1
r

0
and, more generally, putting the rescaling coefficient r1−g in the definition of the

generating function F
1
r
,c(t∗∗, ε) is a matter of tradition. This allows to present some results in

a slightly more compact form.

A crucial fact that we require about these correlators is that they satisfy Ramond vanishing: if
αi = r−1 for some i, then the correlator is zero. To prove this, suppose that S satisfies (2.3) and

that α1 = r−1. Let S be the universal line bundle on the universal curve π : C →M1/r

0,{α1,...αn},

let ∆1 ⊂ C be the divisor corresponding to the first marked point, and let S̃ := S (∆1). Then
there is an exact sequence

(2.6) 0→ R0π∗S → R0π∗S̃ → σ∗
1S̃ → R1π∗S → R1π∗S̃ → 0,
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where σ1 is the section corresponding to the first marked point. We have R0π∗S̃ = 0 and

(σ∗
1S̃)⊗r ∼= σ∗

1ωπ,log
∼= OM1/r

0,{α1,...,αn}

,

which implies that e(σ∗
1S̃1) = 0. By multiplicativity of the Euler class in (2.6), this implies that

cW = 0.

3. Closed extended theory: geometry

Although we have thus far only defined the Witten class cW under the assumption that
all twists lie in the range {0, 1, . . . , r − 1}, there exists a smooth Deligne–Mumford moduli

stackM1/r

g,{α1,...,αn} parameterizing r-stable curves with a line bundle S satisfying (2.3) for any
tuple of integers {α1, . . . , αn}. This observation was made by Jarvis–Kimura–Vaintrob [16],
who studied precisely how the virtual class should vary when αi is replaced by αi + r.

3.1. Definition of extended r-spin correlators. Suppose that g = 0,

(3.1) αi ∈ {−1, 0, . . . , r − 1}
for each i, and there is at most one i such that αi = −1. In this case, one still has R0π∗S = 0,
so we can define W := (R1π∗S)∨ and set

cextW := e((R1π∗S)∨) = e(R0π∗(S∨ ⊗ ωπ)).

When there is no i for which αi = −1, this simply recovers the definition of cW given above.
The same formula (2.4) (with g = 0) gives the complex codimension of cextW , and there are
correlators 〈

l∏

i=1

ταi
di

〉 1
r
,ext

0

:= r

∫

M1/r
0,{α1,...,αn}

e

(
W ⊕

l⊕

i=1

L
⊕di
i

)

that vanish unless the dimension condition (2.5) is satisfied. We refer to these as extended
r-spin correlators.

Remark 3.1. We caution the reader that the Ramond vanishing property does not hold for the
extended r-spin correlators. For example, a nonvanishing extended correlator with an insertion
of twist r − 1 is calculated in Lemma 3.8.

3.2. Properties of the extended Witten class. Our goal for this section is to prove that
the genus-zero extended r-spin correlators satisfy certain equations analogous to the string
equation and topological recursion relations in Gromov–Witten theory. To do so, we must
study how cextW behaves under the inclusion of boundary divisors and forgetful morphisms.

Let us fix some notation. In general, boundary strata inM1/r

g,{α1,...,αn} are indexed by certain
decorated graphs, in which each vertex v represents an irreducible component and is labeled
with its genus g(v), each half-edge h represents a half-node and is labeled with its twist α(h),
and there are n numbered legs labeled with the twists α1, . . . , αn. We denote by ~α(v) the tuple
recording the twists at all half-edges incident to v, including the legs. Note that the elements
of ~α(v) lie in {−1, 0, 1, . . . , r − 1} and that the twist is −1 at each half-node on which the
isotropy group acts trivially on the fiber of S.

Given Γ as above, let M1/r

Γ ⊂ M1/r

g,{α1,...,αn} be the boundary stratum consisting of r-spin

curves with decorated dual graph Γ. Let Γ̃ be the disconnected graph obtained by cutting all
of the edges of Γ, and let

M1/r

Γ̃
:=

∏

v∈V (Γ)

M1/r

g(v),~α(v)

be the associated moduli space, where V (Γ) is the vertex set of Γ. Unlike the moduli space of

curves, the r-spin moduli space does not in general have a gluing mapM1/r

Γ̃
→M1/r

Γ , because

there is no canonical way to glue the fibers of S at the nodes. Nevertheless, lettingMΓ andMΓ̃
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denote the moduli spaces of marked curves with dual graphs Γ and Γ̃, respectively, one has
morphisms

M1/r

Γ̃

p←−MΓ̃ ×MΓ
M1/r

Γ

µ̃−→M1/r

Γ

ĩΓ−→M1/r

g,{α1,...,αn}.(3.2)

Let g = 0. Then for any decorated graph Γ of genus 0 we have MΓ̃ =MΓ and, therefore,

MΓ̃ ×MΓ
M1/r

Γ = M1/r

Γ . Then the map µ̃ in (3.2) is the identity. Suppose now that the
twists α1, . . . , αn at the legs of Γ satisfy (3.1) with at most one i such that αi = −1, then we
refer to Γ as a genus-zero extended r-spin dual graph. Note that even in this case, the vertex

moduli spaces M1/r

0,~α(v) may not themselves fit into the extended framework, since there may
be more than one half-edge of twist −1 incident to a given vertex. Nevertheless, there is a
consistent way to rectify the situation. Indeed, there is a unique function

α′ : H(Γ)→ {−1, 0, 1, . . . , r − 1}

on the half-edge set H(Γ) such that

(a) α′(h) ≡ α(h) mod r, for all h,
(b) α′(h) = α(h), if h is a leg,
(c) for each edge e = (h1, h2), such that α(h1) = α(h2) = −1, we have

(i) α′(h1) = α′(h2) = r − 1, if α1, . . . , αn ∈ {0, . . . , r − 1},
(ii) exactly one i ∈ {1, 2} with α′(hi) = r − 1, if there exists 1 ≤ j ≤ n, such that

αj = −1,
(d) for any edge e, each of the two connected components of the graph, obtained by cutting e,

has at most one leg h for which α′(h) = −1.
Let

(3.3) Mext

Γ̃ :=
∏

v∈V (Γ)

M1/r

0,~α′(v),

where ~α′(v) is the tuple recording the values of α′(h) at all of the half-edges incident to v. For
each v, let T (v) ⊂ H(v) denote the subset of the incident half-edges for which α′(h) 6= α(h).

Then there is a morphism τv : M1/r

0,~α(v) → M
1/r

0,~α′(v) defined by sending an r-spin structure S
with twists ~α(v) to

S ′ := S ⊗O


 ∑

h∈T (v)

−[zh]


 ,

where zh is the marked point corresponding to h; it is straightforward to see that S ′ is an r-spin
structure with twists ~α′(v). The product of the morphisms τv defines

τ :M1/r

Γ̃
→Mext

Γ̃ ,

so we now have

Mext

Γ̃

q←−M1/r

Γ

ĩΓ−→M1/r

0,{α1,...,αn},

where q := τ ◦ p.
We can now state the decomposition property of the extended Witten class along nodes.

Lemma 3.2. Let Γ be a genus-zero extended r-spin dual graph with two vertices v1 and v2
connected by a single edge e. LetM1 andM2 be the factors ofMext

Γ̃ corresponding to the two
vertices, and let cextW1

and cextW2
be the Witten classes on these two moduli spaces. Then

(3.4) q∗̃i
∗
Γc

ext
W = cextW1

⊠ cextW2
.
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Before proving the lemma, let us present an alternative way to construct the extended Wit-

ten class. Note that for each 1 ≤ i ≤ n there is a canonical identification M1/r

0,{α1,...,αn} =

M1/r

0,{α1,...,αi+r,...,αn} defined by sending an r-spin structure S with twists α1, . . . , αn to

S ′ := S ⊗O (−[zi]) .

Moreover, this allows to identify the moduli spaces M1/r

0,{α1,...,αn} and M1/r

0,{β1,...,βn}, if all the
differences αi−βi are divisible by r. Denote by Sα1,...,αn → C the universal line bundle over the

universal curve C π−→M1/r

0,{α1,...,αn}.

