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Descending congruences of theta lifts on GSp4

Konstantinos Tsaltas1

School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, U.K.

Frazer Jarvis∗

School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, U.K.

Abstract

We study the question of when a congruence between two theta lifts on GSp4/Q
descends to a congruence on modular forms on GL2 over a quadratic field. In
order to accomplish that, we use the theory of the local theta correspondence
between similitude orthogonal groups and the similitude symplectic group GSp4,
together with a classification for the degeneration modulo a prime of conductors
for the L-parameters of irreducible admissible representations of GSp4 over a
non-archimedean local field. We explain that this is unlikely to be used in
conjunction with existing results on congruences for GSp4/Q to deduce a theory
of congruences over imaginary quadratic fields. On the other hand, we prove a
result which does give some such congruence results by twisting.
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1. Introduction

Congruences between modular forms have been at the heart of many recent
breakthroughs within number theory. For modular forms over Q, the theory
is now very well established, notably thanks to work of Carayol, Mazur, Ribet,
Edixhoven and Coleman-Voloch. Over totally real fields, generalisations of these
approaches were given by Fujiwara, Rajaei and the second author; these results
are now subsumed within the deformation-theoretic work of Gee ([11]).

Attaching Galois representations to modular forms over imaginary quadratic
fields is considerably more indirect than for totally real fields, since there is no
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natural algebro-geometric object in which to find the representations. Recent
work of Harris-Lan-Taylor-Thorne ([14]) and Scholze ([23]) use p-adic meth-
ods to give a general construction of such Galois representations (and, indeed,
Scholze’s work shows that Galois representations are even associated to torsion
classes); prior to this, Galois representations had only been attached to automor-
phic representations whose central characters were Galois invariant. The earlier
method originates with ideas of Taylor, as explained in the paper of Harris-
Soudry-Taylor ([15]), and it is refined by Berger-Harcos ([2]) and Mok ([19])
where local-global compatibility3 within the local Langlands correspondence is
proved (up to Frobenius-semisimplicity). This method is of interest to us since
it uses the theta correspondence between orthogonal and symplectic similitude
groups, and the local theory is very explicit in terms of the L-parameters.

It is presumably still be of interest to understand congruences. However,
work of Calegari and Mazur ([4]) suggests that one should not expect the full
range of congruences as in the totally real case, and indeed one should expect
congruences to be between p-adic objects, rather than simply classical automor-
phic representations. Nevertheless, it seems clear from looking at tables in the
theses of Cremona ([7]) and Lingham ([18]) that some congruences do exist, al-
though the tables are limited to a rather small number of Hecke eigenvalues. For
example, the modular forms f4 and f11 on p.97 of [18] appear to be congruent
modulo 2; the forms f2 and f9 appear to be congruent modulo 3 (except for co-
efficients dividing the level, unsurprisingly), and there are many other examples
to be seen from these tables (see [27]). Perhaps there are results stating that
p-adic objects of small weight and level are necessarily classical, or alternatively
perhaps the examples one can see are base changes of classical congruences.

This paper arose from a possible, almost entirely speculative programme to
construct congruences. We restrict our attention to those automorphic represen-
tations with Galois invariant central character, so that we can use the methods
of [15]. In this direction, we are seeking level lowering congruences for GL2

over imaginary quadratic fields, like the situation for classical modular forms
over Q, via a detailed analysis of the local representation theory of GSp4 (see
[9] and [10]). In particular, we consider the L-parameters of all posible local
representations of GSp4 which are obtained as theta lifts from GL2 in the sense
of Harris-Soudry-Taylor. We study these L-parameters at the level of the inertia
group and we seek all possible conductor lowering congruences. Also, a twisting
result supporting our analysis is proved at the end of the paper.

We expect that everything in this paper will generalise to CM fields since
the main study is a purely local study of theta lifts and their congruences, but
work over imaginary quadratic fields for ease of exposition. In the rest of this
section, we summarise the idea.

We thank the anonymous referee for their helpful comments, and Tobias

3Note that Mok in [19] is assuming distinct Satake parameters in order to prove crystallinity
at places above ℓ; nevertheless, Varma announced a crystallinity result for GLn, not yet
available, without this assumption.
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Berger for useful discussions.

1.1. Galois representations associated to automorphic representations on GL2

over an imaginary quadratic field

Let us first summarise Taylor’s ideas ([15]). LetK be an imaginary quadratic
field. Write OK for its ring of integers.

Suppose that π is a regular algebraic cuspidal automorphic representation
on GL2/K , i.e., a representation of GL2(AK) with Langlands parameter WC =

C× → GL2(C) at the archimedean place, given by z �→ diag(z1−k, z̄1−k) for
some integer k ≥ 2. We require that the central character of π factors through
N : A×

K −→ A×.
It is relatively straightforward to give a bijection between such automorphic

representations on GL2/K with specific extra choices of data and automorphic
representations on a certain 4-dimensional orthogonal group: see [15], Propo-
sition 2, for the statement. Making such a choice of additional data, we get a
representation π̂ of this orthogonal group, and [15] shows that there is a theta
correspondence with a representation Π of GSp4/Q.

Work of Taylor, Weissauer and Laumon (see [2]) allows us to attach 4-
dimensional Galois representations to cuspidal holomorphic4 automorphic rep-
resentations on GSp4/Q, via the ℓ-adic cohomology of the corresponding Siegel
3-folds; some extra work involving twisting the automorphic representations by
quadratic characters from a dense set ([2]) shows that these are induced from
2-dimensional representations of Gal(K/K), and these are the desired Galois
representations associated to π.

This method suggests an idea for constructing congruences between auto-
morphic representations on K; one starts with a suitable automorphic represen-
tation π on GL2/K , takes the theta lift Π to GSp4/Q, then tries to find another
theta lift Π′ on GSp4/Q with a congruent 4-dimensional Galois representation,
lifting from an automorphic representation π′ on GL2/K , and check whether the

corresponding 2-dimensional Galois representations of Gal(K/K) are congruent.
In fact, we will mention later that just about none of the results are yet

known in the generality needed to get a good theory of congruences. Further,
it seems certain from the discussion on pp.101–104 of [4] that we should not
expect a good theory.

1.2. Theta lifting to GSp4 over Q

Galois representations are attached by taking the global theta lift Π =
⊗

v Πv of π =
⊗

w πw (or rather π̂ on the orthogonal group) to GSp4/Q.
Then work of Weissauer and Laumon (see Theorem 3.1 of [2]) associates a
4-dimensional Galois representation to Π.

Given the original automorphic representation π on GL2/K , we can under-
stand the representation Π on GSp4/Q in terms of the local components of the

4At the archimedean place, a holomorphic limit of discrete series representation of weight
(k, 2).
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automorphic representation; these calculations are done in Appendix A of Gan-
Ichino ([8]). When pOK = pp, the theta lift Πp depends on the pair (πp, πp);
on the other hand, when we have either pOK = p or pOK = p2, the local theta
lift Πp depends only on the representation πp. The calculations are summarised
explicitly in [16] (and [27]).

At this stage, we have lifted the original π on GL2/K to a cuspidal automor-
phic representation Π on GSp4/Q, and understand the local behaviour explicitly.
We note that there is an L-function criterion for a cuspidal automorphic repre-
sentation Π on GSp4/Q to arise in this way as a theta lift (see Theorem 7.1 of
[17]).

We will discuss later which are the difficulties in finding congruent auto-
morphic representations on GSp4/Q, but for the moment, we suppose that we
can find a congruent automorphic representation Π′ on GSp4/Q. We would like
to reverse the process, and descend it to an automorphic representation π′ on
GL2/K .

It turns out that there are two issues. The first is to ensure that it arises as
the result of some theta lift from the orthogonal group mentioned earlier, but,
as already mentioned, there is an L-function criterion for this, due to Kudla
and Rallis. Indeed, if Π′ is a theta lift from GSO(V ) for some 4-dimensional
quadratic space V , then V has a discriminant, given by a separable quadratic
algebra L (either a quadratic field, or Q × Q). In fact, Π′ is a theta lift from
some GSO(V ) with discriminant algebra L if and only if the twisted partial
(degree 5) standard L-function LS(s,Π′ × χL) has a pole at s = 1, where χL

denotes the quadratic Hecke character associated to L, which is trivial when
L = Q×Q.

Assuming this criterion, Π′ descends to an orthogonal group. We will sup-
pose that this happens, so that we now have two congruent theta lifts Π and Π′

on GSp4/Q. Given a theta lift of this form, it then descends to a representation
π′ on GL2/L for some quadratic field L. The second problem is to ensure that
L = K.

It is with this second problem that this paper is principally concerned. Al-
though we phrase results below in terms of a more general programme, we
could rephrase our results below in terms of the following situation: Suppose
that π/GL2/K

and π′

/GL2/L
are two automorphic representations with theta lifts

Π and Π′ to GSp4/Q respectively, which are congruent. Then we determine a
number of explicit situations where K = L, at least assuming full local-global
compatibility.

It would presumably be of interest also to study situations where K and L
may be different, and we would get a notion of congruence between automorphic
representations on GL2 over two different quadratic fields, perhaps even between
a real quadratic field (where congruences are well understood) and an imaginary
quadratic field, which might have some interesting modularity applications.
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1.3. Notation

Before we proceed to our analysis, we explain some notation and terminology
that we are going to use.

Firstly, if F is a non-archimedean local field and x ∈ F×, we denote by
|x| the normalized absolute value of x. For the irreducibile admissible repre-
sentations of GSp4 over a non-archimedean local field, we are going to follow
the notation from the book [22], where the representations belong to one of
the eleven types of table A.1 of [22]. For the infinite dimensional irreducible
admissible representations of GL2 over a non-archimedean local field, we denote
by χ1 × χ2 the principal series representations parabolically induced from the
pair (χ1, χ2), by (μ| |1/2)StGL2

the Steinberg representation for GL2 twisted by
the character μ, and by BC(L/F, ψ) the supercuspidal representation which is
obtained as a base change from the character ψ of L×, where L/F is a quadratic
extension.

