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The dependence of shaping effects on the growth rate of collisionless and resistive ballooning mode

(CBM/RBM) is numerically investigated. That of the drift ballooning modes (DCBM/DRBM) is also investigated

by taking kinetic effects into account. Resistivity scans of linear growth rates of CBM/RBM and DCBM/DRBM

in a circular geometry show that both modes have 3 branches in accordance with decreasing resistivity, fast, re-

sistive and collisionless branch. The last two branches are in the edge relevant resistivity regime and are in the

scope of this paper. For CBM/RBM, shaping effect on the growth rate becomes weak with increasing resistivity

and the growth rate monotonically increases with decrease of the elongation and increase of the triangularity, on

the other hand, the opposite tendency appears on the triangularity for DCBM, namely it weakly decreases with

increase of the triangularity. This fact indicates that the inverted D-shaped equilibrium can be unstable against

DCBM compared with the D-shaped equilibrium.
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1. Introduction
The H-mode discharge [1] is indispensable for fusion

reactors from the viewpoint of the plasma confinement ef-

ficiency, while intermittent large heat fluxes released by

edge localized modes (ELMs) [2] should be suppressed or

mitigated for heat load constraints on plasma facing com-

ponents. In the edge region of H-mode plasmas, collision-

ality changes drastically due to steep gradients of plasma

temperature and density, which affects the edge plasma sta-

bility responsible for edge pedestal formation and ELM

dynamics. It is therefore one of key issues to understand

collisionality dependence of edge plasma instabilities.

For shaping effects on ballooning modes, a local theo-

retical analysis [3] predicted that the elongation κ > 1 can

stabilize ballooning modes by weakening the poloidal cur-

vature at the outer midplane. A local eigen value analysis

on the resistive ballooning mode (RBM) [4, 5] in the colli-

sional limit [6] also revealed that elongation κ > 1 and the

negative triangularity δ < 0 can stabilize and the positive

triangularity δ > 0 can destabilize ballooning modes.

In this paper, shaping effects of elongation and trian-

gularity on collisionless ballooning mode (CBM) [7] and

RBM in the presence of real electron inertia [8] are numer-

ically investigated by BOUT++ code [9]. The remainder

of this paper is organized as follows. In section 2, an equi-

librium and a physics model are described. In section 3,

author’s e-mail: seto.haruki@qst.go.jp
∗) This article is based on the presentation at the 26th International Toki

Conference (ITC26).

shaping effects on CBM/RBM with and without electron

drift wave and compression are numerically investigated.

The summary is given in section 4.

2. Equilibrium and Physics Models
The axisymmetric toroidal expansion equilibrium [10]

is employed to generate equilibria with different shaping

factors having same normalized pressure gradient α(r) =

−ǫq(r)2β′(r) and magnetic shear s(r) = rq′(r)/q(r) pro-

files, where r is the minor radius, ǫ = r/Rax is the inverse

aspect ratio, Rax is the major radius at the magnetic axis,

q(r) is the safety factor, β(r) = p(r)/(B2
ax/2µ0) is the pres-

sure p(r) normalized with the magnetic energy density at

the magnetic axis, Bax is the magnetic field intensity at the

magnetic axis, µ0 is the permittivity in vacuum and ′ stands

r-derivative respectively. In this model, the major radius R,

the vertical position Z and the magnetic field B can be ex-

pressed with geometrical flux coordinates (r, χ, ζ),

R(r, χ) = Rax − r cos χ − ∆(r)

−
∞
∑

m=2

S m(r) cos
[

(m − 1)χ
]

, (1)

Z(r, χ) = r sinχ −
∞
∑

m=2

S m(r) sin
[

(m − 1)χ
]

, (2)

B(r, χ) = ∇ζ × ∇ψ + F∇ζ, (3)

F(r) = RaxBax (1 + F2(r)) , (4)

where χ is the geometrical poloidal angle, ζ is the geomet-

rical toroidal angle, ∆(r) is the Shafranov shift, S m(r) is the

c© 2018 The Japan Society of Plasma
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shaping factors providing m-th poloidal harmonic compo-

nents of Grad-Shafranov equation (GSE), ψ is the poloidal

flux function, F(r) is the covariant toroidal field and F2(r)

is the O(ǫ2) correction of F(r)/RaxBax respectively.

