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ABSTRACT: Complexes of type [M(tpt)2]X2 (M2+ = Fe2+, Co2+, Ni2+; tpt =
2,4,6-tri{pyrazol-1-yl}-1,3,5-triazine; X− = BF4

− or ClO4
−) crystallize in a cubic

lattice, with the metal ion and ligand conformation showing unusual symmetry-
imposed disorder. Addition of 1 equiv AgX to the corresponding preformed
[M(tpt)2]X2 salt in concentrated MeNO2 solution affords thixotropic gels. Gelation
was not observed in analogous reactions using [Mn(tpt)2][ClO4]2, or from
reactions in other, more donating solvents. Scanning electron microscopy (SEM)
images from dilute solutions of the reagents confirmed the fibrous microstructure
of the gels and their homogeneous elemental composition. However, energy-
dispersive X-ray data show a reduced Fe/Ag ratio compared to the Co/Ag and Ni/
Ag gels, where a 1:1 ratio of metals is evident. More concentrated gels decomposed to silver nanoparticles during SEM sample
preparation. Mass spectrometry and 1H NMR indicate that silver induces partial ligand displacement reactions in [Fe(tpt)2]

2+

and [Co(tpt)2]
2+, but not in [Ni(tpt)2]

2+. Hence, the strength of the gels, which follows the order M = Mn (no gel) < Fe < Co
< Ni, correlates with the stability of octahedral [M(tpt)2]

2+ under gelation conditions. Iron(II) complexes of the related ligands
2,4,6-tri{pyrazol-1-yl}pyridine (tpp) and 2,4,6-tri{pyrazol-1-yl}pyrimidine (tpym) did not undergo gelation with silver salts
under the above conditions. The unique properties of tpt as a gelator in this work may reflect the crystallographically observed
ability of metal-coordinated tpt to chelate to exogenous silver ions, through its pendant pyrazolyl group and triazinyl N donors.
In contrast, the pendant azolyl substituents in silver complexes of the nongelators tpp and tpym only bind exogenous silver in
monodentate fashion.

■ INTRODUCTION

Unravelling soft matter systems is a rich field of scientific
investigation among chemists, physicists, and engineers. Over
the last two decades, supramolecular gels have gained attention
because of their potential applications in biomaterials, catalysis,
displays, sensors, surface science, tissue engineering, and
pollutant removal.1−3 Supramolecular gels are usually formed
by low-molecular-weight gelator molecules assembled in a 3D
network, which traps a bulk amount of solvent via noncovalent
interactions. The reversible and dynamic nature of the
supramolecular interactions provides a mechanism for sensing
or physical transformations in response to external stimuli.2,3

More recently, coordination polymer gels (CPGs) or metal-
logels have also been widely reported, where metal ions play a
crucial role in the assembly of the 3D network.4−8 Inclusion of
transition metals in the gel assembly brings tunability to the
coordination strength, as well as new redox, optic, electronic,
and magnetic properties which are intrinsic to the metal ion.
These afford additional possibilities for applications in
catalysis, luminescence, and adhesives as well as new types of
sensing functionality.7,8

Silver(I)-containing metallogels of pyridyl-containing gela-
tors are a particularly common class of CPG,9−20 which can
often template the formation of silver nanoparticles under mild
heating or reduction.13−20 CPGs of first-row transition ions are
also often supported by pyridyl gelators,9,11,21−33 but can also

be prepared from more diverse organic scaffolds based on
other heterocyclic N-donors, carboxylates, or other donor
groups.5−8,34−44 A handful of f-element CPGs have also been
prepared, with emissive or self-healing properties.45−47 In some
cases, the organic components have been found to be selective
gelators for particular metal ions or salts,31,35 whereas rare
examples of heterometallic CPGs have also been reported.21,48

2,4,6-Tri(pyrazolyl)-1,3,5-triazine (tpt, Chart 1) and its
derivatives are well-known ligands for transition ions,49−57 and
we have recently investigated two aspects of the chemistry of
tpt. The first is the spin state of [Fe(tpt)2]