In this paper, we extensively use the terms “regular”, “invariant”, “distin-
guished” for representations5 of GSO over some 4-dimensional quadratic space.
We recall the definitions briefly. Let V be a 4-dimensional quadratic space de-
fined over some local field F of characteristic different from 2; moreover, let d
be its discriminant. An irreducible admissible representation π̃ of GSO(V ) will
be called regular if the induced representation π̂+ of π̃ to GO(V ) is irreducible.
If π̃ is not regular, we will say it is invariant ; in this latter case, the induced
representation of π̃ to GO(V ) will be of the form π̂+ ⊕ π̂−, where π̂+ and π̂−

are irreducible admissible representations of GO(V ). Lastly, π̃ will be called
distinguished if it is invariant and there is an anisotropic vector w ∈ V such
that HomSO(W )(π̃, 1) �= 0, where W is the orthogonal complement of Fw in V ,
or if d �= 1 and π̃ is invariant and 1-dimensional (“boundary” case). For a more
comprehensive discussion on these terms one is advised to see also Section 3 of
[21], or Section 5.2 of [27].

As far as the local theta correspondence for the similitude pair GO(V ) and
GSp4 is concerned6, if σ is a representation of GO(V ), then we denote its local
theta lift to GSp4 by Θ(σ), and the unique non-zero irreducible quotient of Θ(σ)
by θ(σ).

In addition, we will be utilizing the matrices N1, N2, N3, N4, N5, N6 de-
fined in Appendix A.5 in [22], which represent the nilpotent elements of the
L-parameters associated to each non-supercuspidal representation of GSp4 over
F . The symbol “∗” will denote a non-zero entry of a matrix, and the blank
entries of a matrix are just zeros. Finally, if we have a quadratic extension of
fields L/F , we will denote the non-trivial element of the corresponding Galois
group by c.

5Representations denoted by π̃, will be representations of the orthogonal group GSO over
some particular 4-dimensional quadratic space.

6The strong Howe duality in this case has been proved by Roberts (see Theorem 1.8 in
[21]).
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2. Conductor-lowering congruences between theta lifts

We now begin the study of congruences between theta lifts. For simplicity,
we will restrict attention to those which reduce the conductor. Throughout, our
notation and terminology for local representations of GSp4 over p-adic fields
follows the book of Roberts and Schmidt ([22]); in particular, we refer the
reader to the tables in Appendix A of [22] for more details on the classification
of non-supercuspidal representations of GSp4 over a local field into types. In
this paper, we will use the notion of inertial types in order to work with the
congruences at the level of the inertia group; this is so that the reduction of the
conductor can be clearly seen.

Suppose that F is a non-archimedean local field (in what follows, we will
generally only need to take the case F = Qp). Recall that τ is an inertial type

for GF if τ is a representation of IF with open kernel which extends to a repre-
sentation of GF . We say that an ℓ-adic representation of GF has inertial type τ
if the corresponding Weil-Deligne representation restricted to IF is equivalent
to τ . Also, when we say that an inertial type τ extends to a Weil-Deligne rep-
resentation, we will mean that there exists a Weil-Deligne representation which
is equivalent to τ when restricted to the inertia subgroup.

In the following, we will say that the conductor of a representation degener-

ates modulo ℓ to mean that the conductor of the L-parameter becomes strictly
smaller when the L-parameter is considered modulo ℓ. For a detailed descrip-
tion of the conductor of an L-parameter one may consult Sections 4.1 and 4.2
of [27]. In general, congruences will be considered under the reciprocity map.

Our strategy is to list the possible theta lifts, and then to try to identify
the possible level lowering congruences via the inertial types. All theta lifts are
listed in Table 1 of [16]. We are only interested in those which come from global
automorphic representations on GL2 over quadratic fields, and we therefore
consider only those where the local components over GL2 are principal series,
Steinberg or supercuspidal. In this section we will list the possible congruences
between inertial types, and in the next we will recall how these may arise as a
theta lift.

We will work with an imaginary quadratic field K and a rational prime p.
In Subsections 2.1, 2.2, 2.3, we consider the cases where p splits in K, where
p does not split in K but is ramified, and where p does not split in K but is
unramified, respectively. For each of these cases, we consider all possible local
components of an automorphic representation for GL2 over K, and we see how
they lift via the theta correspondence to irreducible admissible representations
for GSp4. Since we are interested in congruences which lower the conductor
of the L-parameters of the latter, we note that these congruences are mostly
inherited from conductor-lowering congruences in the GL2 situation (see [5]).

In other words, given the global theta lift Π =
⊗

v Πv, we are seeking, for
each local L-parameter, possible congruences (via inertial types) which we may
use in order to produce all potential congruences which are also local theta lifts.

Fix an odd rational prime ℓ, and consider a prime p for which p �= ℓ. Recall
that when pOK = pp, the local theta lift Πp depends on the pair (πp, πp); on
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the other hand, when we have either pOK = p or pOK = p2, the local theta
lift Πp depends only on the representation πp. Below, we write down the L-
parameters associated to the local theta lifts Πp, and their possible congruences
mod ℓ for which the conductor degenerates to something smaller. For a matrix

A =

(

a b
c d

)

, we write A′ for

(

a −b
−c d

)

.

Definition 2.1. We will say that a representation of GSp4(Qp) is a local theta
lift in the

1. split case, when it arises as a theta lift from a representation of GO(V ),
where V is a 4-dimensional quadratic space with corresponding discrimi-
nant algebra Qp ×Qp;

2. ramified case, when it arises as a theta lift from a representation of GO(V ),
where V is a 4-dimensional quadratic space with corresponding discrimi-
nant algebra a ramified quadratic extension of Qp;

3. inert case, when it arises as a theta lift from a representation of GO(V ),
where V is a 4-dimensional quadratic space with corresponding discrimi-
nant algebra an unramified quadratic extension of Qp.

As already remarked, we do not need all the theta lifts occurring in Table 1
of [16]; we are only interested in the cases where the local components πp on
GL2 are principal series, Steinberg or supercuspidal; these are listed in § 5.3.3
in [27].

From Table 1 of [16] or § 5.3.3 of [27] we see the following:

• The (non-supercuspidal) representations of GSp4 of types I, Va and VIIIa
can occur as theta lifts in both the split and non-split cases.

• However, representations of types IIa, IIIb, IVc, VIa, X and XIa occur
only as theta lifts in the split case, and representations of types IIIa, VII,
VIIIb, IXa and IXb in the nonsplit case.

• The remaining types do not occur as theta lifts from local representations
on GL2 which are principal series, Steinberg or supercuspidal.

This means that if there is a congruence between Πp and some representation
of the first group, we cannot infer anything about the splitting behaviour of p in
L; however, if Πp is congruent to some representation of one of the types from
the second group, we can determine the splitting behaviour of p in L precisely;
if the congruence falls in the last group, then it is not a local theta lift. We will
discuss this classification in much more detail in the next section.

2.1. Split case

Suppose we have a prime p such that pOK = pp. Fix isomorphisms Kp
∼= Qp

and Kp
∼= Qp. Suppose that we have a pair (πp, πp) of irreducible admissible

representations of GL2(Kp) and GL2(Kp) respectively, with equal central char-
acters. In this case, an invariant irreducible representation of GSO(V ) is a pair

7



(πp, πp) with πp
∼= πp, and it is necessarily distinguished (see Propositions 3.1

and 4.1 of [20] respectively); that is, the representation (πp, πp)
− does not par-

ticipate in the theta correspondence (see Theorem 6.8 in [20]). We consider the
following cases:

1. πp
∼= πp is a supercuspidal representation; then

Θ((πp, πp)
+) = θ((πp, πp)

+) = τ(S, π),

i.e., a generic representation of type VIIIa. Such a representation has
L-parameter Φp with semisimple part

ρ0 : w �→

(

φπp
(w)′

φπp
(w)

)

,

and nilpotent part N = 0. Here φπp
: WQp

→ GL2(C) is the L-parameter
of πp.
In this case, the congruent inertial types of smaller level can be read off
from the corresponding situation for GL2-supercuspidals, which only hap-
pen when the defining character of the supercuspidal is unramified, the

types which occur are the trivial case

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

, and

⎛

⎜

⎜

⎝

1 ∗
1

1 −∗
1

⎞

⎟

⎟

⎠

.

In the next section, we will analyse these two; the first can occur in both
the split and nonsplit cases, but the second can only occur in the inert
case (it lifts to a representation of type IIIa, and it does not include a non-
trivial quadratic character of Z×

p ). They occur when the L-parameter φ is
congruent on inertia to a reducible representation, and these correspond to
congruences between supercuspidal representations on GL2 and Steinberg
or unramified principal series. These congruences can only occur under
the condition N(p) ≡ −1 (mod ℓ) (see [5]).

2. If πp ≇ πp are both supercuspidal, then Θ((πp, πp)
+) = θ((πp, πp)

+) is a
generic supercuspidal representation of GSp4(Qp) with L-parameter

Φp : w �→ φπp
(w)⊕′ φπp

(w).

This is a symplectic direct sum, defined as follows: if φπp
(w) =

(

a1 b1
c1 d1

)

and φπp
(w) =

(

a2 b2
c2 d2

)

have the same determinant, define

φπp
(w)⊕′ φπp

(w) =

⎛

⎜

⎜

⎝

a1 b1
a2 b2
c2 d2

c1 d1

⎞

⎟

⎟

⎠

∈ GSp4.

Because the two L-parameters are different, either or both may have L-
parameters congruent to something fixing a line when restricted to inertia;
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again, this will require N(p) ≡ −1 (mod ℓ). In this case, we may have
congruent inertial types of the following forms:

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1 ∗
1 ∗

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

∼=

⎛

⎜

⎜

⎝

1 ∗
1

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
a b
c d

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1 ∗
a b
c d

1

⎞

⎟

⎟

⎠

.

The first two inertial types extend to representations which arise as theta
lifts in both the split and the non-split case; the last three can only be
theta lifts in the split case.

3. If πp
∼= πp

∼= (μ| |1/2)StGL2 , then

Θ((πp, πp)
+) = θ((πp, πp)

+) = τ(S, μ);

i.e., of type VIa. Its L-parameter Φp is given by

ρ0 : w �→

⎛

⎜

⎜

⎝

|w|μ(w)
|w|μ(w)

μ(w)
μ(w)

⎞

⎟

⎟

⎠

and N = N3. That is,

Φp ∼

⎛

⎜

⎜

⎝

| |μ ∗
| |μ ∗

μ
μ

⎞

⎟

⎟

⎠

.