Lemma 3.3. For any n ≥ 2 and an n-tuple 0 ≤ β1, . . . , βn ≤ r − 1, the extended Witten

class cextW onM1/r

0,{−1,β1,...,βn} is equal to

cextW = crk−1

(
(R1π∗Sr−1,β1,...,βn)

∨) ∈ H∗
(
M1/r

0,{r−1,β1,...,βn}

)
= H∗

(
M1/r

0,{−1,β1,...,βn}

)
,

where rk = rk ((R1π∗Sr−1,β1,...,βn)
∨) = 1+

∑
βi

r
.

Proof. Let us consider the exact sequence (2.6) over the moduli spacM1/r

0,{r−1,β1,...,βn}. Note that

S = Sr−1,β1,...,βn and S̃ = S−1,β1,...,βn . Therefore, by multiplicativity of the total Chern class
in (2.6),

cextW = e
(
(R1π∗S−1,β1,...,βn)

∨) = crk−1

(
(R1π∗Sr−1,β1,...,βn)

∨) ,
which proves the lemma. �

This lemma implies the following symmetry property of the extended Witten class.

Corollary 3.4. Suppose n ≥ 1 and 0 ≤ β1, . . . , βn ≤ r − 1. Then, under the identification

M1/r

0,{−1,r−1,β1,...,βn} = M1/r

0,{r−1,−1,β1,...,βn}, the extended Witten classes on these moduli spaces
become equal. In other words,

e
(
(R1π∗S−1,r−1,β1,...,βn)

∨) = e
(
(R1π∗Sr−1,−1,β1,...,βn)

∨) .(3.5)

Proof. By Lemma 3.3, both sides of (3.5) are equal to crk−1 ((R
1π∗Sr−1,r−1,β1,...,βn)

∨). �

Proof of Lemma 3.2. OverM1/r

Γ , there are two universal curves: namely, we define CΓ by the
fiber diagram

CΓ //

π
��

C
π
��

M1/r

Γ

ĩΓ
//M1/r

0,{α1,...,αn},

and we define CΓ̃ by the fiber diagram

C̃

��

CΓ̃oo

π̃
��

Mext

Γ̃ M1/r

Γ ,
q

oo

in which C̃ is the universal curve overMext

Γ̃ , induced by the product description (3.3). One can
decompose CΓ̃ = C1 ⊔ C2, and we let πi = π̃|Ci , for i = 1, 2. Let

n : CΓ̃ → CΓ
be the universal normalization morphism.

Denote (by a slight abuse of notation) the pullback to CΓ of the universal line bundle on C
by S, and let Si = n∗S|Ci for i = 1, 2. There is a normalization exact sequence

0→ S → n∗n
∗S → S|∆e → 0,
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where ∆e ⊂ CΓ picks out the node that corresponds to the edge e of Γ. The associated long
exact sequence reads

(3.6) 0→ R0π1∗S1 ⊕R0π2∗S2 → R0π∗(S|∆e)→ R1π∗S → R1π1∗S1 ⊕R1π2∗S2 → 0.

From here, we break the argument into three cases.
First, suppose that one (hence both) of the half-edges of e is Neveu–Schwarz. ThenR0π∗(S|∆e) =

0, since sections of an orbifold line bundle necessarily vanish at points where the isotropy group
acts nontrivially on the fiber. Thus, we have

R1π∗S ∼= R1π1∗S1 ⊕R1π2∗S2
on M1/r

Γ . This implies that ĩ∗Γc
ext
W = q∗(cextW1

⊠ cextW2
), and the claim follows from the fact that

deg q = 1 [12, page 1348].
Next, suppose that one (hence both) of the half-edges of e is Ramond. Assume, without loss

of generality, that the vertices v1 and v2 of Γ are incident to the legs marked by {1, . . . , n1} and
{n1+1, . . . , n}, respectively. Consider the universal line bundles Sα1,...,αn1 ,−1 and S−1,αn1+1,...,αn

over C̃, corresponding to the components M1 and M2, respectively. The pullbacks, via the

map CΓ̃ → C̃, of these line bundles to C1 and C2, respectively, will be denoted by the same
letters. Clearly,

S1 = Sα1,...,αn1 ,−1, S2 = S−1,αn1+1,...,αn .

Note that R0π∗(S|∆e) = σ∗
eS, where σe is the section of CΓ with image ∆e. Since

(σ∗
eS)⊗r ∼= σ∗

eωπ,log
∼= OM1/r

Γ
,

we have c1(σ
∗
eS) = 0.

Suppose, additionally, that α1, . . . , αn ∈ {0, . . . , r−1}. Then we have R0π1∗S1 = R0π2∗S2 = 0
and, by multiplicativity of the total Chern classes in (3.6), we find that

ci
(
(R1π∗S)∨

)
= ci

(
(R1π1∗Sα1,...,αn1 ,−1)

∨ ⊕ (R1π2∗S−1,αn1+1,...,αn)
∨) , i ≥ 0.(3.7)

By the Ramond vanishing, the right-hand side of (3.4) is equal to zero. Note that rk(R1π∗S) =
rk(R1π1∗S1 ⊕R1π2∗S2) + 1, therefore, by (3.7), ĩ∗Γc

ext
W = e((R1π∗S)∨) = 0.

Finally, suppose again that one (hence both) of the half-edges of e is Ramond, but there is
a marked point of twist −1. Without loss of generality, we can assume that α1 = −1. Let
us write equation (3.7) for the n-tuple r − 1, α2, . . . , αn and for i = rk (R1π∗Sr−1,α2,...,αn) − 1.

Then, by Lemma 3.3, the left-hand side is equal to ĩ∗Γc
ext
W . The right-hand side of (3.7) is equal

to

e
(
(R1π1∗Sr−1,α2,...,αn1 ,−1)

∨) e
(
(R1π2∗S−1,αn1+1,...,αn)

∨) by Corollary 3.4
=

= e
(
(R1π1∗S−1,α2,...,αn1 ,r−1)

∨) · e
(
(R1π2∗S−1,αn1+1,...,αn)

∨) =
= q∗(cextW1

⊠ cextW2
).

Hence, ĩ∗Γc
ext
W = q∗(cextW1

⊠ cextW2
) and using again that deg q = 1 [12, page 1348] we see that the

lemma is proved. �

The other property of the extended Witten class that we require is its behavior under pullback
via the forgetful map. There is only a forgetful map on the r-spin moduli space forgetting
marked points whose twist equals zero. Let

Forn+1 :M
1/r

0,{α1,...,αn,0} →M
1/r

0,{α1,...,αn}

be the map that forgets zn+1 and its orbifold structure and stabilizes the curve C as necessary.

Lemma 3.5. Let cextW be the Witten class forM1/r

0,{α1,...,αn}, and let c̃extW be the Witten class for

M1/r

0,{α1,...,αn,0}. Then

c̃extW = For∗n+1c
ext
W .
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Proof. This follows immediately from the fact that the universal line bundle pulls back under

the induced morphism F̃orn+1 : C ′ → C on the universal curves. �

3.3. TRRs and string equation in extended r-spin theory. We are now prepared to
state and prove the topological recursion relations satisfied by the extended r-spin correlators
in genus zero. These follow from Lemmas 3.2 and 3.5, by essentially the same argument as
given by Jarvis–Kimura–Vaintrob in [17]. We denote by [n] the set {1, 2, . . . , n}.

Lemma 3.6. For any i with di > 0 and any j 6= k ∈ [n] \ {i}, we have

(3.8)

〈
∏

l∈[n]
ταl
dl

〉 1
r
,ext

0

=
∑

I
∐

J=[n]\{i}
j,k∈J

r−1∑

α=−1

〈
τα0 τ

αi
di−1

∏

l∈I
ταl
dl

〉 1
r
,ext

0

〈
τ r−2−α
0

∏

l∈J
ταl
dl

〉 1
r
,ext

0

.

In particular, we have the following equations, where K ⊂ [n] is the set of marked points
whose twist is r − 1 and without loss of generality we can assume that α1 = −1:

(a) (Neveu–Schwarz TRR) For any i ∈ [n]\(K ∪ {1}) with di > 0 and any j ∈ [n] \ {i, 1}
we have

〈
∏

l∈[n]
ταl
dl

〉 1
r
,ext

0

=
∑

I
∐

J=[n]\{i}
{1,j}∪K⊆J

r−2∑

α=0

〈
τα0 τ

αi
di−1

∏

l∈I
ταl
dl

〉 1
r

0

〈
τ r−2−α
0

∏

l∈J
ταl
dl

〉 1
r
,ext

0

+(3.9)

+
∑

I
∐

J=[n]\{i}
1,j∈J

〈
τ−1
0 ταi

di−1

∏

l∈I
ταl
dl

〉 1
r
,ext

0

〈
τ r−1
0

∏

l∈J
ταl
dl

〉 1
r
,ext

0

.