2+ (Chart 1, M =
Fe), which is related to a well-known family of iron(II) spin-
crossover (SCO) complexes.56 The second are silver(I)
complexes of tpt, which crystallize as 1D-coordination
polymers of silver ions bridged by ditopic tpt ligands.57 We
therefore proposed [Fe(tpt)2]

2+ centers might be linked into
larger assemblies by coordination to exogenous silver ions. We
now report a family of heterometallic CPGs derived by mixing
preformed [M(tpt)2]X2 (M = Fe or another 3d metal ion; X−

= BF4
− or ClO4

−) with the corresponding silver(I) salt. To aid
the interpretation of these results, complexes of two other,
related ligands were also prepared and screened for silver-
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induced gelation behavior. Homometallic CPGs supported by
a different trisubstituted 1,3,5-triazine scaffold have been
described in a previous study.58

■ RESULTS AND DISCUSSION
The precursor complexes [M(tpt)2][BF4]2 (M = Fe,56 Co, Ni,
Cu55) or [M(tpt)2][ClO4]2 (M = Mn, Fe,56 Ni) were prepared
by reacting tpt with 0.5 equiv of the appropriate metal salt in
nitromethane. The polycrystalline complexes were obtained
after the usual work-up, and recrystallized from nitromethane
using diethyl ether vapor as antisolvent. A full structure
refinement of [Ni(tpt)2][BF4]2 was achieved, which is
isostructural with the major α-polymorph of [Fe(tpt)2][BF4]2
(Figure 1 and Table S2).56 The complex adopts the cubic
space-group Ia3̅d, with one-sixth of a six-coordinate complex
molecule in its asymmetric unit and one unique C3-symmetric
ligand environment. The metal ion is distributed equally
around the three N-donors of the unique triazinyl ring, with a
concomitant twofold disorder of the coordinated pyrazolyl
group. This symmetry-induced disorder yields a cubic lattice of
tpt ligands, linked by a random array of nickel ions such that
each tpt ligand coordinates only one metal atom (Figures S1
and S2). The triazinyl rings in the complex are sandwiched
between two symmetry-equivalent BF4

− ions, forming a typical
anion···π interaction with a C···F distance of 2.756(8) Å
(Figure S3).55,59

Crystals of the other Mn, Co, Ni, and Cu complex salts
diffracted more weakly, but are isostructural with [Ni(tpt)2]-
[BF4]2 by X-ray powder diffraction (Figure 2 and Table S3).
Samples of [Cu(tpt)2][BF4]2 were often contaminated by
other crystals, however, including [Cu2(tpt)3(μ-bptO)(PzH)]-
[BF4]3, which was crystallographically characterized (Figure S4
and Table S4). The 2,4-dipyrazolyl-6-hydroxy-1,3,5-triazine
(bptOH, Chart 1) and pyrazole (PzH) ligands in this complex
are derived from hydrolysis of tpt during the crystallization
process (Scheme S1), and their presence in the compound was
confirmed by mass spectrometry (Figure S17). Although
[Cu(tpt)2][BF4]2 has previously been isolated in analytical
purity,55 copper(II) is known to promote hydrolysis of tpt
under a variety of conditions owing to its high Lewis
acidity.53,54 Therefore, the following heterometallic gelation
studies focus on the manganese, iron, cobalt, and nickel tpt
complexes.

Mononuclear [M(tpt)2]X2 was reacted with 1 equiv of the
appropriate silver salt AgBF4 or AgClO4, in nitromethane. No
reaction was observed when [Mn(tpt)2][ClO4]2 was treated
with AgClO4. However, when M = Fe, Co, or Ni, thixotropic
CPGs assembled within the time of mixing (Figure 3).
Whereas the iron and cobalt gels show irreversible thixotropy,
reverting to fluid solution upon mild shaking, the nickel-
containing gels are more robust and remain viscous after
shaking. The metal-dependence of gel stability qualitatively

Chart 1. tpt Ligand, Its Hydrolysis Product bptOH, and the
Geometry of the Precursor Complexes [M(tpt)2]