We may have congruent inertial types of the following forms:
⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1 ∗
1 ∗

1
1

⎞

⎟

⎟

⎠

.

The latter, when ℓ �= 2, extends to a representation of type VIa; then
we have a congruence between a ramified Steinberg (μ| |1/2)StGL2

and an
unramified Steinberg representation, and such a congruence implies that
N(p) ≡ 1 (mod ℓ), as in [5]. Representations of type VIa are theta lifts
in the split case. The assumption ℓ �= 2 is required in order to avoid
the situation where the inertial type extends to representations of type
Va which can be theta lifts in both the split and the non-split case; note
that a quadratic character reduces to a trivial character mod ℓ only when
ℓ = 2.
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4. If πp = (| |1/2μ1)StGL2 and πp = (| |1/2μ2)StGL2 , with μ1 �= μ2 but
μ2
1 = μ2

2, then

Θ((πp, πp)
+) = θ((πp, πp)

+) = δ(

[

μ1

μ2
, | |

μ1

μ2

]

, μ2);

i.e., of type Va. Such a representation has L-parameter Φp with semisimple
part

ρ0 : w →

⎛

⎜

⎜

⎝

|w|μ2(w)
|w|μ1(w)

μ1(w)
μ2(w)

⎞

⎟

⎟

⎠

,

and nilpotent part N = N3. That is,

Φp ∼

⎛

⎜

⎜

⎝

| |μ2 ∗
| |μ1 ∗

μ1

μ2

⎞

⎟

⎟

⎠

.

We have the following inertial types with monodromy operator of even
rank:
⎛

⎜

⎜

⎝

1 ∗
χ ∗

χ
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

χ ∗
1 ∗

1
χ

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1 ∗
1 ∗

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

;

and with monodromy operator of rank 1:
⎛

⎜

⎜

⎝

1
χ ∗

χ
1

⎞

⎟

⎟

⎠

∼=

⎛

⎜

⎜

⎝

χ ∗
1

1
χ

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

∼=

⎛

⎜

⎜

⎝

1 ∗
1

1
1

⎞

⎟

⎟

⎠

,

where χ is a character, non-trivial on the inertia group. The inertial types
of even rank monodromy operator extend to representations which can be
local theta lifts in both the split and the non-split case. The inertial types
with monodromy operator of rank 1 extend to representations of type IIa,
IVc, Vb, or VIc. If such a representation is a local theta lift, then it is
necessarily a theta lift in the split case (types IIa, IVc).

5. Let πp be a supercuspidal and πp = (| |1/2μ)StGL2
. Then

Θ((πp, πp)
+) = θ((πp, πp)

+) = δ(μ−1πp, μ),

which is a representation of type XIa. The L-parameter Φp is given by
the semisimple part

ρ0 : w �→

⎛

⎝

|w|μ(w)
|w|1/2μ(w)φπp

(w)
μ(w)

⎞

⎠

10



and the monodromy operator N = N2; here φπp
is the L-parameter asso-

ciated to πp. That is,

Φp ∼

⎛

⎝

| |μ ∗
| |1/2μφπp

μ

⎞

⎠ .

Note that if a character and a supercuspidal representation have conduc-
tors that degenerate mod ℓ, then ℓ = 2; thus, we are excluding a situation
like this. We consider three cases:
Let μ above, be an unramified character. Then we can choose the following
inertial types:

⎛

⎜

⎜

⎝

1
a b
c d

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

∼=

⎛

⎜

⎜

⎝

1 ∗
1

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1 ∗
1 ∗

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

The last of these does not extend to a representation which is a theta lift.
The first two can extend to representations coming from theta lifts, but
only in the split case. The first congruence is obtained via a degeneration
of the matrixN2 to the zero matrix mod ℓ; while the second one is obtained
via the reduction of the supercuspidal representation to an unramified
Steinberg, and this requires N(p) ≡ −1 (mod ℓ).
Let μ be a ramified character that stays ramified mod ℓ. In this case, we
consider the inertial types:

⎛

⎜

⎜

⎝

χ
a b
c d

χ

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

χ
1 ∗

1
χ

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

χ ∗
1 ∗

1
χ

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

χ
1

1
χ

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

χ ∗
1

1
χ

⎞

⎟

⎟

⎠

,

where χ is a non-trivial character of the inertia subgroup. The first two
inertial types extend to representations which can be theta lifts only in
the split case. The former is obtained via a degeneration of N2 mod ℓ,
and the second when the supercuspidal reduces to unramified Steinberg,
that is N(p) ≡ −1 (mod ℓ).

11



Finally, if μ is a tamely ramified character with unramified reduction,

then the inertial type

⎛

⎜

⎜

⎝

1 ∗
a b
c d

1

⎞

⎟

⎟

⎠

extends to a representation of type

XIa, and this can be a theta lift in the split case only. Moreover, we get
N(p) ≡ 1 (mod ℓ).

6. Let πp be a supercuspidal representation and πp = χ1 × χ2. Then

θ((πp, πp)
+) = χ−1

1 πp ⋊ χ1,

i.e., a representation of type X. This has L-parameter Φp with monodromy
operator N = 0, and semisimple part

ρ0 : w �→

⎛

⎝

χ−1
1 ωπp

(w)
φπp

(w)
χ1(w)

⎞

⎠ .

That is,

Φp ∼

⎛

⎝

χ−1
1 ωπp

φπp

χ1

⎞

⎠ =

⎛

⎝

χ2

φπp

χ1

⎞

⎠ .

First consider the case where the supercuspidal representation degenerates
mod ℓ; thus, we have N(p) ≡ −1 (mod ℓ). If χ1 is a ramified representa-
tion, we may consider the inertial types

⎛

⎜

⎜

⎝

χ′

2

1 ∗
1

χ′

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

χ′

2

1
1

χ′

1

⎞

⎟

⎟

⎠

,

where χ′

1, χ
′

2 are non-trivial characters of the inertia group; the first one
extends to a representation which can be a theta lift only in the split case.
If χ1 is an unramified character, then the inertial types of lower conductor
are

⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

Again, the first one extends to a representation which can be a theta lift
only in the split case.
Now consider the case where the character χ1 is tamely ramified with
unramified reduction mod ℓ; hence, N(p) ≡ 1 (mod ℓ). The inertial types
one considers in this case are

⎛

⎜

⎜

⎝

χ′

2

a b
c d

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
a b
c d

1

⎞

⎟

⎟

⎠

,

12



with χ′

2 a non-trivial character of the inertia group. These inertial types
extend to type X representations, and if a type X representation is a local
theta lift, it is a theta lift in the split case.

7. Let πp = (| |1/2μ)StGL2
and πp = χ1 × χ2. Then θ((πp, πp)

+) is of type
IIa or IVc. In fact, it is either (if it is of type IIa)

θ((πp, πp)
+) =

(

| |1/2
μ

χ1

)

StGL2
⋊ χ1

or (if it is of type IVc, which occurs when μ/χ1 = | |)

θ((πp, πp)
+) = L(| |3/2StGL2

, χ1).

The local theta lift has L-parameter Φp with nilpotent part N = N1, and
semisimple part

ρ0 : w �→

⎛

⎜

⎜

⎝

|w|μ
2

χ1
(w)

|w|μ(w)
μ(w)

χ1(w)

⎞

⎟

⎟

⎠

.

That is,

Φp ∼

⎛

⎜

⎜

⎝

| |μ
2

χ1

| |μ ∗
μ

χ1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

χ2

| |μ ∗
μ

χ1

⎞

⎟

⎟

⎠

.

Suppose that μ is unramified. Then, we have the inertial types:
⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

χ′

2

1
1

χ′

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

The first inertial type extends to a representation which if it is a theta
lift, is necessarily in the split case.
If μ is ramified and stays ramified mod ℓ, we have the following inertial
types:

⎛

⎜

⎜

⎝

χ′

2

μ′

μ′

χ′

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
μ′

μ′

χ′

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
μ′

μ′

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
μ′ ∗

μ′

χ′

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
μ′ ∗

μ′

1

⎞

⎟

⎟

⎠

.
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The last two inertial types extend to representations which are theta lifts
only in the split case.
If μ is tamely ramified with unramified mod ℓ reduction, we get

⎛

⎜

⎜

⎝

χ′

2

1 ∗
1

χ′

1

⎞

⎟

⎟

⎠

.

If the extension of this inertial type is a local theta lift, we must be in the
split case.

8. If πp = χ1 × χ2 and πp = χ′

1 × χ′

2, then

θ((πp, πp)
+) =

χ′

2

χ1
×

χ′

1

χ1
⋊ χ1,

i.e., of type I, or (when χ′

1/χ1 = | |)

θ((πp, πp)
+) =

χ′

2

χ1
⋊ | |1/2χ11GSp2

,

i.e., of type IIIb. This has L-parameter

Φp ∼

⎛

⎜

⎜

⎝

χ2

χ′

2

χ′

1

χ1

⎞

⎟

⎟

⎠

.

An inertial type in this case extends to a representation of type I, IIb,
IIIb, IVd, Vd, VId. The only representations which are theta lifts are the
ones of type I and IIIb. If the extension is of type I, we cannot say if it is
a theta lift in the split case or the non-split case.

2.2. Non-split, ramified case

Suppose we have a prime p such that pOK = p2, and an irreducible admis-
sible representation πp of GL2(Kp) with central character that factors through
the norm map via the character χp. Denote by π̃p = (πp, χp) the correspond-
ing irreducible admissible representation of GSO(V ) over Qp. Note that in this
case, Kp/Qp is a ramified extension; this implies that the quadratic character
ǫKp/Qp

is ramified. We consider the following cases:

1. Suppose that πp is a supercuspidal representation of GL2(Kp). Then we
have:

(a) If π̃p is a regular representation, that is, πp is not a base change
from GL2(Qp), then θ(π̂+

p ) is a generic supercuspidal representation
of GSp4(Qp). The L-parameter of such a representation is not given
in an explicit enough form for us to write down possible inertial types.
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(b) If π̃p is invariant and distinguished, then πp is a base change from
some supercuspidal representation πp of GL2(Qp) with central char-
acter χpǫKp/Qp

. We have that

θ̃(π̂+
p ) = ǫKp/Qp

⋊ πp,

i.e., it is a representation of type VII. The L-parameter Φp of such a
representation has nilpotent part N = 0 and semisimple part

ρ0 : w �→

(

ǫKp/Qp
(w)φp(w)

′

φp(w)

)

.