(b) (Ramond TRR) For any i ∈ K with di > 0 and any j ∈ [n] \ {1, i} we have

〈
∏

l∈[n]
ταl
dl

〉 1
r
,ext

0

=
∑

I
∐

J=[n]\{i}
1,j∈J

〈
τ−1
0 ταi

di−1

∏

l∈I
ταl
dl

〉 1
r
,ext

0

〈
τ r−1
0

∏

l∈J
ταl
dl

〉 1
r
,ext

0

.(3.10)

(c) (−1 TRR) Suppose that d1 > 0. Then for any j 6= k ∈ [n] \ {1} we have

〈
∏

l∈[n]
ταl
dl

〉 1
r
,ext

0

=
∑

I
∐

J=[n]\{1}
j,k∈J,K⊂I

r−2∑

α=0

〈
τα0 τ

−1
d1−1

∏

l∈I
ταl
dl

〉 1
r
,ext

0

〈
τ r−2−α
0

∏

l∈J
ταl
dl

〉 1
r

0

+(3.11)

+
∑

I
∐

J=[n]\{1}
j,k∈J

〈
τ r−1
0 τ−1

d1−1

∏

l∈I
ταl
dl

〉 1
r
,ext

0

〈
τ−1
0

∏

l∈J
ταl
dl

〉 1
r
,ext

0

.

Proof. Observe that the right-hand side of (3.8) is always defined. Indeed, while it could be the
case that one of the two correlators in a summand has two insertions of twist −1, it is always
multiplied by a correlator with at least one insertion of twist r − 1 and no insertions of twist
−1; thus, by Ramond vanishing in the usual closed theory, that summand of (3.8) vanishes.

The proof of (3.8) follows [17, Section 4.2]. Namely, onM0,n, we apply the relation

ψi =
∑

Γ

iΓ∗(1),
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where the sum is over all single-edged graphs on which tail i is separated by the edge from
tails j and k (see, for example, [28]). From here, we use the commutative diagram

(3.12) M1/r

Γ

ĩΓ
//

ρ̃

��

q

||

M1/r

0,{α1,...,αn}

ρ

��

Mext

Γ̃

ρ′ ""

MΓ
iΓ

//M0,n

for each single-edged graph Γ. First of all, note that i∗Γρ∗ = r · ρ̃∗̃i∗Γ, which follows from the fact
that deg ρ = 1

r
and deg ρ̃ = 1

r2
. Combining this property with Lemma 3.2 shows that

r · ρ∗(ψi ∩ cextW ) = r
∑

Γ

ρ∗
(
ρ∗iΓ∗(1) ∩ cextW

)
=

= r
∑

Γ

iΓ∗(1) ∩ ρ∗(cextW ) =

= r
∑

Γ

iΓ∗
(
i∗Γρ∗(c

ext
W )
)
=

= r2
∑

Γ

iΓ∗ρ̃∗̃i
∗
Γ(c

ext
W ) =

= r2
∑

Γ

iΓ∗ρ
′
∗q∗̃i

∗
Γ(c

ext
W ) =

= r2
∑

Γ

iΓ∗ρ
′
∗
(
cextW1

⊠ cextW2

)
.

Finally, multiplying this equation by the remaining ψ-classes and integrating proves the claim.
The other items are specializations of the general case, using that the extended theory agrees
with the usual closed theory in the absence of an insertion of twist −1, and that in the usual
closed theory Ramond vanishing holds. �

The string equation in the closed extended r-spin theory is exactly as usual:

Lemma 3.7. We have
〈
τ 00

∏

i∈[n]
ταi
di

〉 1
r
,ext

0

=





∑
i∈[n]
di>0

〈
ταi
di−1

∏
j 6=i τ

αj

dj

〉 1
r
,ext

0
, if n ≥ 3,

δd1,0δd2,0δα1+α2,r−2, if n = 2.

Proof. The string equation can either be deduced algebraically from the topological recursions
above, or geometrically, by mimicking the proof of the ordinary string equation on M0,n and
applying Lemma 3.5. �

3.4. Base cases. In addition to the above relations, the proof that the extended r-spin corre-
lators satisfy the equations for the wave function of the Gelfand–Dickey hierarchy requires two
base cases. We collect these simple correlators in the following lemma.

Lemma 3.8. We have 〈
τ−1
0 τ 10 τ

r−2
0

〉1/r,ext
0

= 1

and
〈
τ−1
0 τ 10 τ

r−1
0 τ r−1

0

〉1/r,ext
0

= −1

r
.
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Proof. In the first case, the moduli space is isomorphic to BZr and Witten’s class has rank
zero, so the claim is immediate.

In the second case, Witten’s bundle has rank one, so

cextW = c1((R
1π∗S)∨) = −c1(R1π∗S) = −ch1(R

1π∗S) = ch1(Rπ∗S).
The latter can be calculated via Chiodo’s Grothendieck–Riemann–Roch formula [10]. In our
situation, Chiodo’s formula reads:

cextW =
B2

(
1
r

)

2
κ1 −

B2(0)

2
ψ1 −

B2

(
2
r

)

2
ψ2 −

B2(1)

2
ψ3 −

B2(1)

2
ψ4 + 3

rB2

(
1
r

)

2
ĩΓ∗(1),

where

B2(x) = x2 − x+ 1

6

is the second Bernoulli polynomial and Γ is any of the three one-edged graphs onM1/r

0,{−1,1,r−1,r−1},

all of which yield the same divisor ĩΓ∗(1). From here, the claim is immediate from the fact that
∫

M1/r
0,{−1,1,r−1,r−1}

κ1 =

∫

M1/r
0,{−1,1,r−1,r−1}

ψi =
1

r
,

for each i, and ∫

M1/r
0,{−1,1,r−1,r−1}

ĩΓ∗(1) =
1

r2
,

in which the last integral is a consequence of the Zr scaling and the additional Zr ghost auto-
morphisms on a nodal r-spin curve. �

4. Closed extended theory: algebra

In this section we prove the main result of the paper, Theorem 4.6, which describes the

function F
1
r
,ext

0 in terms of the r-th Gelfand-Dickey hierarchy.
Sections 4.1 and 4.2 contain the necessary background information on the KP hierarchy, its

Gelfand–Dickey reduction, and their relation to the closed r-spin partition function. Then,
in Section 4.3, we consider a special solution of the system of differential equations for the
wave function of the r-GD hierarchy and discuss its main properties. In Section 4.4, we prove

Theorem 4.6: the function F
1
r
,ext

0 coincides with the genus-zero part of the special solution. As
a consequence of this result, in Section 4.5 we obtain a simple interpretation of the genus-zero

part of the Lax operator of the r-GD hierarchy in terms of the potential F
1
r
,ext

0 . Finally, in
Section 4.6, we propose a conjecture about the structure of the closed extended r-spin correlators
in all genera.

4.1. Brief review of the KP hierarchy. The material of this section is borrowed from the
book [13].

Consider formal variables Ti for i ≥ 1. A pseudo-differential operator A is a Laurent series

A =
m∑

n=−∞
an(T∗, ε)∂

n
x ,

where m ∈ Z, ∂x is considered as a formal variable, and an(T∗, ε) are formal power series in the
variables Ti with coefficients that are complex Laurent polynomials in ε:

an(T∗, ε) ∈ C[ε, ε−1][[T1, T2, . . .]].

The non-negative and negative degree parts of the pseudo-differential operator A are defined
by

A+ :=
m∑

n=0

an∂
n
x and A− := A− A+,
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and residue of the operator A is defined by

resA := a−1.

The Laurent series

Â(T∗, ε, z) :=
m∑

n=−∞
an(T∗, ε)z

n,

in which z is a formal variable, is called the symbol of the operator A.
The space of pseudo-differential operators is endowed with a structure of a non-commutative

associative algebra, in which the multiplication is defined by the formula

∂kx ◦ f :=
∞∑

l=0

k(k − 1) . . . (k − l + 1)

l!