2+ (M =
Mn, Fe, Co, Ni, Cu)

Figure 1. Top: ligand and metal-ion disorder in the structure of
[Ni(tpt)2][BF4]2. The atoms in the asymmetric unit are shown with
50% displacement ellipsoids, whereas their symmetry-equivalent atom
sites are de-emphasized with paler coloration. Bottom: complete
[Ni(tpt)2]

2+ complex dication. Only one orientation of the disordered
pendant pyrazolyl substituents is shown, and H atoms were omitted
for clarity. Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) 1/4 − x, −1/4
+ z, 1/4 − y; (iv) x, −y, 1/2 − z; (v) 1/4 − x, −1/4 + z, 1/4 + y.
Color code: C, white or dark gray; Fe, pale or dark green; N, pale or
dark blue.

Figure 2. Experimental and simulated powder diffraction patterns of
the compounds in this work: crystallographic simulation from α-
[Fe(tpt)2][BF4]2 (black); experimental data from [Fe(tpt)2][BF4]2
(blue), [Co(tpt)2][BF4]2 (cyan), [Ni(tpt)2][BF4]2 (pink), [Fe(tpt)2]-
[ClO4]2 (red), and [Ni(tpt)2][ClO4]2 (yellow). Unit cell parameters
for these materials are given in Table S3.
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follows the order M = Mn2+ < Fe2+ < Co2+ < Ni2+, which
corresponds to the Irving−Williams series for the strength of
metal−ligand interactions.60 The gels retain their viscosity
when stored for a period of months at room temperature, in
closed vials (Figure S5).
The gelation procedure was also attempted in the different

solvents water, acetone, methanol, acetonitrile, and dimethyl-
formamide. Although the mononuclear complexes are soluble
in those solvents, the CPGs only assembled in nitromethane
and at concentrations of at least 16 mg·cm−3 of [M(tpt)2]X2
and 12 mg·cm−3 AgX. The Ag/[M(tpt)2]

2+ stoichiometry is
also critical for gelation. When more than 1 equiv silver salt is
used, the viscosity of the gel is reduced, and when 3 equiv
silver(I) salt was added the gel did not assemble at all (Figure
S6). Lastly, the gelation process is also affected by temperature,
with gelation being enhanced if the components are mixed at
273 K and inhibited in reactions above 298 K. Once formed,
however, the gels are thermostable up to ca. 330 K.
Scanning electron microscopy (SEM) images of the Fe/Ag,

Co/Ag, and Ni/Ag CPGs were investigated. When dilute
solutions of [M(tpt)2]X2 and AgX were evaporated to dryness
under ambient conditions, networks of gel-like fibers of
submicron thickness were observed (Figures 4 and S7). In
contrast, if preassembled gel was evaporated to dryness, the
SEM showed an amorphous material homogeneously dis-
tributed with silver nanoparticles (Figure S8). Hence, at higher
concentrations the CPGs template the formation of silver
nanoparticles when the solvent is removed. This is a common
property of silver-containing CPGs.13−20

Energy-dispersive X-ray (EDX) mapping experiments
proved the homogeneous distribution of the elements in the
intact gels (Figures 5, S10, and S11). The Ag/M (M = Co or
Ni) ratios in the [Co(tpt)2][BF4]2/AgBF4 and [Ni(tpt)2]-
[BF4]2/AgBF4 gels were both quantified at 1:1.0 ± 0.1 from
these data. The Ag/Fe ratio in [Fe(tpt)2][BF4]2/AgBF4 was
lower however, at 1:4.1 ± 0.1, implying a reduced silver
content in that CPG. That suggests the composition of the gels
varies depending on the identity of the metal “M”, despite their
apparently similar microstructures.
Electrospray mass spectra of dilute [Fe(tpt)2]X2/AgX,