Assuming the following ordering β ∼ rβ′ ∼ F2 ∼
rF′

2
∼ ∆/Rax ∼ ǫ∆′ ∼ S m/Rax ∼ ǫS ′m ∼ O(ǫ2), substituting

Eqs. (1)-(4) into GSE and taking leading order terms of m-

th harmonics of GSE, one obtains the ordinary differential

equations (ODEs) for F2(r), ∆(r) and S m(r) shown in Ap-

pendix B of ref. [10]. These ODEs are solved with bound-

ary conditions F2(0) = 0,∆(0) = ∆′(0) = 0, S m(a) = S ma

and holomorphic conditions of S m(0), where a is the minor

radius at the last closed flux surface (LCFS) and S ma is the

m-th shaping coefficient at LCFS. It should be noted that

contributions from pressure to F2(r) and ∆(r) are neglected

for simplicity, which is valid in the low beta limit. In this

paper, only S 2(r) and S 3(r) are taken, which are related

with the Miller’s elongation κ and triangularity δ [11],

S 2a ≃ a(1 − κ)/(1 + κ), S 3a ≃ −aδ/4, (5)

where Eq. (5) is used as input parameters for S 2 and S 3.

BOUT++ code introduces orthogonal flux coordi-

nates (ψ, θ, ζ) and field-aligned coordinates (x, y, z) [9, 12],

where θ is the poloidal angle designed to make ∇θ orthogo-

nal to both ∇ψ and ∇ζ, x is the radial label, y is the parallel

label based on θ and z is the binormal label respectively.

It should be noted that the coordinate transformation be-

tween both flux coordinates can be expressed by,

r(ψ) =

∫

0

[

F(r)

2πq(r)

∮ J
R2

dχ

]−1

dψ + a, (6)

χ(ψ, θ) =

∫

r0

grχ

grr
dr + θ, r0 = r(

ψin + ψout

2
), (7)

where J and gi j are Jacobian and contravariant metric co-

efficients in the geometrical flux coordinates, ψin = ψ(rin)

is the poloidal flux function at the inner radial boundary

r = rin, ψout = ψ(rout) is that at the outer radial boundary

r = rout and the outer mid-plane (the bad-curvature plane)

is given at θ = π, (see Eqs. (1), (2) and (7)). Eq. (6) is

obtained from the definition of q(r) and Eq. (7) is also ob-

tained from the orthogonal property of the orthogonal flux

coordinates respectively.

Figure 1 shows examples of a series of equally-spaced

grids for 1/50-th sector of tori having κ = 1.0, 1.1, · · · , 1.4
and δ = −0.3,−0.2, · · · , 0.3 with q(r) = 1 + 2(r/0.9a)2,

β(r) = β0(1 − tanh[50(r/a − 0.9)])/2, β0 = 5 × 10−4, a =

0.5 [m], Rax = 2 [m], Bax = 2 [T], rin/a = 0.8 and rout/a =

1.0 in common. These grids have resolutions with radial

grid points Nx = 1024, 2048, 4096 for 0.8 ≤ r/a ≤ 1.0,

parallel grid points Ny = 128 for 0 ≤ y < 2π corre-

sponding poloidal angle is shown in Fig. 1 (a) and binor-

mal grid points Nz = 128 for 0 ≤ z < 2π/50. These

grids are fine enough compared with the electron skin

depth de ∼ 2 × 10−3 [m] for the electron number density

ne = 1019[m−3] even in the coarsest case with Nx = 1024

Fig. 1 Equilibria with same s and α profiles. (a): inverted

D-shaped, (b): elliptic and (c): D-shaped equilibrium,

where red dashed lines represent horizontal positions of

the magnetic axis and black dashed lines represent those

of the center of last closed flux surface (black solid). The

relation between the poloidal angle θ and the geometry is

also illustrated with the black dashed curve in figure (a).

for ∆x/BpR ∼ ∆r ∼ 0.2a/Nx ∼ 1 × 10−4[m] ≪ de,

where Bp is the poloidal magnetic field. The finer grids

are employed to resolve fine radial structures appearing

when CBM/RBM is coupled with the electron drift wave

(DCBM/DRBM) in the low resistivity regime.