∂lf

∂xl
∂k−l
x ,

where k ∈ Z, f ∈ C[ε, ε−1][[T1, T2, . . .]], and the variable x is identified with T1. For any r ≥ 2
and any pseudo-differential operator A of the form

A = ∂rx +
∞∑

n=1

an∂
r−n
x ,

there exists a unique pseudo-differential operator A
1
r of the form

A
1
r = ∂x +

∞∑

n=0

ãn∂
−n
x ,

such that
(
A

1
r

)r
= A.

Consider the pseudo-differential operator

L = ∂x +
∑

i≥1

ui∂
−i
x , ui ∈ C[ε, ε−1][[T1, T2, . . .]].

The KP hierarchy is the following system of partial differential equations for the power series ui:

∂L
∂Tn

= εn−1
[
(Ln)+ ,L

]
, n ≥ 1.(4.1)

For n = 1, the equation is equivalent to

∂ui

∂T1
=
∂ui

∂x
, i ≥ 1,

compatible with our identification of x with T1.

Remark 4.1. The factor εn−1 is not included usually in the definition of the KP hierarchy (4.1).

This rescalling is necessary, if we want to describe the function exp
(
F

1
r
,c(T∗, ε)

)
as a tau-

function of the KP hierarchy.

Suppose an operator L satisfies the system (4.1). Then there exists a pseudo-differential
operator P of the form

P = 1 +
∑

n≥1

pn(T∗, ε)∂
−n
x ,(4.2)

satisfying L = P ◦ ∂x ◦ P−1 and

∂P

∂Tn
= −εn−1 (Ln)− ◦ P, n ≥ 1.(4.3)

The operator P is called the dressing operator.
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We can now introduce the notion of a tau-function. Denote by Gz the shift operator, which
acts on a power series f ∈ C[ε, ε−1][[T1, T2, . . .]] as follows:

Gz(f)(T1, T2, T3, . . .) := f

(
T1 −

1

z
, T2 −

1

2εz2
, T3 −

1

3ε2z3
, . . .

)
.

Let P = 1 +
∑

n≥1 pn(T∗, ε)∂
−n
x be the dressing operator of some operator L satisfying the

KP hierarchy (4.1). Then there exists a series τ ∈ C[ε, ε−1][[T1, T2, T3, . . .]] with constant term
τ |Ti=0 = 1 for which

P̂ =
Gz(τ)

τ
.

The series τ is called a tau-function of the KP hierarchy. The operator L can be reconstructed
from the tau-function τ by the following formula:

resLn = ε1−n ∂
2 log τ

∂T1∂Tn
, n ≥ 1.

Another important object associated to a solution of the KP hierarchy is the wave function
(also called the Baker–Akhiezer function). Let P be the dressing operator of some operator L
satisfying the KP hierarchy (4.1) and let τ be the tau-function. Let

ξ(T∗, ε, z) :=
∑

k≥1

Tkε
k−1zk.

The wave function is defined by

w(T∗, ε, z) := P̂ · eξ = Gz(τ)

τ
eξ ∈ C[ε, ε−1][[T1, T2, . . .]][[z, z

−1]].

It satisfies the equations

∂w

∂Tn
= εn−1(Ln)+w, n ≥ 1.(4.4)

4.2. Gelfand–Dickey reduction and the closed r-spin partition function. Let r ≥ 2.
It is easy to see that the equation

(Lr)− = 0(4.5)

is invariant with respect to the flows of the KP hierarchy (4.1). Therefore, it defines a reduction
of the KP hierarchy that is called the r-th Gelfand–Dickey hierarchy. Let

L := Lr = ∂rx +
r−2∑

i=0

fi∂
i
x.

Then all the coefficients ui of the operator L can be expressed in terms of the functions
f0, f1, . . . , fr−2, and the Gelfand–Dickey hierarchy can be written as the following system of
equations:

∂L

∂Tn
= εn−1[(Ln/r)+, L], n ≥ 1.(4.6)

Clearly, ∂L
∂Tdr

= 0 for any d ≥ 1.

Suppose L is a solution of the KP hierarchy satisfying the property (4.5). Then the dressing
operator P and the tau-function τ can be chosen in such a way that ∂P

∂Tdr
= 0 and ∂τ

∂Tdr
= 0 for

any d ≥ 1. In this case, the function τ is called a tau-function of the Gelfand–Dickey hierarchy.
Consider the generating series F

1
r
,c(t∗∗, ε) of the closed r-spin intersection numbers,

F
1
r
,c(t∗∗, ε) =

∑

g≥0, n≥1
2g−2+n>0

ε2g−2

n!

∑

0≤α1,...,αn≤r−2
d1,...,dn≥0

〈
τα1
d1
· · · ταn

dn

〉 1
r

g
tα1
d1
· · · tαn

dn
.
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In [14], it is proven that the exponent τ
1
r
,c := eF

1
r ,c

becomes a tau-function of the Gelfand–
Dickey hierarchy after the change of variables

Tk =
1

(−r)
3k

2(r+1)
− 1

2
−d
k!r

tαd , 0 ≤ α ≤ r − 2, d ≥ 0,(4.7)

where k = α + 1 + rd and

k!r :=
d∏

i=0

(α + 1 + ri).

The corresponding solution L of the Gelfand–Dickey system (4.6) satisfies the initial condition

L|T≥2=0 = ∂rx + ε−rrx.(4.8)

Let us prove a simple lemma describing the lowest-degree term in ε of the operator L.

Lemma 4.2. Define a Poisson bracket {·, ·} in the ring C[[T∗]][z] by

{z, f} := ∂xf, f ∈ C[[T∗]],

{f1, f2} = {z, z} := 0, f1, f2 ∈ C[[T∗]].

Then:

(a) The functions fi for 0 ≤ i ≤ r − 2 have the form

fi =
∑

g≥0

f
[g]
i εi−r+g, f

[g]
i ∈ C[[T∗]].

(b) Denote

L0 := ∂rx +
r−2∑

i=0

f
[0]
i ∂ix.

Then the operator L0 is uniquely determined by the equations

res L̂
n/r
0 =

∂2F
1/r,c
0

∂T1∂Tn
, 1 ≤ n ≤ r − 1.

(c) We have

∂L̂0

∂Ta
=

{(
L̂

a
r
0

)
+
, L̂0

}
.

Proof. Introduce the notation

w
(j)
i := ε1−i∂jx

∂2F
1
r
,c

∂T1∂Ti
, 1 ≤ i ≤ r − 1, j ≥ 0,

f
(j)
i := ∂jxfi, 0 ≤ i ≤ r − 2, j ≥ 0.

Then it is easy to see that

wi =
i

r
fr−i−1 + Pi(f

(∗)
r−i, . . . , f

(∗)
r−2),(4.9)

where Pi is a polynomial in f
(∗)
r−i, . . . , f

(∗)
r−2. Moreover, if we assign to f

(j)
k degree r− k+ j, then

the polynomial Pi is homogeneous of degree i+1. The transformation (4.9) is clearly invertible,
so we have

fi =
r

i
wr−i−1 +Qi(w

(∗)
1 , . . . , w

(∗)
r−i−2),(4.10)

where Qi is a homogeneous polynomial of degree r − i if we assign to w
(k)
j degree j + 1 + k. It

remains to note that

wi = ε−i−1∂
2F

1/r,c
0

∂T1∂Ti
+O(ε−i)

and parts (a) and (b) of the lemma become clear.



CLOSED EXTENDED r-SPIN THEORY AND THE GELFAND–DICKEY WAVE FUNCTION 15

Let us prove part (c), again using the homogeneity argument. We have

[(
L

a
r

)
+
, L
]
=

r−2∑

i=0

Ri(f
(∗)
∗ )∂ix,

where a polynomial Ri has degree a + r − i. Let us assign to f
(j)
i differential degree j and

express a polynomial Ri as

Ri(f
(∗)
∗ ) =

∑

j≥0

Ri,j(f
(∗)
∗ ),

where a polynomial Ri,j has differential degree j. Clearly, Ri,0 = 0 and for Ri,1 we have the
formula

r−2∑

i=0

Ri,1z
i =

{(
L̂

a
r

)
+
, L̂

}
.

We have Ri,j = O(εi−r−a+2), for j ≥ 2, and

Ri,1 = εi−r−a+1R̃i(T∗) +O(εi−r−a+2),

where
r−2∑

i=0

R̃i(T∗)z
i =

{(
L̂

a
r
0

)
+
, L̂0

}
.