[Ni(tpt)2]X2/AgX (X− = BF4
− and ClO4

−), and [Co(tpt)2]-

[BF4]2/AgBF4 nitromethane solutions contain a mixture of M/
tpt, Ag/tpt, and/or M/Ag/tpt-containing species (Figures
S12−S16). The [Fe(tpt)2][BF4]2/AgBF4 and [Ni(tpt)2]-
[ClO4]2/AgClO4 samples show particularly intense mixed-
metal ions with general compositions [MAg(tpt)2Y2]

+,
[MAg2(tpt)mY3]

+, and [M2Ag(tpt)mY4]
+ (m = 2 or 3; Y− =

anion), with an [Fe3Ag3(tpt)3Y8]
+ species also being observed

in one case. This indicates association of the [M(tpt)2]
2+ (M =

Fe or Ni) and silver reagents into higher-order assemblies
under these conditions, possibly with partial displacement of
tpt from the iron or nickel centers. Spectra of BF4

−-containing

Figure 3. Heterometallic CPGs studied in this work.

Figure 4. Two SEM images of the [Ni(tpt)2][BF4]2/AgBF4 CPG,
showing the fibrous gel microstructure.

ACS Omega Article

DOI: 10.1021/acsomega.8b02508
ACS Omega 2018, 3, 18466−18474

18468

http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02508/suppl_file/ao8b02508_si_001.pdf
http://dx.doi.org/10.1021/acsomega.8b02508


gels also show ions containing the hydrolyzed tpt ligand
fragment [bptO]− (Chart 1), which are not present in the
ClO4

−-containing samples. That could reflect participation of
F−, produced by hydrolysis of BF4

− inside the spectrometer, as
a base or nucleophile in the hydrolysis reaction.61

1H NMR data from similar mixtures in CD3NO2 contain one
paramagnetic tpt ligand environment. For M = Fe and Co,
addition of silver ions cleanly lowers the NMR symmetry of
the tpt ligand from C2 to C1, which clearly indicates formation
of a heterometallic M/Ag/tpt species. Additional peaks in the
diamagnetic region also indicate the presence of metal-free tpt
in these silver-containing solutions. Interestingly, for M = Ni
(which forms the strongest gels) addition of silver has little
effect on the paramagnetic or diamagnetic parts of the NMR
spectrum (Figure 6). Hence, silver ions displace tpt ligands

from [Fe(tpt)2]
2+ and [Co(tpt)2]

2+ in CD3NO2 solution to
form a new paramagnetic species, which is probably a
heterometallic complex, but [Ni(tpt)2]

2+ retains its integrity
in the presence of silver ions under these conditions. That
further supports the suggestion that the chemical structures of
the [M(tpt)2]X2/AgX CPGs depend on which “M” metal ion
is present.
Our previous work demonstrated that [Fe(tpt)2]

2+ is high-
spin at room temperature, and remains so on cooling.56 With
the aim of producing a new form of gel with SCO switching
properties,62,63 iron complexes of tpt-analogue ligands based
on di(pyrazol-1-yl)pyridine and di(pyrazol-1-yl)pyrimidine
scaffolds were investigated (Chart 2). These ligand types are

well-known to afford SCO iron(II) complexes.64,65 Salts of
[Fe(tpp)2]

2+ (tpp = 2,4,6-tri{pyrazol-1-yl}pyridine) have been
reported to exhibit SCO below room temperature in the solid
state64 and in solution,66 but [Fe(tpym)2][BF4]2 and [Fe-
(tpym)2][ClO4]2 (tpym = 2,4,6-tri{pyrazol-1-yl}-pyrimi-
dine)67 were newly synthesized for this study. These salts of
[Fe(tpym)2]

2+ do not form isostructural crystals from
nitromethane/diethyl ether, but both adopt the expected six-
coordinate geometry with two pendant pyrazolyl groups per
complex molecule (Figures S17, S18, and Table S4). The
complexes were crystallographically high-spin at 120 K, which
was confirmed by magnetic measurements showing them to be
fully high-spin between 5 and 300 K (Figure S21). [Fe-
(tpym)2][BF4]2 is also high-spin in CD3CN solution, over the
liquid range of that solvent (Figure S22). Hence, in contrast to
a closely related compound,65 tpym does not support SCO
when bound to iron(II), which may reflect the inductive
properties of its pendant pyrazolyl substituent on the tridentate
ligand core.66 Coordination of tpym to silver(I) yields dimeric
or pentanuclear Ag/tpym molecular assemblies, containing
μ,κ1:κ3- or μ3,κ