That is, the L-parameter is of the form

Φp ∼

⎛

⎜

⎜

⎝

ǫKp/Qp

(

a −b
−c d

)

(

a b
c d

)

⎞

⎟

⎟

⎠

,

where φp ∼

(

a b
c d

)

is the L-parameter associated to πp.

We consider the following inertial types:
⎛

⎜

⎜

⎝

ǫKp/Qp
−∗

ǫKp/Qp

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

ǫKp/Qp

ǫKp/Qp

1
1

⎞

⎟

⎟

⎠

.

The former extends to a representation of type IIIa, which can be a
local theta lift only in the ramified case. The latter extends to a repre-
sentation of type I or IIIb, and thus we cannot distinguish whether it
can be a theta lift in the split or the non-split case. Also, we mention
that such congruences occur when a supercuspidal representation has
degenerating conductor, and as a result N(p) ≡ −1 (mod ℓ).
Note that if we have an inertial type not containing the quadratic
character ǫKp/Qp

, it means that this character is unramified mod ℓ;
such a situation can only occur if ℓ = 2.

(c) If π̃p is invariant non-distinguished, that is, πp is a base change from
a supercuspidal representation πp of GL2(Qp) with central character

χp, then θ̃(π̂+
p ) and θ̃(π̂−

p ) are both supercuspidal representations of
GSp4(Qp). They lie in the same L-packet, with L-parameter

Φp ∼

⎛

⎜

⎜

⎝

a b

ǫKp/Qp

(

a b
c d

)

c d

⎞

⎟

⎟

⎠

,

where φp ∼

(

a b
c d

)

is the L-parameter of the supercuspidal repre-

sentation πp.
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We consider the inertial types
⎛

⎜

⎜

⎝

1 ∗
ǫKp/Qp

∗
ǫKp/Qp

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
ǫKp/Qp

ǫKp/Qp

1

⎞

⎟

⎟

⎠

.

If the extension of either inertial type is a local theta lift, it arises
in both the non-split and the split case. Again, we have N(p) ≡
−1 (mod ℓ), as a supercuspidal degenerates.

2. Let πp = (μ| |
1/2
p )StGL2

. As the central character of πp factors through
the norm map, there is a (possibly trivial) quadratic character η of Q×

p

such that μc/μ = η ◦NKp/Qp
. We have the following:

(a) π̃p is regular; then μc �= μ, and η is neither trivial nor the quadratic
character ǫKp/Qp

. Then

θ̃(π̂+
p ) = δ(| |ηǫKp/Qp

, | |−1/2BC(Kp/Qp, μ| |
1/2
p )),

i.e., of type IXa. Such a representation has L-parameter with semisim-
ple part

ρ0 : w �→

(

|w|1/2ηǫKp/Qp
(w)φ′(w)

|w|−1/2φ(w)

)

,

and monodromy operator N = N6. Here φ is the L-parameter of the

supercuspidal representation BC(Kp/Qp, μ| |
1/2
p ).

Note that this supercuspidal representation does not have conductor
that degenerates mod ℓ, as Kp/Qp is a ramified quadratic extension,
and a degenerating supercuspidal can only occur when Kp/Qp is
unramified (see [5], or Remark 4.2.4 in [27] and the discussion before).
Thus we cannot find inertial types with decreasing conductor.

(b) π̃p is invariant distinguished; then μ = μ′ ◦NKp/Qp
for μ′ a character

of Q×

p , η = ǫKp/Qp
, and χp = | |(μ′)2ǫKp/Qp

. Such a representation
lifts to

θ̃(π̂+
p ) = ǫKp/Qp

⋊ (μ′| |1/2)StGL2
,

i.e., a representation of GSp4(Qp) of type IIIa. It has L-parameter
Φp with nilpotent part N = N4, and semisimple part

ρ0 : w �→

⎛

⎜

⎜

⎝

|w|ǫKp/Qp
μ′(w)

ǫKp/Qp
μ′(w)

|w|μ′(w)
μ′(w)

⎞

⎟

⎟

⎠

.

That is,

Φp ∼

⎛

⎜

⎜

⎝

| |ǫKp/Qp
μ′ −∗

ǫKp/Qp
μ′

| |μ′ ∗
μ′

⎞

⎟

⎟

⎠

.
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One can use the inertial types

⎛

⎜

⎜

⎝

ǫKp/Qp
−∗

ǫKp/Qp

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

ǫKp/Qp

ǫKp/Qp

1
1

⎞

⎟

⎟

⎠

.

The first one is obtained if the character μ′ is tamely ramified with
unramified reduction mod ℓ; this implies that N(p) ≡ 1 (mod ℓ).
It can be a local theta lift only in the ramified case, as it extends
to a representation of type IIIa. The second one is obtained when
the nilpotent part N4 is congruent to the zero matrix mod ℓ after a
conjugation with a particular symplectic matrix, and we cannot tell
if it extends to a theta lift in the split or the non-split case.

(c) π̃p is invariant non-distinguished; then μ = μ′ ◦ NKp/Qp
for μ′ a

character of Q×

p , η = 1, and χp = | |(μ′)2. Such a representation lifts
to

θ̃(π̂+
p ) = δ([ǫKp/Qp

, | |ǫKp/Qp
], μ′),

i.e., a representation of type Va; in addition, we also have the non-zero
theta lift θ̃(π̂−

p ) which lies in the same L-packet with θ̃(π̂+
p ), but it is

supercuspidal7 (say, of type Va∗). This L-packet corresponds to an
L-parameter Φp with monodromy operator N = N3, and semisimple
part

ρ0 : w �→

⎛

⎜

⎜

⎝

|w|μ′(w)
|w|ǫKp/Qp

μ′(w)
ǫKp/Qp

μ′(w)
μ′(w)

⎞

⎟

⎟

⎠

.

That is,

Φp ∼

⎛

⎜

⎜

⎝

| |μ′ ∗
| |ǫKp/Qp

μ′ ∗
ǫKp/Qp

μ′

μ′

⎞

⎟

⎟

⎠

.

In that case, we have the inertial types

⎛

⎜

⎜

⎝

1 ∗
ǫKp/Qp

∗
ǫKp/Qp

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
ǫKp/Qp

ǫKp/Qp

1

⎞

⎟

⎟

⎠

;

7Note that one may have L-packets containing a non-supercuspidal and a supercuspidal;
the two such L-packets for GSp4 are the ones containing representations of type Va and XIa
respectively (see discussion on p.60 of [22], or Table 1 in [16]).
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⎛

⎜

⎜

⎝

1 ∗
ǫKp/Qp

ǫKp/Qp

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
ǫKp/Qp

∗
ǫKp/Qp

1

⎞

⎟

⎟

⎠

.

The first one is obtained when the character μ′ is tamely ramified
with unramified reduction mod ℓ, and the rest when the matrix N3

degenerates to zero, N2, or N1 mod ℓ, respectively. Note that if the
last inertial type extends to a representation which is a local theta lift,
it is of type IIa, and this only occurs in the split case. The remaining
inertial types extend to representations of the Weil-Deligne group
where one cannot distinguish whether they belong in the split or the
non-split case in terms of Definition 2.1 if they are local theta lifts.

3. Let πp = χ1 × χ2 be a principal series representation of GL2(Kp). Then
we have the following cases:

(a) Let π̃p be regular; then χ2 �= χc
2, and χ1 is not equal to χp or

χpǫKp/Qp
. Then

θ̃(π̂+
p ) =

(

χ1

χp

)

−1

ǫKp/Qp
⋊

χ1

χp

BC(Kp/Qp, χ
c
2),

i.e., a representation of type VII, unless χ1

χp
= | |−1 or | |−1ǫKp/Qp

, in

which case we have

θ̃(π̂+
p ) = L(| |ǫKp/Qp

, | |−1/2(| |−1/2BC(Kp/Qp, χ
c
2))),

i.e., a representation of type IXb. The corresponding L-parameter is
given by

Φp ∼

(

ǫKp/Qp
φ′

(

χ1

χp

)

φ

)

,

where φ is the L-parameter of the supercuspidal representationBC(Kp/Qp, χ
c
2).

This supercuspidal representation does not have conductor that de-
generates mod ℓ, as Kp/Qp is a ramified quadratic extension, and a
degenerating supercuspidal is one with Kp/Qp an unramified exten-
sion. Thus there are no inertial types with decreasing conductor.

(b) π̃p is invariant distinguished with χ2 = χc
2, in which case we write

χ2 = χ′

2 ◦ NKp/Qp
and χ1 = χ′

1 ◦ NKp/Qp
, where χ′

1 and χ′

2 are
characters of Q×

p . Then

θ̃(π̂+
p ) = χ′−2

1 χpǫKp/Qp
× ǫKp/Qp

⋊ χ′

1,

i.e., a representation of type I. The L-parameter of this representation
is given by

Φp ∼

⎛

⎜

⎜

⎝

χ′

2

ǫKp/Qp
χ′

2

ǫKp/Qp
χ′

1

χ′

1

⎞

⎟

⎟

⎠

.
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The possible congruences for which the conductor degenerates are
obtained via a degeneration mod ℓ of at least one of the characters
χ′

1, χ
′

2; that is, N(p) ≡ 1 (mod ℓ). Thus the inertial types that we
consider are the following:

⎛

⎜

⎜

⎝

χ
ǫKp/Qp

χ
ǫKp/Qp

1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
ǫKp/Qp

ǫKp/Qp

1

⎞

⎟

⎟

⎠

,

where χ is a non-trivial character of Z×

p . These inertial types extend
to representations which can be local theta lifts in both the split and
the non-split case.

(c) π̃p is invariant distinguished with χ2 �= χc
2 and χ1 = χp; in this case

we have
θ̃(π̂+

p ) = ǫKp/Qp
⋊BC(Kp/Qp, χ

c
2),

i.e., of type VII. Such a representation has L-parameter given by

Φp ∼

(

ǫKp/Qp
φ′

φ

)

,

where φ is the L-parameter of the supercuspidal representationBC(Kp/Qp, χ
c
2).