Part (c) of the lemma is proved. �

4.3. Special solution of the equations for the wave function. Let L be the solution of
the Gelfand–Dickey hierarchy (4.6) associated to the tau-function τ

1
r
,c. Let Φ(T∗, ε) be the

unique solution of the system of equations

∂Φ

∂Tn
= εn−1(Ln/r)+Φ(4.11)

that satisfies the initial condition

Φ|T≥2=0 = 1.

Remark 4.3. In the case r = 2, the function Φ was first considered in [4], and the first author
proved there that the logarithm of Φ coincides with the generating series of the intersection
numbers on the moduli space of Riemann surfaces with boundary. Properties of the function Φ
for general r were first studied in [2]. Note that the system of equations (4.11) for the function Φ
coincides with the system of equations (4.4) for the wave function w of the KP hierarchy. In [2],
the authors found an explicit formula for Φ in terms of the wave function w.

Denote φ := log Φ and consider the expansion

φ =
∑

g∈Z
εg−1φg, φg ∈ C[[T∗]].

Let

Tmr =
1

(−r)
m(r−2)
2(r+1) m!rm

tr−1
m−1, m ≥ 1.(4.12)

Define correlators
〈
τα1
d1
· · · ταn

dn

〉φ
g
by

〈
τα1
d1
· · · ταn

dn

〉φ
g
:=

∂nφg

∂tα1
d1
· · · ∂tαn

dn

∣∣∣∣
t∗∗=0

, 0 ≤ α1, . . . , αn ≤ r − 1, d1, . . . , dn ≥ 0.
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Lemma 4.4. The correlator
〈
τα1
d1
· · · ταn

dn

〉φ
g
can be non-zero only if

g ≥ 0,(4.13)
n∑

i=1

(αi

r
+ di − 1

)
=

(r + 1)(g − 1)

r
.(4.14)

Proof. Let us prove property (4.13). The function φ satisfies the following equations:

∂φ

∂Tn
= εn−1 (L

n
r )+e

φ

eφ
.

Therefore, it is sufficient to prove that for any function θ ∈ C[ε, ε−1][[T∗]] such that θ = O(ε−1),

we have εn−1 (L
n
r )+eθ

eθ
= O(ε−1). From Lemma 4.2 it follows that the operator L

n
r has the form

L
n
r =

∑
i≤nRi∂

i
x, Ri ∈ C[ε, ε−1][[T∗]], where Ri = O(εi−n). By induction, it is easy to prove

that

∂ixe
θ

eθ
= i!

∑

m1,m2,...≥0∑
jmj=i

∏

j≥1

(∂jxθ)
mj

(j!)mjmj!
, i ≥ 0.(4.15)

Since θ = O(ε−1), we have
∏

j≥1(∂
j
xθ)

mj = O(ε−i). Therefore, Ri
∂i
xe

θ

eθ
= O(ε−n) and

εn−1

n∑

i=0

Ri
∂ixe

θ

eθ
= O(ε−1).

Property (4.13) is proved.
Let us prove property (4.14). Consider the linear differential operator

O :=
∑

0≤α≤r−1
d≥0

(α
r
+ d− 1

)
tαd

∂

∂tαd
− r + 1

r
ε
∂

∂ε
.

We have to prove that Oφ = 0 or, equivalently, OΦ = 0. Using the Gelfand–Dickey equa-
tions (4.6), it is easy to show that

(
z
∂

∂z
+O

)
L̂ = rL̂.

Then, similarly, using equations (4.11) one can show that OΦ = 0. The lemma is proved. �

Lemma 4.5. The function φ satisfies the string equation
(

∂

∂T1
−
∑

i≥1

(i+ r)Ti+r
∂

∂Ti

)
φ = rε−1Tr.(4.16)

Proof. Equation (4.16) was proved in [2], but in order to make the paper more self-contained let
us give a proof here. Denote by O the operator in the brackets on the left-hand side of (4.16).
Using the Gelfand–Dickey equations (4.6), it is easy to show that OL = ε−rr. Then, similarly,
using equations (4.11) one can show that OΦ = (rε−1Tr)Φ. �

4.4. Closed extended potential and the special solution. Consider the generating se-

ries F
1
r
,ext

0 (t∗∗) of the closed extended r-spin intersection numbers in genus zero,

F
1
r
,ext

0 (t∗∗) =
∑

n≥2

1

n!

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

〈
τα1
d1
· · · ταn

dn
τ−1
0

〉 1
r
,ext

0
tα1
d1
· · · tαn

dn
.

The main result of our paper is the following theorem.
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Theorem 4.6. We have

F
1
r
,ext

0 (t≤r−2
∗ , tr−1

∗ ) =
√
−rφ0

(
t≤r−2
∗ ,

1√
−r t

r−1
∗

)
.

Before proving the theorem, let us formulate several auxiliary statements.

Lemma 4.7. The function φ0 satisfies the equations

∂φ0

∂Tn
= (L̂

n
r
0 )+

∣∣∣
z=(φ0)x

, n ≥ 1.(4.17)

Proof. From Lemma 4.2 it follows that the operator L
n
r has the form L

n
r =

∑
i≤nRi∂

i
x, where

Ri =
∑

j≥0Ri,jε
i−n+j, Ri,j ∈ C[[T∗]]. It is also clear that

∑
i≤nRi,0z

i = L̂
n
r
0 . We have

∂φ

∂Tn
= εn−1

n∑

i=0

Ri
∂ixe

φ

eφ
.

Since φ = ε−1φ0 +O(ε0), for any numbers m1,m2, . . . ≥ 0, satisfying
∑
jmj = i, we have

∏

j≥1

(∂jxφ)
mj =

{
ε−i(φ0)

i
x +O(ε−i+1), if m1 = i and m2 = m3 = . . . = 0,

O(ε−i+1), otherwise.

Using formula (4.15) we then get Ri
∂i
xe

φ

eφ
= Ri,0ε

−n(φ0)
i
x +O(ε−n+1) and

εn−1

n∑

i=0

Ri
∂ixe

φ

eφ
= ε−1

n∑

i=0

Ri,0(φ0)
i
x +O(ε0) = ε−1 (L̂

n
r
0 )+

∣∣∣
z=(φ0)x

+O(ε0).

The lemma is proved. �

Proposition 4.8. The function φ0 satisfies the equations

∂2φ0

∂tαp+1∂t
β
q

=
∑

µ+ν=r−2

∂2F
1
r
,c

0

∂tαp∂t
µ
0

∂2φ0

∂tν0∂t
β
q

+
∂φ0

∂tαp

∂2φ0

∂tr−1
0 ∂t

β
q

, 0 ≤ α, β ≤ r − 1, p, q ≥ 0.(4.18)

Proof. In the variables Ti equations (4.18) look as follows:

d

(
∂φ0

∂Ta+r

)
=

r−1∑

b=1

a+ r

b(r − b)
∂2F

1
r
,c

0

∂Ta∂Tb
d

(
∂φ0

∂Tr−b

)
+
a+ r

r

∂φ0

∂Ta
d

(
∂φ0

∂Tr

)
, a ≥ 1.

By Lemma 4.7, this equation follows from

d
(
L̂

a+r
r

0

)
+
=

r−1∑

b=1

a+ r

b(r − b)
∂2F

1
r
,c

0

∂Ta∂Tb
d
(
L̂

r−b
r

0

)
+
+
a+ r

r

(
L̂

a
r
0

)
+
dL̂0, a ≥ 1.(4.19)

Let

vi := res
(
L̂

i
r
0

)
, 1 ≤ i ≤ r − 1.

Clearly, the functions f
[0]
0 , . . . , f

[0]
r−2 and v1, . . . , vr−1 are related by an invertible polynomial

transformation. Therefore, for any i ∈ Z, the coefficients of the Laurent series L̂i
0 can be

considered as polynomials in v1, . . . , vr−1. For a ≥ 1 and 1 ≤ b ≤ r − 1 we have the following
identity (see, for example, [13, Sections 3.5 and 3.6]):

∂2F
1
r
,c

0

∂Ta∂Tb
=
b(r − b)
a+ r

∂

∂vr−b

res L̂
a+r
r

0 .