1:κ2:κ2-tpym ligands.57

Neither [Fe(tpp)2]X2 nor [Fe(tpym)2]X2 (X
− = BF4

− and
ClO4

−) formed gels when treated with 1 equiv AgX, under the
conditions used to form the [M(tpt)2]

2+-containing CPGs.
Hence, silver-induced gelation appears to be a unique property
of [M(tpt)2]

2+ in this work.

■ DISCUSSION
Among the ligands in this work, only the [M(tpt)2]

2+ scaffold
supports gelation upon addition of silver. Moreover, the
strength of the [M(tpt)2]X2/AgX gels depends markedly on
the metal “M”, in the order Mn (no gel) < Fe < Co < Ni, and
on the solvent present. The mass spectra imply ligand
exchange reactions occur in the M/Ag/tpt mixtures, to form
mixed-metal multinuclear species with a lower M/tpt
stoichiometry. NMR data confirm that conclusion for M =
Fe and Co, but not for M = Ni whose NMR spectrum is
unchanged upon addition of silver. Hence, the robustness of
the [Ni(tpt)2]X2/AgX gels probably reflects the increased

Figure 5. Fluorine, silver, and nickel EDX element maps for the
[Ni(tpt)2][BF4]2/AgBF4 CPG.

Figure 6. Comparison of the 1H NMR spectra in CD3NO2 of pure
[M(tpt)2][BF4]2 (black) and a 1:1 mixture of [M(tpt)2][BF4]2 and
AgBF4 (blue), for M = Fe (top), Co (center), and Ni (bottom).

Chart 2. Ligands tpp and tpym
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stability of the [Ni(tpt)2]
2+ center, which is consistent with the

Irving−Williams series.60 In that case, gelation of [Ni(tpt)2]-
X2/AgX occurs at concentrations high enough to promote
weak coordination of silver ions to [Ni(tpt)2]

2+, yielding
[Agn{Ni(tpt)2}n]

3n+ oligomers with reasonably regular struc-
tures. Formation of the [Fe(tpt)2]X2/AgX and [Co(tpt)2]X2/
AgX gels involves more complicated chemistry and, although
these gels have similar morphologies and compositions to the
Ni gels by SEM, their chemical structures may be more
complex.
The reluctance of [Fe(tpp)2]X2 and [Fe(tpym)2]X2 to

undergo silver-induced gelation might be understood from the
structures of the homoleptic silver complexes of those ligands.
Crystals of [Ag(tpt)]X (X− = BF4

− or ClO4
−) have been

obtained as 1D coordination polymers with helical or linear
connectivities, with κ2,κ3:μ-tpt ligands (Figure S23).57 That is,
the tpt ligands in these structures chelate to both silver ions
that are coordinated to them, through their pyrazolyl and
triazinyl N donors. Several other 1,3,5-triazine derivatives can
also bridge between silver ions in a similar fashion, at least in
the solid state.68−72 In contrast, [Ag(tpp)]X can only assemble
into larger aggregates by monodentate binding through its
pendant pyrazolyl substituent (Figure S24).57 Moreover,
although chelation of a second silver ion by tpym through
the pyrimidinyl N1 atom and C6-pyrazolyl substituent is
feasible in principle, this has not yet been observed in
practice.57 That may reflect a preferred transoid orientation of
those N-donors, which avoids an intramolecular steric clash
between the pyrimidinyl C4 and pyrazolyl C5 C−H groups
(highlighted in red in Scheme 1). The transoid conformation is

indeed observed crystallographically in [Fe(tpym)2][ClO4]2·
nMeNO2 (Figure S17; the pendant pyrazolyl conformation in
the BF4

− salt of this complex is uncertain because of symmetry-
imposed crystallographic disorder).
Hence, of the ligands considered in this work, only tpt has a

proven ability to chelate two silver ions simultaneously, which
will afford more stable mixed-metal assemblies in solutions of
[M(tpt)2]X2 and AgX. That might explain the unique gelation
properties of the [M(tpt)2]X2/AgX system.