Note that this supercuspidal representation does not have conductor
that degenerates mod ℓ, as Kp/Qp is a ramified quadratic extension.
Thus there are no inertial types with decreasing conductor for this
L-parameter.

(d) π̃p is invariant non-distinguished; here we have χ2 �= χc
2 and χ1 =

ǫKp/Qp
. In this case, we get that

θ̃(π̂+
p ) = τ(S,BC(Kp/Qp, χ

c
2))

and
θ̃(π̂−

p ) = τ(T,BC(Kp/Qp, χ
c
2)).

That is, θ̃(π̂+
p ) and θ̃(π̂−

p ) form a single L-packet consisting of repre-
sentations of type VIIIa and VIIIb. The corresponding L-parameter
is of the form

Φp ∼

(

φ′

φ

)

,

where φ is the L-parameter associated to the supercuspidal represen-
tation BC(Kp/Qp, χ

c
2).

Again, this supercuspidal representation does not have conductor
that degenerates mod ℓ, as Kp/Qp is ramified. Thus we cannot find
inertial types with decreasing conductor for this L-parameter.
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2.3. Non-split, unramified case

Suppose we have a prime p such that pOK = p (i.e., is inert in K), and an
irreducible admissible representation πp of GL2(Kp), with central character that
factors through the norm map via the character χp. Denote by π̃p = (πp, χp)
the corresponding irreducible admissible representation of GSO(V ) over Qp. In
this case, Kp/Qp is an unramified quadratic extension; this implies that the
quadratic character ǫKp/Qp

is unramified. We consider the following cases:

1. Suppose that πp is a supercuspidal representation of GL2(Kp). Then we
have:

(a) If π̃p is a regular representation, that is, πp is not a base change
from GL2(Qp), then θ(π̂+

p ) is a generic supercuspidal representation
of GSp4(Qp). The L-parameter of such a representation is not given
in an explicit enough form for us to write down possible inertial types.

(b) If π̃p is invariant and distinguished, then πp is a base change from
some supercuspidal representation πp of GL2(Qp) with central char-
acter χpǫKp/Qp

. We have that

θ̃(π̂+
p ) = ǫKp/Qp

⋊ πp,

i.e., it is a representation of type VII. The L-parameter Φp of such a
representation has nilpotent part N = 0 and semisimple part

ρ0 : w �→

(

ǫKp/Qp
(w)φp(w)

′

φp(w)

)

.

That is, the L-parameter is of the form

Φp ∼

⎛

⎜

⎜

⎝

ǫKp/Qp

(

a −b
−c d

)

(

a b
c d

)

⎞

⎟

⎟

⎠

,

where φp ∼

(

a b
c d

)

is the L-parameter associated to πp.

The inertial types we may consider in this case are:

⎛

⎜

⎜

⎝

1 −∗
1

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

These are obtained via a degenerating supercuspidal representation,
i.e., N(p) ≡ −1 (mod ℓ). The first one extends to a representation
of type IIIa or IVb. If this representation is a local theta lift, it
corresponds to a representation of type IIIa, which can be a local
theta lift only in the inert case.
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(c) If π̃p is invariant non-distinguished, that is, πp is a base change from
a supercuspidal representation πp of GL2(Qp) with central character

χp, then θ̃(π̂+
p ) and θ̃(π̂−

p ) are both supercuspidal representations of
GSp4(Qp). They lie in the same L-packet, with L-parameter

Φp ∼

⎛

⎜

⎜

⎝

a b

ǫKp/Qp

(

a b
c d

)

c d

⎞

⎟

⎟

⎠

,

where φp ∼

(

a b
c d

)

is the L-parameter of the supercuspidal repre-

sentation πp.
The inertial types that can be considered are

⎛

⎜

⎜

⎝

1 ∗
1 ∗

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

These both extend to representations which can be theta lifts in both
the split and the non-split cases.

2. Let πp = (μ| |
1/2
p )StGL2 . As the central character of πp factors through

the norm map, there is a (possibly trivial) quadratic character η of Q×

p

such that μc/μ = η ◦NKp/Qp
. We have the following:

(a) π̃p is regular; then μc �= μ, and η is neither trivial nor the quadratic
character ǫKp/Qp

. Then

θ̃(π̂+
p ) = δ(| |ηǫKp/Qp

, | |−1/2BC(Kp/Qp, μ| |
1/2
p )),

i.e., of type IXa. Such a representation has L-parameter with semisim-
ple part

ρ0 : w �→

(

|w|1/2ηǫKp/Qp
(w)φ′(w)

|w|−1/2φ(w)

)

,

and monodromy operator N = N6. Here φ is the L-parameter of the

supercuspidal representation BC(Kp/Qp, μ| |
1/2
p ).

The following inertial types are obtained via a degenerating super-
cuspidal, thus N(p) ≡ −1 (mod ℓ). We consider two cases:
Suppose η is a ramified quadratic character (it does not degenerate
mod ℓ, when ℓ �= 2). Then we consider inertial types of the form

⎛

⎜

⎜

⎝

η′ −∗
η′

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

η′

η′

1
1

⎞

⎟

⎟

⎠

,
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where η′ is a non-trivial quadratic character of Z×

p . The first one
extends to a representation of type IIIa, and can be a local theta lift
only in the inert case.
If η is unramified, we consider the inertial types

⎛

⎜

⎜

⎝

1 −∗
1

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

The former extends to a representation of type IIIa or IVb, and can
be a local theta lift only in the inert case.

(b) π̃p is invariant distinguished; then μ = μ′ ◦NKp/Qp
for μ′ a character

of Q×

p , η = ǫKp/Qp
, and χp = | |(μ′)2ǫKp/Qp

. Such a representation
lifts to

θ̃(π̂+
p ) = ǫKp/Qp

⋊ (μ′| |1/2)StGL2 ,

i.e., a representation of GSp4(Qp) of type IIIa. It has L-parameter
Φp with nilpotent part N = N4, and semisimple part

ρ0 : w �→

⎛

⎜

⎜

⎝

|w|ǫKp/Qp
μ′(w)

ǫKp/Qp
μ′(w)

|w|μ′(w)
μ′(w)

⎞

⎟

⎟

⎠

.

That is,

Φp ∼

⎛

⎜

⎜

⎝

| |ǫKp/Qp
μ′ −∗

ǫKp/Qp
μ′

| |μ′ ∗
μ′

⎞

⎟

⎟

⎠

.

The inertial types below are obtained when the character μ′ is tamely
ramified, with unramified reduction mod ℓ. We have

⎛

⎜

⎜

⎝

1 −∗
1

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

Again, the first one extends to a representation of type IIIa or IVb,
which can be a local theta lift only in the inert case.

(c) π̃p is invariant non-distinguished; then μ = μ′ ◦ NKp/Qp
for μ′ a

character of Q×

p , η = 1, and χp = | |(μ′)2. Such a representation lifts
to

θ̃(π̂+
p ) = δ([ǫKp/Qp

, | |ǫKp/Qp
], μ′),

i.e., a representation of type Va; in addition, we also have the non-
zero theta lift θ̃(π̂−

p ) which lies in the same L-packet with θ̃(π̂+
p ), but
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it is supercuspidal (say, of type Va∗). This L-packet corresponds to an
L-parameter Φp with monodromy operator N = N3, and semisimple
part

ρ0 : w �→

⎛

⎜

⎜

⎝

|w|μ′(w)
|w|ǫKp/Qp

μ′(w)
ǫKp/Qp

μ′(w)
μ′(w)

⎞

⎟

⎟

⎠

.

That is,

Φp ∼

⎛

⎜

⎜

⎝

| |μ′ ∗
| |ǫKp/Qp

μ′ ∗
ǫKp/Qp

μ′

μ′

⎞

⎟

⎟

⎠

.

The following inertial types are obtained either because μ′ is a tamely
ramified character with unramified reduction mod ℓ (in this case
N(p) ≡ 1 (mod ℓ)), or after a degeneration of N3 to zero, N2, or
N1 mod ℓ. We consider

⎛

⎜

⎜

⎝

1 ∗
1 ∗

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1 ∗
1

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

.

The first and the second can be theta lifts in both the split and the
non-split case. The third does not extend to a theta lift, and the last
one can only extend to a theta lift in the split case (it extends to
type IIa and Vb, and Vb is not a theta lift).

3. Let πp = χ1 × χ2 be a principal series representation of GL2(Kp). Then
we have the following cases:

(a) Let π̃p be regular; then χ2 �= χc
2, and χ1 is not equal to χp or

χpǫKp/Qp
. Then

θ̃(π̂+
p ) =

(

χ1

χp

)

−1

ǫKp/Qp
⋊

χ1

χp

BC(Kp/Qp, χ
c
2),

i.e., a representation of type VII, unless χ1

χp
= | |−1 or | |−1ǫKp/Qp

, in

which case we have

θ̃(π̂+
p ) = L(| |ǫKp/Qp

, | |−1/2(| |−1/2BC(Kp/Qp, χ
c
2))),
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i.e., a representation of type IXb. The corresponding L-parameter is
given by

Φp ∼

(

ǫKp/Qp
φ′

(

χ1

χp

)

φ

)

,

where φ is the L-parameter of the supercuspidal representationBC(Kp/Qp, χ
c
2).

To get possible congruences mod ℓ, the supercuspidal representation
associated to φ must degenerate, i.e., N(p) ≡ −1 (mod ℓ). We con-
sider two cases:
If χ1

χp
is unramified, we have the inertial types

⎛

⎜

⎜

⎝

1 −∗
1

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

.

If χ1

χp
is ramified and does not degenerate mod ℓ, we have the inertial

types
⎛

⎜

⎜

⎝

1 −∗
1

χ ∗
χ

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

χ
χ

⎞

⎟

⎟

⎠

,

where χ is a non-trivial character of Z×

p .
In both cases, only the first inertial type extends to a representation
which, if it is a theta lift, it is a theta lift only in the inert case.