We see that equation (4.19) is equivalent to

d
(
L̂

a+r
r

0

)
+
=

r−1∑

b=1

∂

∂vb
res
(
L̂

a+r
r

0

)
d
(
L̂

b
r
0

)
+
+
a+ r

r

(
L̂

a
r
0

)
+
dL̂0.(4.20)
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Let us express the left-hand side in the following way:

d
(
L̂

a+r
r

0

)
+
=
a+ r

r

(
L̂

a
r
0

)
+
dL̂0 +

a+ r

r

((
L̂

a
r
0

)
−
dL̂0

)

+

.

Notice that the underlined term here cancels the underlined term on the right-hand side
of (4.20). Therefore, equation (4.20) is equivalent to

a+ r

r

((
L̂

a
r
0

)
−
dL̂0

)

+

=
r−1∑

b=1

∂

∂vb
res
(
L̂

a+r
r

0

)
d
(
L̂

b
r
0

)
+
.(4.21)

We compute
r−1∑

b=1

∂

∂vb
res
(
L̂

a+r
r

0

)
d
(
L̂

b
r
0

)
+
=

r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)(
L̂

b−r
r

0 dL̂0

)
+
.

We see that equation (4.21) follows from the property

a+ r

r

(
L̂

a
r
0

)
−
−

r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)
L̂

b−r
r

0 ∈ z−r−1
C[f

[0]
0 , . . . , f

[0]
r−2][[z

−1]].(4.22)

Recall that (see, for example, [13, Section 3.5])

a+ r

r

(
L̂

a
r
0

)
−
−

r−2∑

i=0

∂

∂f
[0]
i

res
(
L̂

a+r
r

0

)
z−i−1 ∈ z−r−1

C[f
[0]
0 , . . . , f

[0]
r−2][[z

−1]].(4.23)

For any two elements f, g ∈ C[f
[0]
0 , . . . , f

[0]
r−2][[z

−1]] let us write f ≡ g if the difference f − g lies

in z−r−1
C[f

[0]
0 , . . . , f

[0]
r−2][[z

−1]]. Then, using identity (4.23), we can compute

a+ r

r

(
L̂

a
r
0

)
−
≡

r−2∑

i=0

∂

∂f
[0]
i

res
(
L̂

a+r
r

0

)
z−i−1 ≡

r−1∑

b=1

r−2∑

i=0

∂

∂vb
res
(
L̂

a+r
r

0

) ∂vb

∂f
[0]
i

z−i−1 ≡

≡
r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)(
L̂

b−r
r

0

)
−
≡

r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)
L̂

b−r
r

0 .

Formula (4.22) is proved. This completes the proof of the proposition. �

Lemma 4.9. We have

〈
τ 10 τ

r−2
0

〉φ
0
=

{
1, if r = 2,
1√−r
, if r ≥ 3,

〈
τ 10 (τ

r−1
0 )2

〉φ
0
=

{
1, if r = 2,
1√−r
, if r ≥ 3.

(4.24)

Proof. Let us prove the first equation in (4.24). We compute

∂2φ0

∂T2∂Tr−1

∣∣∣∣
T∗=0

=
∂

∂Tr−1

(
(φ0)

2
x +

2

r
f
[0]
r−2

)∣∣∣∣
T∗=0

=
2

r

∂f
[0]
r−2

∂Tr−1

∣∣∣∣∣
T∗=0

.

We proceed as follows:

∂L̂0

∂Tr−1

∣∣∣∣∣
T∗=0

=

{(
L̂

r−1
r

0

)
+
, L̂0

}∣∣∣∣
T∗=0

=

{(
(zr + rx)

r−1
r

)
+
, zr + rx

}∣∣∣∣
x=0

=
{
zr−1, zr + rx

}∣∣
x=0

= r(r − 1)zr−2.

Therefore, ∂2φ0

∂T2∂Tr−1

∣∣∣
T∗=0

= 2(r−1). Applying changes of variables (4.7) and (4.12), we see that

the first equation in (4.24) is true.
Now, let us prove the second equation in (4.24). First of all, we compute

∂2φ0

∂T1∂Tr

∣∣∣∣
T∗=0

= ∂x((φ0)
r
x + rx)|T∗=0 = r.
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Therefore, we have

∂3φ0

∂T2∂T 2
r

∣∣∣∣
T∗=0

=
∂2

∂T 2
r

(
(φ0)

2
x +

2

r
f
[0]
r−2

)∣∣∣∣
T∗=0

= 2

(
∂2φ0

∂T1∂Tr

)2
∣∣∣∣∣
T∗=0

= 2r2.

Using equations (4.7) and (4.12), we can see that the second equation in (4.24) is also true. �

Proof of Theorem 4.6. We have seen (see Section 3.1 and Lemmas 3.6, 3.8) that the func-

tion F
1
r
,ext

0 and the correlators
〈
τ−1
0 τα1

d1
· · · ταn

dn

〉 1
r
,ext

0
satisfy the following properties:

〈
τ−1
0 τα1

d1
· · · ταn

dn

〉 1
r
,ext

0
= 0 unless

∑
αi − (r − 1)

r
+
∑

di = n− 2,(4.25)

∂2F
1
r
,ext

0

∂tαp+1∂t
β
q

=
∑

µ+ν=r−2

∂2F
1
r
,c

0

∂tαp∂t
µ
0

∂2F
1
r
,ext

0

∂tν0∂t
β
q

+
∂F

1
r
,ext

0

∂tαp

∂2F
1
r
,ext

0

∂tr−1
0 ∂t

β
q

, 0 ≤ α, β ≤ r − 1, p, q ≥ 0,(4.26)

〈
τ−1
0 τ 10 τ

r−2
0

〉 1
r
,ext

0
= 1,

〈
τ−1
0 τ 10 (τ

r−1
0 )2

〉 1
r
,ext

0
= −1

r
.(4.27)

It is easy to see that for any non-zero complex constant C, the function φ̃0 defined by

φ̃0(t
≤r−2
∗ , tr−1

∗ ) := Cφ0(t
≤r−2
∗ , C−1tr−1

∗ )

also satisfies equations (4.18). Let C =
√
−r and

〈
τα1
d1
· · · ταn

dn

〉φ̃
0
:=

∂nφ̃0

∂tα1
d1
· · · ∂tαn

dn

∣∣∣∣∣
t∗∗=0

.

Lemmas 4.4, 4.9 and Proposition 4.8 imply that the function φ̃0 and the correlators
〈
τα1
d1
· · · ταn

dn

〉φ̃
0

also satisfy properties (4.25) – (4.27). Therefore, it is sufficient to check that these properties

are enough to reconstruct the function F
1
r
,ext

0 .
Note that the dimension constraint in property (4.25) implies that n ≥ 2. Therefore,

by (4.26), it suffices to determine the primary correlators

〈
τ−1
0 τα1

0 · · · ταl
0 (τ r−1

0 )k
〉 1

r
,ext

0
, 0 ≤ α1, . . . , αl ≤ r − 2.(4.28)

By (4.25), such a correlator can be non-zero only if

l∑

i=1

(r − αi) + k = r + 1.(4.29)

First of all, suppose that l ≤ 1, so we consider the correlators

Xα :=
〈
τ−1
0 τα0 (τ

r−1
0 )α+1

〉 1
r
,ext

0
, 0 ≤ α ≤ r − 1.

Suppose 0 ≤ γ ≤ r − 2 and consider the correlator

Yγ :=
〈
τ−1
0 τ 11 τ

γ
0 (τ

r−1
0 )γ+2

〉 1
r
,ext

0
.

Let us compute it using the topological recursion relation (4.26) in two different ways. Apply-
ing (4.26) with α = 1, p = q = 0 and β = γ, we obtain

Yγ =

(
γ + 2

2

)
X1Xγ.(4.30)

On the other hand, applying (4.26) with α = 1, p = q = 0 and β = r − 1, we get

Yγ =

(
γ + 1

2

)
X1Xγ +

〈
τ 10 τ

γ
0 τ

r−3−γ
0

〉 1
r
,ext

0
Xγ+1.(4.31)
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For γ ≤ r − 3, we have
〈
τ 10 τ

γ
0 τ

r−3−γ
0

〉 1
r

0
= 1 (see e.g. [20, Section 0.6]), and, by (4.27),

〈
τ 10 τ

r−2
0 τ−1

0

〉 1
r
,ext

0
= 1. Therefore, equating the right-hand sides of (4.30) and (4.31), we ob-

tain

Xγ+1 = (γ + 1)X1Xγ, 0 ≤ γ ≤ r − 2.