■ CONCLUSIONS
A new family of heterometallic, thixotropic CPGs is reported
based on the potentially ditopic tpt gelator ligand, with the
formula {[M(tpt)2]X2}{AgX}n (M

2+ = Fe2+, Co2+ or Ni2+; X−

= BF4
− or ClO4

−; n ≤ 1). The stability of the gels qualitatively
correlates with the thermodynamic stability of the [M(bpt)2]

2+

precursor complexes, according to the Irving−Williams series.

Thus, the strongest and most thermally stable gels were
obtained for M = Ni. SEM images showing the expected
fibrous microstructures were obtained from dilute solutions of
the gel components, with element mapping demonstrating
their chemical homogeneity. However, EDX analyses imply
that the M/Ag ratio in the gels, n, is smaller for M = Fe than
for M = Co or Ni where approximately 1:1 ratios of these
metals were observed. 1H NMR also demonstrates that
solutions of [M(tpt)2]X2 and AgX contain different species
when M = Fe or Co, than for M = Ni (where the [Ni(tpt)2]

2+

cation retains its integrity in the presence of silver ions).
Hence, the chemical structure of the gels seems to vary
depending on which “M” metal ion is present. The related
complexes [Fe(tpp)2]

2+ and [Fe(tpym)2]
2+ do not form CPGs

when combined with silver salts, which we attribute to their
reduced ability to bind exogenous silver ions in a chelating (as
opposed to monodentate) fashion. The current work aims to
modify the gelator ligand structure further, to produce new
thermochromic CPGs from SCO-active iron complex
precursors.73−76

■ EXPERIMENTAL

Ligands tpt77 and tpym,67 and the complexes [Cu(tpt)2]-
[BF4]2,

55 [Fe(tpt)2]X2,
56 and [Fe(tpp)2]X2

64 (X− = BF4
− and

ClO4
−), were prepared following the literature procedures.

Synthesis of the Homoleptic Mononuclear Com-
plexes. The following general procedure, as described for
[Co(tpt)2][BF4]2, was followed using appropriate amounts of
the ligand and metal salt required for each product. Solutions
of cobalt tetrafluoroborate hexahydrate (10 mg, 0.029 mmol)
in nitromethane (20 cm3), and of tpt (16 mg, 0.058 mmol) in
nitromethane (15 cm3), were mixed with stirring. The mixture
was stirred for 5 min, then filtered. Addition of diethyl ether
precipitated the product as a pale lilac powder, which was
recrystallized from nitromethane/diethyl ether if required.
Yields ranged from 50 to 85%. Characterization data for the
complexes are as follows.
For [Co(tpt)2][BF4]2 . E lementa l ana lys i s for

C24H18B2CoF8N18 found (calcd) (%): C, 36.6 (36.4); H,
2.38 (2.29); N, 31.7 (31.9). ESMS m/z: 302.1 (10,
[Na(tpt)]+), 308.6 (100, [Co(tpt)2]

2+). 1H NMR
(CD3NO2): δ 11.8, 13.4 (both 2H, pendant Pz H3 and H4),
20.4 (2H, pendant Pz H5), 32.1 (4H, coordinated Pz H5), 56.5
and 62.4 (both 4H, coordinated Pz H3 and H4).
For [Ni( tp t) 2 ][BF4]2 . E lementa l ana ly s i s for

C24H18B2F8N18Ni found (calcd) (%): C, 36.4 (36.5); H,
2.12 (2.29); N, 31.7 (31.9). 1H NMR (CD3NO2): δ 8.6, 10.6,
11.3 (all 2H, pendant Pz H3−H5), 46.9 (4H, coordinated Pz
H5), 55.5, 61.5 (both 4H, coordinated Pz H3 and H4).
For [Ni(tpt)2][ClO4]2 . Elemental analys is for