(b) π̃p is invariant distinguished with χ2 = χc
2, in which case we write

χ2 = χ′

2 ◦ NKp/Qp
and χ1 = χ′

1 ◦ NKp/Qp
, where χ′

1 and χ′

2 are
characters of Q×

p . Then

θ̃(π̂+
p ) = χ′−2

1 χpǫKp/Qp
× ǫKp/Qp

⋊ χ′

1,

i.e., a representation of type I. The L-parameter of this representation
is given by

Φp ∼

⎛

⎜

⎜

⎝

χ′

2

ǫKp/Qp
χ′

2

ǫKp/Qp
χ′

1

χ′

1

⎞

⎟

⎟

⎠

.

The possible congruences for which the conductor degenerates are
obtained via a degeneration mod ℓ of at least one of the characters
χ′

1, χ
′

2; that is, N(p) ≡ 1 (mod ℓ). Thus the inertial types that one
may consider are the following:

⎛

⎜

⎜

⎝

χ
χ

1
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

,
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where χ is a non-trivial character of Z×

p . These inertial types extend
to representations which can be local theta lifts in both the split and
the non-split case.

(c) π̃p is invariant distinguished with χ2 �= χc
2 and χ1 = χp; in this case

we have
θ̃(π̂+

p ) = ǫKp/Qp
⋊BC(Kp/Qp, χ

c
2),

i.e., of type VII. Such a representation has L-parameter given by

Φp ∼

(

ǫKp/Qp
φ′

φ

)

,

where φ is the L-parameter of the supercuspidal representationBC(Kp/Qp, χ
c
2).

In order to get a conductor lowering congruence, we need the super-
cuspidal representation BC(Kp/Qp, χ

c
2) to degenerate mod ℓ (i.e.,

N(p) ≡ −1 (mod ℓ)), so we have the inertial types

⎛

⎜

⎜

⎝

1 −∗
1

1 ∗
1

⎞

⎟

⎟

⎠

;

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

The first one extends to a representation which can be a local theta
lift in the inert case.

(d) π̃p is invariant non-distinguished; here we have χ2 �= χc
2 and χ1 =

ǫKp/Qp
. In this case, we get that

θ̃(π̂+
p ) = τ(S,BC(Kp/Qp, χ

c
2))

and
θ̃(π̂−

p ) = τ(T,BC(Kp/Qp, χ
c
2)).

That is, θ̃(π̂+
p ) and θ̃(π̂−

p ) form a single L-packet consisting of repre-
sentations of type VIIIa and VIIIb. The corresponding L-parameter
is of the form

Φp ∼

(

φ′

φ

)

,

where φ is the L-parameter associated to the supercuspidal represen-
tation BC(Kp/Qp, χ

c
2).

We have the same inertial types as in the previous case, since in order
to lower the conductor of an L-parameter of the above form, we need
the supercuspidal representation BC(Kp/Qp, χ

c
2) to degenerate mod

ℓ (that is, N(p) ≡ −1 (mod ℓ)). The inertial type

⎛

⎜

⎜

⎝

1 −∗
1

1 ∗
1

⎞

⎟

⎟

⎠

extends to a representation of type IIIa, or IVb. If it is a local theta
lift, it is of type IIIa and it arises in the inert case.
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3. Inertial types for GSp
4
and theta lifts

In the previous section, we identified the possible congruent inertial types,
and now we wish to recall whether or not they can come from theta lifts, and, if
so, the possible forms of the original representation. Most of the types involved
arise in several situations, as we have seen.

The first group are those which are trivial on the diagonal on inertia, but
which may or may not have some off-diagonal entries. The rank of the monom-
dromy matrix, which governs the off-diagonal entries on inertia, can be 0, 1, 2
or 3, although representations with monodromy of rank 3 are of type IVa, and
do not arise as theta lifts. Let’s enumerate the remaining cases:

• The trivial inertial type,

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

, extends to a representation of

Type I (amongst others), which can be a local theta lift in both the split
and non-split cases; in the split case, it arises as a theta lift of a pair of
principal series representations, and in the nonsplit case as a theta lift of a
single principal series representation, where the defining characters must
satisfy certain conditions in each case.

• The inertial type

⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

, isomorphic to the type

⎛

⎜

⎜

⎝

1 ∗
1

1
1

⎞

⎟

⎟

⎠

,

can extend to a variety of representations of GSp4 with corresponding
monodromy matrix N1 or N2 in the notation of [22]. These are of types
IIa, IVc, Vb, Vc and VIc. As mentioned above, only the first two of these
are theta lifts, and both can only arise in the split case, both arising as
theta lifts of a pair (π1, π2) where π1, say, is principal series, and π2 is
Steinberg. (Type IIa is the general case, and type IVc is a degenerate
example.)

• The inertial type

⎛

⎜

⎜

⎝

1 ∗
1

1 −∗
1

⎞

⎟

⎟

⎠

also occurred several times above. This

is the inertial type of representations of types IIIa and IVb; the latter does
not occur as a theta lift in our situation, and the former can only occur as
a theta lift in the nonsplit case, arising as the theta lift of certain Steinberg
representations on GL2.

• The inertial type

⎛

⎜

⎜

⎝

1 ∗
1 ∗

1
1

⎞

⎟

⎟

⎠

corresponds to representations with mon-

odromy N3 in the notation of [22]; these are of types Va and VIa/VIb.
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The latter type can only occur in the split case, as a theta lift of a pair
(π1, π2) where π1

∼= π2 are Steinberg representations; type Va arises as a
theta lift from a pair of non-isomorphic Steinberg representations in the
split case, but can also arise as a theta lift of a single Steinberg in the
nonsplit case under certain conditions.

There are some essentially diagonal inertial types, possibly with monodromy
as above, but non-trivial on the diagonal:

• The inertial types
⎛

⎜

⎜

⎝

1
χ

χ
1

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

χ1

1
1

χ2

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

χ
χ1

χ2

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
χ

χ
χ2

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

χ1

χ
χ

χ2

⎞

⎟

⎟

⎠

,

where χ, χ1, χ2 are non-trivial characters of the inertia subgroup, extend
to representations of type I. These occur in both the split and the non-split
case.

Nevertheless, an inertial type of the form

⎛

⎜

⎜

⎝

χ
χ

1
1

⎞

⎟

⎟

⎠

, with χ a non-

trivial character on the inertia, extends to a representation of type I or
IIIb. Even though representations of type I can be theta lifts in both the
split and the non-split case, representations of type IIIb can be theta lifts
only in the split case.

• Inertial types of the form
⎛

⎜

⎜

⎝

1 ∗
χ1

χ2

1

⎞

⎟

⎟

⎠

∼=

⎛

⎜

⎜

⎝

χ1

1 ∗
1

χ2

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

1
χ1 ∗

χ2

1

⎞

⎟

⎟

⎠

∼=

⎛

⎜

⎜

⎝

χ1 ∗
1

1
χ2

⎞

⎟

⎟

⎠

,

with χ1 and χ2 being (possibly equal) non-trivial characters of the inertia
group, extend to representations of type IIa, Vb, and Vc. Representations
of type IIa occur as theta lifts only in the split case, while Vb and Vc are

not local theta lifts. We also used the inertial type

⎛

⎜

⎜

⎝

1
χ ∗

χ
χ1

⎞

⎟

⎟

⎠

,

with χ, χ1 non-trivial characters of the inertia subgroup; this extends to
a representation of type IIa, which is a local theta lift in the split case.
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• The inertial types

⎛

⎜

⎜

⎝

1 ∗
χ ∗

χ
1

⎞

⎟

⎟

⎠

or

⎛

⎜

⎜

⎝

χ ∗
1 ∗

1
χ

⎞

⎟

⎟

⎠

, with χ being a

non-trivial character of the inertia group, extend to a representation of
type Va which occurs as a theta lift in both the split and non-split case.

• We also have inertial types with monodromy operator N4 and non-trivial

diagonal, namely,

⎛

⎜

⎜

⎝

χ −∗
χ

1 ∗
1

⎞

⎟

⎟

⎠

or

⎛

⎜

⎜

⎝

1 −∗
1

χ ∗
χ

⎞

⎟

⎟

⎠

, where χ is a

non-trivial character of the inertia subgroup. These extend to representa-
tions of type IIIa, which can only be a theta lift in the non-split case; it
is obtained by lifting particular Steinberg representations on GL2.

There are also inertial types with an irreducible 2× 2-block:

•

⎛

⎜

⎜

⎝

1
a b
c d

1

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

χ
a b
c d

χ

⎞

⎟

⎟

⎠

, or

⎛

⎜

⎜

⎝

χ
a b
c d

1

⎞

⎟

⎟

⎠

, with χ a non-trivial

character of the inertia group; these extend to representations of type X
or XIb, but the latter doesn’t occur as a theta lift, and the former only
occurs in the split case, as the theta lift from a pair (π1, π2) where one is
unramified principal series and the other is supercuspidal.

•

⎛

⎜

⎜

⎝

1 ∗
a b
c d

1

⎞

⎟

⎟

⎠

; this occurs only as the inertial type of a representation of

type XIa, and this is again a theta lift only in the split case, arising from
a pair (π1, π2) where one is Steinberg with unramified defining character
and the other supercuspidal.

4. Descending congruences

LetK be an imaginary quadratic field, and ℓ �= 2 a rational prime unramified
in K. Let Σ = Σ1∪Σ2∪Σ3 be a finite set of finite places not above ℓ, where Σ1

contains only primes lying above rational primes which ramify in K, Σ2 contains
primes which lie above rational primes that split in K, and Σ3 contains primes
which lie above rational primes inert in K. Also, denote by S the finite set of
rational primes lying below primes in Σ.

Suppose we have a regular algebraic cuspidal automorphic representation
π =

⊗

w πw of GL2(AK) which is not a base change from Q with Galois
invariant central character, such that π is unramified outside Σ, and for the
places in Σ we have the following:
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1. If p ∈ Σ1, suppose that πp is one of the following:

(a) πp is supercuspidal, with π̃p invariant and distinguished;

(b) πp = (μ| |
1/2
p )StGL2

, with π̃p invariant distinguished.

2. If p, p ∈ Σ2, suppose that (πp, πp) are one of the following:

(a) πp ≇ πp both supercuspidal;

(b) πp
∼= πp

∼= (μ| |1/2)StGL2 ;

(c) πp = (| |1/2μ1)StGL2 , πp = (| |1/2μ2)StGL2
, with μ1 �= μ2 but μ2

1 =
μ2
2;

(d) πp supercuspidal, πp = (| |1/2μ)StGL2
;

(e) πp supercuspidal, πp = χ1 × χ2;

(f) πp = (μ| |1/2)StGL2 , πp = χ1 × χ2.