Since X1 = −1
r
, this immediately implies that Xα = (−1)α α!

rα
, for any 0 ≤ α ≤ r − 1.

Consider now the correlator (4.28) with l ≥ 2. Suppose that condition (4.29) is satisfied.
Recall that by [l] we denote the set {1, 2, . . . , l}. For a subset I ⊂ [l], let

mI := r + 1−
∑

i∈I
(r − αi), AI :=

〈
τ−1
0

(
∏

i∈I
ταi
0

)
(τ r−1

0 )mI

〉 1
r
,ext

0

.

Consider the correlator

Z :=

〈
τ−1
0 τα1

1

(
l∏

i=2

ταi
0

)
(τ r−1

0 )k+r

〉 1
r
,ext

0

.(4.32)

Applying (4.26) with α = α1, p = q = 0 and β = αl, we get

Z =
∑

I⊔J=[l]
1∈I, l∈J

∑

µ+ν=r−2

〈(
∏

i∈I
ταi
0

)
τ
µ
0

〉 1
r

0

〈
τ−1
0 τ ν0

(
∏

j∈J
τ
αj

0

)
(τ r−1

0 )k+r

〉 1
r
,ext

0

+
∑

I⊔J=[l]
1∈I, l∈J

(
r + k

mI

)
AIAJ .

(4.33)

Note that the underlined term on the right-hand side of this equation vanishes, because other-
wise we should have

r − ν +
∑

j∈J
(r − αj) + k + r = r + 1⇒

∑

i∈I
(r − αi) = r + (r − ν)⇒

⇒
∑

i∈I
(r − αi) ≥ r + 2⇒

l∑

i=1

(r − αi) ≥ r + 2,

which contradicts (4.29). On the other hand, applying to the correlator (4.32) relation (4.26)
with α = α1, p = q = 0, and β = r − 1, we obtain

Z =
∑

I⊔J=[l]
1∈I

(
r + k − 1

mI

)
AIAJ =

=
∑

I⊔J=[l]
1∈I, l∈J

(
r + k − 1

mI

)
AIAJ +

∑

I⊔J=[l]
1,l∈I, J 6=∅

(
r + k − 1

mI

)
AIAJ +

(
r + k − 1

k

)
A[l]

〈
τ−1
0 (τ r−1

0 )r+1
〉 1

r
,ext

0
.

(4.34)

Note that here, by the same argument as above, we also do not have terms with closed r-
spin correlators. Equating the right-hand side of (4.33) and expression (4.34) and using that〈
τ−1
0 (τ r−1

0 )r+1
〉 1

r
,ext

0
= (−1)r−1 (r−1)!

rr−1 , we get

(−1)r−1 (r + k − 1)!

k!rr−1
A[l] =

∑

I⊔J=[l]
1∈I, l∈J

(
r + k − 1

mI − 1

)
AIAJ −

∑

I⊔J=[l]
1,l∈I, J 6=∅

(
r + k − 1

mI

)
AIAJ .(4.35)

We see that for l ≥ 2, this equation allows one to compute the primary correlator (4.28) in
terms of primary correlators with smaller l. The theorem is proved. �
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4.5. Lax operator and the closed extended potential. Let us show that the opera-

tor L0|t∗≥1=0 has a simple interpretation in terms of the function F
1
r
,ext

0 . Define the primary

closed extended potential in genus 0 by

F
1
r
,ext

0 (t00, . . . , t
r−1
0 ) := F

1
r
,ext

0

∣∣∣
t∗≥1=0

.

Proposition 4.10. We have

∂F
1
r
,ext

0

∂tr−1
0

=
1

(−r)
r−2

2(r+1) r
L̂0

∣∣∣
z=(−r)

1−2r
2(r+1) tr−1

0
t∗≥1=0

.(4.36)

Proof. Using Theorem 4.6 we see that equation (4.36) is equivalent to the equation

∂φ0

∂Tr

∣∣∣∣
T≥r+1=0

= L̂0

∣∣∣ z=rTr
T≥r+1=0

,

that follows from Lemma 4.7 and the fact that, by the string equation (4.16), (φ0)x|T≥r+1=0 =

rTr. �

4.6. Main conjecture. We conjecture that for any b ≥ 1, g, n ≥ 0, 0 ≤ α1, . . . , αn ≤ r − 1,
and d1, . . . , dn ≥ 0, there is a geometric construction of correlators

〈
τα1
d1
· · · ταn

dn
(τ−1

0 )b
〉 1

r
,ext

g
,

generalizing the construction for b = 1 and g = 0. Given such correlators, define a generating

series F
1
r
,ext

g (t∗∗) for any g ≥ 0 by

F
1
r
,ext

g (t∗∗) :=
∑

h≥0, b≥1
2h+b−1=g

∑

n≥0

1

b!n!

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

〈
τα1
d1
· · · ταn

dn
(τ−1

0 )b
〉 1

r
,ext

h
tα1
d1
· · · tαn

dn
.

Conjecture 4.11. For any g ≥ 0,

F
1
r
,ext

g = (−r) 1−g
2 φg

(
t≤r−2
∗ ,

1√
−r t

r−1
∗

)
.

5. Open–closed correspondence

In the forthcoming work [5], the authors generalize the definition of the moduli space of
r-spin structures and its Witten class to the setting of genus-zero surfaces with boundary, or
disks. We summarize the construction of [5] in this section and explain the connection between
open and closed extended theory.

5.1. Open r-spin theory. A Riemann surface with boundary is a tuple (C, φ,Σ, {zi}, {xj}),
where C is an orbifold curve equipped with an involution φ : C → C that realizes |C| as a union
of two copies of the Riemann surface with boundary Σ, glued along their common boundary;
we write

|C| = Σ ∪∂Σ Σ.

Here, z1, . . . , zn ∈ C are the internal marked points (whose images in |C| lie in Σ\∂Σ, and each
of which has a partner zi := φ(zi) whose image lies in Σ) and x1, . . . , xm ∈ ∂Σ are the boundary
marked points. We define a graded r-spin structure on a Riemann surface with boundary as an
orbifold line bundle S on C together with an isomorphism

S⊗r ∼= ωC ⊗O
(
−

n∑

i=1

αi[zi]−
n∑

i=1

αi[zi]−
m∑

j=1

(r − 2)[xj]

)
,

an involution φ̃ : S → S lifting φ, and an additional structure that we refer to as a grading.
(Roughly, a grading is an involution-invariant section of S on the complement of the special
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points in ∂Σ that changes sign at each boundary marked point, this notion was first defined for
r = 2 in [23].) Here, we assume that the internal twists α1, . . . , αn lie in the range {0, 1, . . . , r−
1}. Note that we can re-express the genus in terms of the number b of boundary components
of Σ and the genus gc of the closed surface obtained from Σ by gluing a disk to each boundary
component:

g = b+ gc − 1.

For example, a disk has g = gc = 0 and b = 1.

In [5] we construct the moduli spaceM1/r

0,m,{α1,...,αn} parameterizing graded r-spin disks, and
prove that it is nonempty exactly when a certain congruence condition on the twists αi is satis-

fied. There should be no difficulty with constructing the all-genus generalizationM1/r

g,m,{α1,...,αn}
and this space is nonempty if and only if

(5.1) eo :=
(g +m− 1)(r − 2) + 2

∑n
i=1 αi

r
∈ N and eo ≡ 1 +m+ g mod 2.

There are line bundles Li for each i = 1, . . . , n, defined by the cotangent line to the orbifold
curve C at the ith internal marked point. Furthermore, in genus zero, there is a real analogue
of Witten’s bundle,

W := (R0π∗(S∨ ⊗ ωπ))+,

a real-rank-eo bundle over M1/r

0,m,{α1,...,αn} whose fiber over (C, φ,Σ, {zi}, {xj}, S, φ̃) consists of
φ̃-invariant sections of S∨ ⊗ ωC .