C24H18Cl2N18NiO8: found (calcd) (%): C, 35.2 (35.3); H,
2.15 (2.22); N, 30.8 (30.9). ESMS m/z: 280.1 (10, [H(tpt)]+),
302.1 (25, [Na(tpt)]+), 308.1 (100, [Ni(tpt)2]

2+), 513.1 (12,
[NiH(2,4-di(pyrazolyl)-6-hydroxo-1,3,5-triazine)(2,4-di-
(pyrazolyl)-6-oxo-1,3,5-triazinate)]+), 565.1 (15, [Ni(tpt)
(2,4-di(pyrazolyl)-6-oxo-1,3,5-triazinate)]+), 715.2 (9, [Ni-
(tpt)2(ClO4)]

+).
For [Mn(tpt)2][ClO4]2. Elemental analysis for

C24H18Cl2MnN18O8: found (calcd) (%): C, 35.2 (35.5); H,
2.30 (2.23); N, 31.0 (31.0). ESMS m/z: 306.6 (100,
[Mn(tpt)2]

2+), 433.1 (65, [Mn(tpt)(ClO4)]
+), 712.2 (19,

[Mn(tpt)2(ClO4)]
+).

Scheme 1. Cisoid and Transoid Conformations of the
Pendant Pyrazolyl Substituent in Metal-Bound tpym. The
Transoid Conformation is Present in Crystalline
[Fe(tpym)2][ClO4]2·nMeNO2
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For [Fe(tpym)2][BF4]2. Elemental analysis for
C26H20B2F8FeN16: found (calcd) (%): C, 39.5 (39.7); H,
2.61 (2.56); N, 28.3 (28.5). ESMS m/z: 306.1 (100,
[Fe(tpym)2]

2+), 369.1 (31, [Fe(tpym)(H2O)(OH)]
+), 579.3

(8, [Na(tpym)2]
+), 631.3 (5, [Fe(tpym)2F]

+), 699.1 (6,
[Fe(tpym)2(BF4)]

+). 1H NMR (CD3NO2): δ 5.2, 6.4, 8.3
(all 2H, pendant Pz H3−H5), 42.2, 43.8, 44.4, 47.5 (all 2H,
coordinated Pz H4 and H5), 60.8 (2H, Pym H5), 73.7, 75.0
(both 2H, coordinated Pz H3).
For [Fe(tpym)2][ClO4]2. Elemental analysis for

C27H23Cl2FeN17O10 found (calcd) (%): C, 37.3 (37.2); H,
2.48 (2.66); N, 27.2 (27.3).
CAUTION! Although we have experienced no problems in

handling the perchlorate salts in this study, metal−organic
perchlorates are potentially explosive and should be handled
with due care in small quantities.
Synthesis of the Gels. A silver tetrafluoroborate (3.1 mg,

0.016 mmol) solution in nitromethane (0.25 cm3, correspond-
ing to 12.4 mg·cm−3) was added to a solution of [Fe(tpt)2]-
[BF4]2 in nitromethane (12.5 mg, 0.016 mmol in 0.7 cm3; 17.9
mg·cm−3). After brief stirring at room temperature, the CPG
was formed. All the other CPG combinations were prepared in
an analogous manner, using equimolar quantities of the
appropriate complex and silver salt precursors.
Crystallography. All the crystals characterized in this

study were obtained by slow diffusion of diethyl ether vapor
into nitromethane solutions of the compounds. Crystallo-
graphic data were measured with an Agilent Supernova dual-
source diffractometer, using monochromated Cu Kα (λ =
1.5418 Å) radiation. The diffractometer was fitted with an
Oxford Cryostream low-temperature device. Experimental data
(Table S1) and refinement procedures for the structure
determinations are given in the Supporting Information. The
structures were solved by direct methods (SHELXS9778) and
developed by ful l least-squares refinement on F2

(SHELXL9778). Crystallographic figures were prepared using
XSEED,79 and coordination volumes (VOh, Tables S2 and S4)
were calculated using Olex2.80