3. If p ∈ Σ3, suppose πp is one of the following:

(a) πp is supercuspidal, with π̃p invariant and distinguished;

(b) πp = (μ| |
1/2
p )StGL2

, with π̃p either regular or invariant distinguished;
(c) πp = χ1 × χ2, with π̃p either regular, or invariant distinguished with

χ2 �= cχ2 and χ1 = χp, or invariant and non-distinguished.

As π has Galois invariant central character and it is not a base change from Q, we
may attach to it an irreducible ℓ-adic Galois representation ρ : GK → GL2(Qℓ);
we assume that the reduction ρ of ρ is irreducible. The theta lift Π =

⊗

v Πv

of π, is a cuspidal automorphic representation of GSp4(A), which is unramified
outside S ∪ {ℓ}. The local components Πp, for p ∈ S, are described explicitly
in Theorems 5.3.11 and 5.3.12 of [27]. For each Πp, denote by Φp and Rp the
associated L-parameters and Galois representations respectively. If

R : GQ → GSp4(Qℓ)

is the associated Galois representation to Π, we will assume full local-global
compatibility8; thus, for all p, we have

Rp
∼= R|Dp ,

where Dp is the decomposition group at p.
The following definition will simplify our exposition:

Definition 4.1. For a prime p ∈ S, an inertial type τp is called admissible if
one of the following holds:

1. if p is split in K and there exists a representation R′

p extending the inertial
type τp such that it corresponds to an irreducible admissible representation
of GSp4(Qp) that can be a local theta lift only in the split case;

8For cohomological cuspidal automorphic representations for GSp4 with irreducible asso-
ciated Galois representation, this is a result of Sorensen (see [24]) and Mok (see Theorem 3.1
of [19]). For a non-cohomological representation which is a theta lift, the required local-global
compatibility result exists up to semisimplification; this is Theorem 4.11 of [19].
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2. if p is ramified in K and there exists a representation R′

p extending the
inertial type τp such that it corresponds to an irreducible admissible rep-
resentation of GSp4(Qp) that can be a local theta lift only in the ramified
case;

3. if p is inert inK and there exists a representation R′

p extending the inertial
type τp such that it corresponds to an irreducible admissible representation
of GSp4(Qp) that can be a local theta lift only in the inert case.

Suppose now that Π′ is an automorphic representation of GSp4(A) unrami-
fied outside S such that the partial standard L-function ζS(Π′, χ0, s) has a pole
at s = 1; denote by R′ the corresponding Galois representation. Here χ0 is
a quadratic Dirichlet character of A×. Moreover, assume that R′ is congruent
mod ℓ to the Galois representation R, such that for all p ∈ S, R′

p has admissible
inertial type.

Theorem 4.2. Under the assumptions above, the congruence between Π and

Π′ descends to a congruence between the cuspidal automorphic representation π,
and another automorphic representation π′ for GL2 over the imaginary quadratic

field K.

Proof. As the partial standard L-function ζS(Π′, χ0, s) of Π
′ has a pole at s = 1,

by Theorem 7.1 of [17] and Section 5 of [28], Π′ is a global theta lift from a
representation of GO(V ), where V is a 4-dimensional quadratic space over a
corresponding discriminant algebra L; this is either a quadratic extension of Q
or Q × Q. The first thing we need to prove is that the discriminant algebra L
is in fact the imaginary quadratic field K.

Let p �= ℓ be in S, and R′

p be the associated Galois representation to Π′

p.
Firstly, Π′

p is a local theta lift since Π′ is a non-zero global theta lift (see also
Theorem 1.3 of [25]). The fact that R′

p has an admissible inertial type ensures
that the splitting behaviour of p in L is the same as the one in K. As Π′ is
a theta lift and Π′

ℓ is unramified (as ℓ /∈ S), we see that ℓ is unramified in L
(Proposition 4.2 of [16]). This implies that L is a quadratic extension of Q, and
also that the discriminant of L is the same as the discriminant of K. That is, Π′

is a non-zero global theta lift from an automorphic representation for GL2 over
the imaginary quadratic field K, to which we associate a Galois representation

ρ′ : GK → GL2(Qℓ).

The latter Galois representation induces to R′.
We now restrict the representations R and R′ to GK , and we obtain

R|GK
= ρ⊕ ρc

and
R′|GK

= ρ′ ⊕ ρ′c.

Note that since we have assumed ρ to be irreducible, we have that R|GK
= R

′

|GK

is the direct sum ρ′ ⊕ ρ′c of irreducible representations. As ρ′ is irreducible, we
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get that ρ′ is irreducible. Since R and R′ are congruent modulo ℓ, we get that
either ρ and ρ′ have isomorphic mod ℓ Galois representations, or ρ and ρ′c have
isomorphic mod ℓ Galois representations.

Our goal is not only to construct congruences, but also to try to lower the
level, in the same way as in known for Q and for totally real fields. We would
ideally like to choose a global representation R′ whose local behaviour forces
it to have lower level in a similar way to Gee’s constructions over totally real
fields, and this is the subject of the next section. Before we do that, let us make
some further remarks about our local analysis.

At the beginning of this section, we listed the possible local components of
π (for p ∈ S) so that their theta lifts are congruent to representations which
always have at least one admissible inertial type; that is, for each Πp with p ∈ S,
we may always find a Π′

p, such that Πp and Π′

p are both theta lifts in the same
case (i.e., split, ramified, or inert case). This was derived from our analysis of
the possible inertial types, in Sections 2 and 3.

The same analysis implies that for some local components of π, we have
inertial types which force the splitting behaviour to change. Namely, for p ∈ Σ,
we have the following:

1. If p ∈ Σ1, let πp be such that π̃p is an invariant non-distinguished rep-
resentation. When the theta lift Πp is congruent mod ℓ to some theta
lift Π′

p with corresponding Weil-Deligne representation of inertial type
⎛

⎜

⎜

⎝

1
ǫKp/Qp

∗
ǫKp/Qp

1

⎞

⎟

⎟

⎠

, then Π′

p is a theta lift in the split case.

2. If p ∈ Σ2, let (πp, πp) be such that πp
∼= πp is a supercuspidal repre-

sentation. When the theta lift Πp is congruent mod ℓ to some theta
lift Π′

p with corresponding Weil-Deligne representation of inertial type
⎛

⎜

⎜

⎝

1 ∗
1

1 −∗
1

⎞

⎟

⎟

⎠

, then Π′

p is a theta lift in the inert case.

3. If p ∈ Σ3, let πp be such that π̃p is an invariant non-distinguished rep-
resentation. When the theta lift Πp is congruent mod ℓ to some theta
lift Π′

p with corresponding Weil-Deligne representation of inertial type
⎛

⎜

⎜

⎝

1
1 ∗

1
1

⎞

⎟

⎟

⎠

, then Π′

p is a theta lift in the split case.

Our analysis on the possible local congruences for GSp4 also gives the fol-
lowing.
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Remark 4.3. Suppose we have a cuspidal automorphic representation Π =
⊗

v Πv

of GSp4(A), which is a global theta lift from some cuspidal automorphic repre-
sentation π =

⊗

w πw for GL2 over an imaginary quadratic field K. Let p be
a prime that lies above a rational prime p that ramifies in K. If πp falls in one
of the following cases:

1. πp = (μ| |
1/2
p )StGL2 with π̃p regular,

2. πp = χ1×χ2 with π̃p regular, or invariant distinguished with χ2 �= χc
2 and

χ1 = χp, or invariant non-distinguished,

then one cannot lower the level of Π at the prime p.

5. Congruences between automorphic representations on GSp
4/Q

We have classified above inertial types that lower the level. Inspired by
work of Diamond-Taylor, Gee (e.g., [11]) has proved a number of theorems about
congruences of Galois representations associated to automorphic representations
on various algebraic groups. The general form of Gee’s results are as follows:

Begin with a mod ℓ representation ρ of Gal(Q/Q) which is the
reduction of a representation ρ associated to a (global) cuspidal au-
tomorphic representation on the given group. Choose a finite set of
finite places S (we shall assume that none divide ℓ in this note), and
for each v ∈ S, choose some inertial type τv such that τv is a lift of
ρ|Iv .

Then there is a modular ℓ-adic representation ρ′ which is again
a lift of ρ, and where ρ′|Iv

∼= τv for each v ∈ S.

(Generally, there will be several additional hypotheses; for example, there
is generally an assumption that ρ|GQ(ζℓ)

is absolutely irreducible, which corre-

sponds to the “big” terminology of §2.5 of [6].)
For congruences between forms on GSp4, the best results on congruences

along the lines of Gee’s general results, is due to Gee and Geraghty ([12]);
the main theorem is Theorem 7.6.6 of their paper. Given a modular Galois
representation R, one chooses local inertial types at finitely many places S as
above, and recovers a modular Galois representation R′ congruent to R. If R′

is associated to a representation Π′, then we would like to be able to combine
this approach with the results of the previous section to deduce level lowering
congruences for GL2/K .

Unfortunately, we see no way to force a congruent representation on GSp4
to come from a theta lift as we need in the previous section; this sort of global
condition will surely be difficult to force with finitely many local conditions.
Perhaps one might hope for a version of Greenberg’s conjecture which might
guarantee that the global 4-dimensional representation is induced given suitable
local conditions above the residue characteristic of the Galois representation.
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There are a few other issues in using the main result of Gee and Geraghty
as it is presented in their paper. Let us indicate that some of these have been
addressed by subsequent work.

As stated, the main theorem of Gee and Geraghty only applies to globally
generic representations. The reason is that Gee and Geraghty deduce their
main result from a similar result for GL4, and then use a transfer between GSp4
and GL4; this transfer is only known in the globally generic case. However,
when we take the global theta lift to a cuspidal automorphic representation Π
of GSp4(AQ), we have that at the archimedean place ∞, Π∞ is holomorphic and
non-generic, so that Π is not globally generic. For our global theta lift, which
is non-generic, one can get functoriality in the sense that we require using the
endoscopic classification of Arthur; in particular, the lifting Π̃ (an automorphic
representation of GL4(AQ)) of Π is given by Arthur’s global parameter, since Π
and Π̃ share the same global parameter. This lift is described by Mok in [19];
in particular see the proof of Theorem 3.1 of [19].