Because M1/r

0,m,{α1,...,αn} has boundary, one must work with a relative version of the Chern
classes of the cotangent line bundles and the Witten bundles. In [5] the requisite canoni-

cal boundary conditions are defined over the space PM1/r

0,m,{α1,...,αn}, which is some canonical

perturbation of the spaceM1/r

0,m,{α1,...,αn}. From here, we define open r-spin correlators by

(5.2)

〈
n∏

i=1

ταi
di
σm

〉 1
r
,o

0

:=

∫

PM1/r
0,m,{α1,...,αn}

e

(
W ⊕

n⊕

i=1

L
⊕di
i , scanonical

)
,

where e(E, s) is the Euler class relative to the canonical boundary conditions s. Alternatively,
the number in (5.2) can be defined as a weighted, signed count of the number of zeroes of a
generic extension of scanonical, defining this count to be zero unless eo+2

∑n
i=1 di = m+2n−3+3g,

or in other words, unless

(5.3) eo + 2
n∑

i=1

di = m+ 2n− 6 + 3gc + 3b.

One of the key results of [5] is that these intersection numbers are independent of the specific
choice of scanonical.

We define a generating function for genus-zero open r-spin theory by

F
1
r
,o

0 (t∗∗, s) :=
∑

n,m≥0
2n+m−2>0

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

1

n!m!

〈
n∏

i=1

ταi
di
σm

〉 1
r
,o

0

tα1
d1
· · · tαn

dn
sm.

Remark 5.1. We caution the reader, that, similarly to the closed extended theory, the Ramond
vanishing property doesn’t hold for the open r-spin correlators.

Remark 5.2. In the case where r = 2 and all of the insertions are Neveu–Schwarz, open r-spin
theory is equivalent to the intersection theory of disks constructed by Pandharipande, Solomon,
and the third author in [21]. This is currently the only case in which we can extend the theory
to higher genus [24], calculate all numbers [25], and prove the relationship to the wave function
in all genus [4, 6].
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5.2. Connection to closed extended theory. In [5, Theorem 1.3], we prove that the genus-
zero open r-spin potential is related to the closed extended potential in the following way:

F
1
r
,o

0 (t0∗, t
1
∗, . . . , t

r−1
∗ , s) = −1

r
F

1
r
,ext

0

∣∣∣
tr−1
d 7→tr−1

d −rδd,0s
+

1

r
F

1
r
,ext

0 .

We currently do not know of a geometric explanation for the intimate relation between these
two theories. Nevertheless, let us explore more explicitly what is known.

Heuristically, the dictionary between closed extended and open r-spin theory is given by

(a) replacing a marked point with twist −1 by a boundary component, and
(b) replacing a marked point with twist r − 1 by a boundary marked point.

To make this more precise, we first observe that these exchanges are compatible with the rank-
dimension constraints for the two theories. That is, replacing every boundary component in
the open theory with a marked point of twist −1 converts equation (5.3) into equation (2.5),
and replacing an internal marked point of twist r− 1 by a boundary marked point leaves (5.3)
invariant.1 Moreover, at the level of intersection numbers, we have the relation

〈
n∏

i=1

ταi
di
σm

〉 1
r
,o

0

=





0, if m = 0,

(−r)m−1

〈
τ−1
0

n∏

i=1

ταi
di
(τ r−1

0 )m

〉 1
r
,ext

0

if m ≥ 1,

which realizes the above dictionary when there is a single boundary component.
Moreover, this dictionary matches the topological recursion relations in genus zero. In [5],

we prove two topological recursion relations for open r-spin theory. First, for any i ∈ [n] with
di > 0 and any j ∈ ([n] \ {i}), we have

〈
∏

l∈[n]
ταl
dl
σm

〉 1
r
,o

0

=
∑

I
∐

J=[n]\{i}
j∈J

r−2∑

α=−1

〈
τα0 τ

αi
di−1

∏

l∈I
ταl
dl

〉 1
r
,ext

0

〈
τ r−2−α
0

∏

l∈J
ταl
dl
σm

〉 1
r
,o

0

+(5.4)

+
∑

I
∐

J=[n]\{i}
m1+m2=m

j∈J

m!

m1!m2!

〈
ταi
di−1

∏

l∈I
ταl
dl
σm1

〉 1
r
,o

0

〈
σ
∏

l∈J
ταl
dl
σm2

〉 1
r
,o

0

.

Second, if m ≥ 1, then for any i ∈ [n] with di > 0, we have
〈
∏

l∈[n]
ταl
dl
σm

〉 1
r
,o

0

=
∑

I
∐

J=[n]\{i}

r−2∑

α=−1

〈
τα0 τ

αi
di−1

∏

l∈I
ταl
dl

〉 1
r
,ext

0

〈
τ r−2−α
0

∏

l∈J
ταl
dl
σm

〉 1
r
,o

0

+(5.5)

+
∑

I
∐

J=[n]\{i}
m1+m2=m−1

(m− 1)!

m1!m2!

〈
ταi
di−1

∏

l∈I
ταl
dl
σm1

〉 1
r
,o

0

〈
σ
∏

l∈J
ταl
dl
σm2+1

〉 1
r
,o

0

.

Under the above dictionary, every term on the right-hand side of (5.4) or (5.5) corresponds to
a single term on the right-hand side of (3.9) or (3.10) with m Ramond marked points.
Since marked points of twist r − 1 in closed extended theory may have descendents, one

would expect the open-closed correspondence to generalize to that setting. In [3], the first
author conjectured the precise equations that the open theory for r = 2 should satisfy if it
incorporates boundary descendents. The construction of boundary descendents when r = 2
and all insertions are Neveu–Schwarz, was carried by Solomon and the third author, and will
appear in the near future. It is also known how to construct these descendents for any r in

1These observations are mostly numerological at this point, since the open theory is currently only defined
for disks and the closed extended theory in genus zero with a single −1 twist.
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genus zero, and that will also appear in a forthcoming work. The resulting topological recursion
relations in genus zero are as follows. First, if i ∈ [m], bi > 0, and j ∈ [n], then

〈
∏

h∈[m]

σbh

∏

l∈[n]
ταl
dl

〉 1
r
,o

0

=
∑

KI
∐

KJ=[m]\{i}
I
∐

J=[n]
j∈J

〈
σbi−1

∏

h∈KI

σbh

∏

l∈I
ταl
dl

〉 1
r
,o

0

〈
σ
∏

h∈KJ

σbh

∏

l∈J
ταl
dl

〉 1
r
,o

0

,

(5.6)

where σb corresponds to b descendents at a boundary marked point; and second, if i ∈ [m],
bi > 0, and j ∈ [m]\{i}, then

〈
∏

h∈[m]

σbh

∏

l∈[n]
ταl
dl

〉 1
r
,o

0

=
∑

KI
∐

KJ=[m]\{i}
I
∐

J=[n]
j∈KJ

〈
σbi−1

∏

h∈KI

σbh

∏

l∈I
ταl
dl

〉 1
r
,o

0

〈
σ
∏

h∈KJ

σbh

∏

l∈J
ταl
dl

〉 1
r
,o

0

.

(5.7)

These two equations indeed transform to (3.10) under the open-closed dictionary.
Perhaps the most surprising effect of the open-closed correspondence is the −1 TRR (equa-

tion (3.11)). If we believe the dictionary, then this equation suggests, on the open side, the
existence of “cotangent line classes” corresponding to a bundle Lboun associated to a boundary
component. These classes should satisfy the following equation for h > 0 and i, j ∈ [n]:

〈
σboun
h

∏

p∈[n]
τ
αp

dp

∏

q∈[m]

σbq

〉 1
r
,o

0

=
∑

I
∐

J=[n]
i,j∈J

r−1∑

α=0

〈
σboun
h−1 τ

α
0

∏

p∈I
τ
αq

dp

∏

q∈[m]

σbq

〉 1
r
,o

0

〈
τ r−2−α
0

∏

p∈J
τ
αp

dp

〉 1
r
,ext

0

(5.8)

+
∑

I
∐

J=[n]
KI

∐
KJ=[m]

i,j∈J

〈
σboun
h−1 σ

∏

p∈I
τ
αp

dp

∏

q∈KI

σbq

〉 1
r
,o

0

〈
∏

p∈J
τ
αp

dp

∏

q∈KJ

σbq

〉 1
r
,o

0

,

where σboun
h corresponds to h copies of Lboun. (There are analogous equations, also, if one or both

of i, j lies in [m].) Based on this hint, the first and the third authors have constructed a “class”
that satisfies equation (5.8)—or, more precisely, a line bundle Lboun and boundary conditions
for which generic extensions give rise to (5.8). We leave the details of the construction, however,
to future work.
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