Other Measurements. Electrospray mass spectra were
obtained on a Bruker MicroTOF spectrometer, from nitro-
methane solution. Sodium cations and formate anions in the
molecular ion assignments originate from calibrants in the
spectrometer feed solutions. Elemental microanalyses were
performed by the University of Leeds School of Chemistry
microanalytical service or the London Metropolitan University
microanalytical service. X-ray powder diffraction patterns were
measured using a Bruker D2 Phaser diffractometer, with Cu
Kα radiation (λ = 1.5418 Å). SEM images were obtained using
an FEI Nova NanoSEM 450 environmental microscope,
operating at 3 kV. A silicon wafer supporting the gel was
mounted on an SEM stub using an adhesive copper film, then
coated with iridium before imaging.
Magnetic susceptibility measurements were obtained using a

Quantum Design SQUID magnetometer in an applied field of
5000 G. Diamagnetic corrections were estimated from Pascal’s
constants,81 and a diamagnetic correction for the sample
holder was also applied. Susceptibility measurements in
solution were obtained by the Evans method using a Bruker
DRX500 spectrometer operating at 500.13 MHz.82,83 A
diamagnetic correction for the sample81 and a correction for
the variation of the density of the CD3CN solvent with
temperature84 were applied to these data.
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Cleŕac, R. Multifunctional Gels from Polymeric Spin-Crossover
Metallo-Gelators. Langmuir 2010, 26, 5184−5195.
(75) Fujigaya, T.; Jiang, D.-L.; Aida, T. Spin-Crossover Physical
Gels: A Quick Thermoreversible Response Assisted by Dynamic Self-
Organization. Chem.Asian J. 2007, 2, 106−113.
(76) Gural’skiy, I. A.; Reshetnikov, V. A.; Szebesczyk, A.; Gumienna-
Kontecka, E.; Marynin, A. I.; Shylin, S. I.; V Ksenofontov, V.; Fritsky,
I. O. Chiral Spin Crossover Nanoparticles and Gels with Switchable
Circular Dichroism. J. Mater. Chem. C 2015, 3, 4737−4741.
(77) Claramunt, R.; Milata, V.; Cabildo, P.; Santa María, D.;
Cornago, P.; Infantes, L.; Cano, F. H.; Elguero, J. 2,4,6-Tris(azol-1-
yl)-1,3,5-triazines: A New Class of Multidentate Ligands. Heterocycles
2001, 55, 905−924.
(78) Sheldrick, G. M. Crystal structure refinement with SHELXL.
Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8.
(79) Barbour, L. J. X-SeedA Software Tool for Supramolecular
Crystallography. J. Supramol. Chem. 2001, 1, 189−191.
(80) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.
K.; Puschmann, H. OLEX2: a Complete Structure Solution,
Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42,
339−341.
(81) O’Connor, C. J. MagnetochemistryAdvances in Theory and
Experimentation. Prog. Inorg. Chem. 1982, 29, 203−283.

ACS Omega Article

DOI: 10.1021/acsomega.8b02508
ACS Omega 2018, 3, 18466−18474

18473

http://dx.doi.org/10.1021/acsomega.8b02508


(82) Evans, D. F. The determination of the paramagnetic
susceptibility of substances in solution by nuclear magnetic resonance.
J. Chem. Soc. 1959, 1959, 2003−2005.
(83) Schubert, E. M. Utilizing the Evans Method with a
Superconducting NMR Spectrometer in the Undergraduate Labo-
ratory. J. Chem. Educ. 1992, 69, 62.
(84) García, B.; Ortega, J. C. Excess viscosity .eta.E, excess volume
VE, and excess free energy of activation .DELTA.G*E at 283, 293,
303, 313, and 323 K for mixtures acetonitrile and alkyl benzoates. J.
Chem. Eng. Data 1988, 33, 200−204.

ACS Omega Article

DOI: 10.1021/acsomega.8b02508
ACS Omega 2018, 3, 18466−18474

18474

http://dx.doi.org/10.1021/acsomega.8b02508