To investigate shaping effects on CBM/RBM, a fully

linearized 4-field RMHD model [13] with Boussinesq and

iso-thermal assumptions is employed. The 4-field model

consists of vorticity equation, Ohm’s law, energy equation

and equation of ion parallel flow,

∂

∂t
∇ ·
(

∇⊥φ̃
B̄2

)

= −B̄∇‖
(∇2
⊥Ã‖

B̄

)

+
b̄ × κ̄ · ∇p̃

B̄
, (8)

∂

∂t

(

Ã‖ − d2
e∇2
⊥Ã‖
)

= −∇‖φ̃ + η∇2
⊥Ã‖

+δe

(

∇‖ p̃ −
b̄ × ∇⊥Ã‖ · ∇⊥ p̄

B̄

)

, (9)

∂ p̃

∂t
= − b̄ × ∇⊥φ̃ · ∇⊥ p̄

B̄

− β∗
[

2b̄ × κ̄ · ∇φ̃
B̄

+ ∇‖
(

ṽ‖ + 2δe∇2
⊥Ã‖

B̄

)]

,

(10)

∂ṽ‖

∂t
= −1

2

[

∇‖ p̃ −
b̄ × ∇⊥Ã‖ · ∇⊥ p̄

B̄

]

, (11)

where φ is the electrostatic potential, B is the magnetic

field intensity, A‖ is the parallel magnetic potential, b is the

unit vector along the field line, κ is the magnetic curvature,

de is the electron skin depth, η is the resistivity, δe = di/4

is the electron diamagnetic factor, di is the ion skin depth,

β∗ = (5/3) p̄/[1 + (5/3) p̄/(2B̄2)] is the compressional fac-

tor, v‖ is the ion parallel flow respectively.

Eqs. (8) - (11) assume the constant ion density n0 and

resistivity and are normalized by poloidal Alfvén units

with Rax, Bax, n0 = 1019 [m−3], Z = 1 and the deu-

terium mass. In addition, physical quantities are sepa-

rated into equilibrium and perturbed parts as f (x, y, z, t) =

f̄ (x, y) + f̃ (x, y, z, t) so that the equilibrium magnetic field

3403086-2
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Fig. 2 n = 50 linear growth rate (top) and rotating frequency

(bottom) versus resistivity in the circular geometry for

RBM (black), CBM/RBM (red), CBM/RBM+comp.

(green) and DCBM/DRBM (blue).

in Eq. (3) is redefined with the symbol B̄ and the perturbed

magnetic field becomes B̃ = ∇Ã‖ × b̄.

Although the ion diamagnetic effect is neglected in the

vorticity equation, the stabilization effect from two-fluid

effects on ballooning modes is partially introduced via the

electron Hall terms proportional to δe in Ohm’s law.

3. Simulation Results
The following two models are employed to clar-

ify shaping effects on CBM/RBM and DCBM/DRBM,

Eqs. (8) - (11) with de � 0, δe = 0, β∗ = 0 for CBM/RBM

and those with de � 0, δe � 0, β∗ � 0 for DCBM/DRBM.

Figure 2 summarizes resistivity dependence of linear

growth rate and rotating frequency of n = 50 CBM/RBM

and DCBM/DRBM in the circular geometry, where RBM

described with de = 0, δe = 0, β∗ = 0 and CBM/RBM with

compression (CBM/RBM+comp.) described with de � 0,

δe = 0, β∗ � 0 are also tested as baselines for comparison.

The reason why RBM growth rate deviates from γ ∝ η1/3

line in η < 5 × 10−7 is that radial intervals among rational

q-surfaces compared with resistive skin depth become too

wide to couple with poloidal sub-harmonics.

All modes show the fast ballooning nature [5] in the

high resistivity regime η � 10−6. In this limit, instabili-

ties are strongly localized in the parallel direction so that

poloidal derivatives of eigen functions become compara-

ble to radial derivatives of those. This fact means that local

ballooning analyses are no longer valid, which results in a

very weak dependence of linear growth rate on resistivity.

It should be noted that the edge relevant resistivity regime

lies roughly in 10−9
� η � 10−7 for 102

� Te � 103 [eV]

so that shaping effects on ballooning modes in η � 10−7

are in the scope of interest.

From comparison with RBM and CBM/RBM, the

electron inertia has the significant impact on the growth

Fig. 3 Poloidal slices of pressure of CBM/RBM (left) and

DCBM/DRBM (right) in (f): fast, (r): resistive and (c):

collisionless branch around the outer mid-plane (θ/2π =

0.5) in the circular geometry.

rate in η � 10−7 while it becomes less effective in the

high resistivity regime. Comparison with CBM/RBM and

CBM/CRBM+comp. also shows that CBM/RBM can be

stabilized by coupling with compression of ion parallel

flow and E × B flow.