The next issue arises because our representation R does not have regular
Hodge-Tate weights (see Remark 5.4.9 of [27]), whereas the main result of Gee
and Geraghty requires the Hodge-Tate weights to be regular. The referee points
out that in forthcoming work of Allen, Calegari, Caraiani, Gee, Helm, Le Hung,
Newton, Scholze, Taylor, and Thorne, and of Boxer, Calegari, Gee and Pilloni,
modularity lifting is accomplished for Galois representations like the ones that
we use for GSp4, but at the time of this writing the authors have not seen this
result.

Another issue arises with the first condition in Theorem 7.6.6 of [12], that
the image is “big”. This assumption asserts that the image of the mod ℓ Galois
representation R is big enough to contain Sp4(k) for some finite field k such
that Fℓ ⊂ k. This does not happen for representations which we consider, since

R = ind
GQ

GK
ρ. Results of Thorne (see [26]) imply that the “big” image condition

can be relaxed to a so-called “adequate” image condition; for this notion see
Definition 2.3 of [26]. In addition, Guralnick-Herzig-Taylor-Thorne in Theorem
9 of [13], prove that if R is (absolutely) irreducible, then it is adequate for ℓ big
enough; in our case certainly for ℓ ≥ 11.

6. Congruences by twisting

While we hope that the tabulation of possible congruences between theta
lifts is useful in other situations, at this stage, applications to congruences seem
unlikely.

However, as Carayol ([5]) does in the classical case, one can get congruences
by twisting by characters, and can use this to get some results on level lowering
in the imaginary quadratic case. In this final section we will prove two level
lowering results for cuspidal automorphic representations over an imaginary
quadratic field K, by adjusting an argument of Carayol that lowers the level
by twisting the automorphic representation by a character. In particular, we
prove the following two theorems, for an inert prime and for a split prime in K
respectively.
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Theorem 6.1. Suppose we have a modular mod ℓ Galois representation

ρ : GK → GL2(Fℓ),

i.e., it has a lift ρ which arises from a regular algebraic cuspidal automorphic

representation π. Assume that the component πp of π, at a prime p which lies

above a rational prime p that stays inert in K with p �= ℓ, is one of the following

types:

1. it is a principal series representation πp = μ × ν, with μ tamely ramified

with unramified reduction such that it factors through the norm map, and

ν ramified;

2. it is a twisted Steinberg representation πp = (μ| |1/2)StGL2
, with μ tamely

ramified with unramified reduction such that it factors through the norm

map.

Then ρ is modular of conductor lower than the conductor of π.

Proof. In both cases, μ is assumed to be a tamely ramified character with un-
ramified reduction. Such a character can be decomposed as μ = μnrμr, where
μnr is an unramified character of K×

p , and μr is a tamely ramified character of
K×

p with trivial reduction (i.e., a(μr) = 1 but a(μr) = 0, where a(−) denotes
the Artin conductor), such that μr(̟p) = 1. Moreover, in both cases we have
assumed that μ factors through the norm map and since μnr is unramified (i.e.,
its kernel contains the kernel of the norm map) we have that μr factors through
the norm map too. This fact will enable us to extend μr to a grössencharacter
μ̃r. As any element x ∈ K×

p can be written as x = ̟n
pu for some n ∈ Z and

u ∈ O×

Kp
(and as μr is trivial on ̟p), we get that μr is a character of O×

Kp

which (as a tamely ramified character) is trivial on (1 + ̟pOKp
); this means

that μr is a character of O×

Kp
/(1+̟pOKp

) ∼= (OKp
/̟pOKp

)×. As p = pOK is

a principal ideal, we have (OKp
/̟pOKp

)× ∼= (OK/p)×, so that

μr : (OK/p)× → C×.

That is, μr extends to a Dirichlet character for K of conductor p. Since μr

factors through the norm map, and since p has norm p2 (as p is inert in K), we
have that μr factors through (Z/p2Z)×; that is, if NK/Q is the norm map of the
extension K/Q, we have

μr : (OK/p)×
NK/Q

−−−−−−։ (Z/p2Z)×
φ
−→ C×.

By Proposition 3.1.2 of [3], the Dirichlet character φ of conductor p2, extends
to a grössencharacter

φ̃ : Q×\A×

Q → C×,

which we may compose with the idèle norm map

ÑK/Q : K×\A×

K → Q×\A×

Q
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to get a grössencharacter
μ̃r : K×\A×

K → C×

that extends μr. Now we are able to proceed to the twisting argument.

1. Firstly we consider π with local component πp = μ× ν at p, and attached
Galois representation ρ. We twist π with μ̃−1

r to get a cuspidal automor-
phic representation μ̃−1

r π that has local component at p the representation

π′

p = μ−1
r (μnrμr × ν) = μnr × μ−1

r ν.

As μ factors through the norm map, the central character of μ̃−1
r π factors

through the norm map, and as a result we may attach to it a Galois
representation μ̃−1

r ρ. Then the conductor of π′

p is

a(π′

p) = a(μnr) + a(μ−1
r ν)

with a(μnr) = 0 < 1 = a(μ) and a(μ−1
r ν) ≤ a(ν), since a(μ−1

r ) = 1 and
a(ν) ≥ 1. That is, a(π′

p) < a(πp).
Moreover, the conductor of π at the other places is not getting bigger
under the twisting since μr, as a Dirichlet character, has conductor p.
Therefore, the power of p dividing the conductor of μ̃−1

r ρ is smaller than
the power of p dividing the conductor of ρ. The congruence occurs as μ̃−1

r

has trivial mod ℓ reduction, i.e., ρ and μ̃−1
r ρ are congruent mod ℓ.

2. Now we consider π with local component πp = (μ| |1/2)StGL2 , and at-
tached Galois representation ρ. We twist π with μ̃−1

r to get a cuspidal
automorphic representation μ̃−1

r π with local component at p the represen-
tation

π′

p = (μnr| |
1/2)StGL2

.

Again μ̃−1
r π has central character that factors through the norm map, so

that we may attach to it a Galois representation μ̃−1
r ρ. The conductor of

π′

p is a(π′

p) = 1 while a(πp) = 2a(μ) = 2. That is

a(π′

p) < a(πp).

For the same reasons as before the conductors at the other places do not
get bigger under twisting, and we have a level lowering congruence between
ρ and μ̃−1

r ρ.

Theorem 6.2. Suppose we have a modular mod ℓ Galois representation

ρ : GK → GL2(Fℓ),

i.e., it has a lift ρ which arises from a regular algebraic cuspidal automorphic

representation π. Let pOK = pp with p �= ℓ, such that for the components πp

and πp of π at p and p respectively, we have that a(πp) > 1 and that πp is one

of the following types:
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1. principal series representation μ× ν, with μ tamely ramified with unram-

ified reduction, and ν ramified;

2. twisted Steinberg representation (μ| |1/2)StGL2 , with μ tamely ramified

with unramified reduction.

Then ρ is modular of lower conductor than the conductor of π.

Proof. Note that πp and πp have equal central characters in this situation.
Next we notice that in the case where pOK = pp, we may fix isomorphisms

Kp
∼= Qp and Kp

∼= Qp. That is, a character of K×

p can essentially be thought of
as a character ofQ×

p . As in the proof of Theorem 6.1, we may write μ : Q×

p → C×

as a product μ = μnrμr, such that μnr is unramified, μr is tamely ramified with
trivial reduction and μr(p) = 1. Then, as before, we write μr as a character

μr : Z×

p /1 + pZp → C×,

and considering also that Z×

p /1 + pZp
∼= (Zp/pZp)

× ∼= (Z/pZ)×, μr becomes
a Dirichlet character of conductor p. As in the earlier case, μr extends to a
grössencharacter, which we compose with the idèle norm map ÑK/Q to get

μ̃r : K×\A×

K

ÑK/Q
−−−→ Q×\A×

Q → C×.

Now we consider the two cases of the theorem.

1. Suppose that πp = μ× ν, with ρ being the Galois representation attached
to π. We consider the twist μ̃−1

r π, which has local component at p the
representation

π′

p
∼= μ−1

r (μ× ν) = μnr × μ−1
r ν

with a(μnr) + a(μ−1
r ν) < a(μ) + a(ν). As μ̃−1

r factors through the norm
map, our new cuspidal automorphic representation μ̃−1

r π has Galois invari-
ant central character, and so we may attach to it a Galois representation
μ̃−1
r ρ which is congruent to ρ since μr is trivial modulo ℓ. Therefore, if

pκp
λ divides exactly the conductor of ρ, then pκ

′

p
λ′

divides exactly the
conductor of μ̃−1

r ρ, with κ′ + λ′ < κ+ λ.

2. Now suppose that πp = (μ| |1/2)StGL2 , with ρ the Galois representation
attached to π. The twist μ̃−1

r π now has local component at p the repre-
sentation

π′

p
∼= μ−1

r (μ| |1/2)StGL2
= (μnr| |

1/2)StGL2

with
a((μnr| |

1/2)StGL2
) = 1 < 2 = a((μ| |1/2)StGL2

).

The cuspidal automorphic representation μ̃−1
r π has attached a Galois rep-

resentation μ̃−1
r ρ which is congruent to ρ modulo ℓ, for the same reasons

as above. So again, the level is getting lower by twisting by μ̃−1
r .

Note that in both cases, the conductor of πp cannot be raised by twisting with
μ−1
r , as we have assumed that a(πp) > 1.
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Remark 6.3. The assumption that the conductor of πp is greater than 1 in
Theorem 6.2 excludes the following phenomenon. Let πp = μ−1

r μnr × μrνnr
and πp = μnr × νnr (which have equal central characters), where μr is tamely
ramified with trivial mod ℓ reduction, and μnr, νnr are unramified characters.
After twisting the automorphic representation with μ̃−1

r as in the Theorem, we
get local components

π′

p = μ−2
r μnr × νnr

and
π′

p
= μ−1

r μnr × μ−1
r νnr.

This not only lowers the conductor of πp, but at the same time might raise the
conductor of πp. Something similar can take place when we have, for example,

πp = (χ| |1/2)StGL2 with χ an unramified character.
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(2005) 67–150

38