One can find that the electron drift wave stabilizes

ballooning modes in η � 10−8 while destabilizes them in

η � 10−8 by comparing growth rates of CBM/RBM+comp.

with those of DCBM/DRBM. This result is consistent to

a linear analysis on compressional effects including two-

fluid effects on ideal ballooning mode [14]. The resistiv-

ity dependence of rotating frequency ω also shows that

the plasma rotates in the electron diamagnetic direction

ω > 0 and goes to ω ≃ ωe/4 in the collisionless limit

η = 0 for DCBM/DRBM, while the plasma holds ω = 0

for the other modes due to the absence of δe, where ωe =

−nδe
dp0

dψ
= 0.409ωA is the electron diamagnetic frequency

and ωA = (Bax/
√
µ0min0)/Rax = 4.88 × 106 [Hz] is the

poloidal Alfvén frequency respectively.

For classification of resistivity regimes, we introduce a

resistive branch where the growth rate is proportional to the

power law of resistivity and a collisionless branch where

the growth rate goes to that in the collisionless limit as well

as the fast branch corresponding to the too collisional limit.

The resistivity regimes of each branch for CBM/RBM and

DCBM/DRBM are shown in Fig. 2 with the red and the

blue ribbon respectively, where oblique lines in these rib-

bons stand intermediate regimes for each mode.

Figure 3 shows poloidal slices of pressure p̃(r, θ, ζ =

0) of CBM/RBM and DCBM/DRBM around the outer

mid-plane θ = π in the circular geometry in fast, re-

sistive and collisionless branch respectively. The eigen

functions of CBM/RBM keep up-down symmetry given

as initial perturbations in all branches, while those of

3403086-3
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Fig. 4 Shaping effects on the linear growth rate of CBM/RBM

(left) and DCBM/DRBM (right) in (f): fast, (r): resistive

and (c): collisionless branch respectively, where γc is the

growth rate in the circular geometry.

DCBM/DRBM rotate with finite frequencies so that up-

down symmetry is not observed. The fine radial structure

driven by the electron drift wave is observed in the colli-

sionless branch for DCBM/DRBM.

Figure 4 summarizes shaping effects on the growth

rate of CBM/RBM and DCBM/DRBM in the fast, the

resistive and the collisionless branch respectively. For

CBM/RBM, the elongation and the negative triangularity

stabilize CBM/RBM by weakening the poloidal curvature

κp ≈ (1/r)er at the outer midplane while the positive trian-

gularity destabilizes them by enlarging the poloidal curva-

ture as reported in refs. [3,6], where er is the unit vector in

r-direction. This can be visually confirmed from the flux

surfaces shown in Fig. 1. These tendencies never change

in the edge relevant branches (or the resistive and the col-

lisionless branch) but the impact of shaping effects how-

ever gets weaker with increasing resistivity so that realistic

resistivity and electron mass are important in a quantita-

tive manner. In the fast branch, the effect of elongation

is negligibly small and that of triangularity gets large with

elongation so that the elongation destabilizes RBM in the

δ > 0 cases, which only occurs in the unrealistically high

resistivity regime and is out of the scope of this paper.

For DCBM/DRBM, the tendency of shaping effects

in the resistive branch are same as that for CBM/RBM

but the effect of triangularity gets inverted in the colli-

sionless branch. It should be noted that simulations of

DCBM/DRBM in the collisionless limit are numerically

unstable in δ > 0.2 for κ ≤ 1.1, δ > 0 for κ = 1.2

and κ > 1.2. Shaping effects on rotating frequencies of

DCBM/DRBM also show different trends between the re-

sistive and the collisionless branch as shown in Fig. 5. The

electron drift wave, however, can either stabilize or desta-

bilize DCBM/DRBM in this model, which is determined

via a competition between the electron Hall terms and the

Fig. 5 Shaping effects on the rotating frequency in (f): fast, (r):

resistive and (c): collisionless branch for DCBM/DRBM,

where ωc is the frequency in the circular geometry.

compression of parallel current.

4. Summary
The dependence of shaping effects on growth rate of

CBM/RBM and DCBM/DRBM has been numerically in-

vestigated. For CBM/RBM, shaping effect on the growth

rate becomes weak with increasing resistivity and the

growth rate monotonically increases with decrease of the

elongation and increase of the triangularity, on the other

hand, the opposite tendency appears on the triangularity

for DCBM. These results have revealed that the electron

drift wave can change the role of shaping effect of trian-

gularity in the collisionless limit. This fact indicates that

the inverted D-shaped equilibrium can be unstable against

DCBM compared with the D-shaped one.
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