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Abstract. In this paper we investigate the finite-time and fixed-time consensus problems of
multiagent networks with pinning control and noise perturbation. In order to reach the finite-time
and fixed-time consensus, several pinning protocols are proposed. Compared with the consensus
protocols without pinning control, the proposed finite-time and fixed-time protocols need to control
only a small fraction of agents, which is practical and has advantages from the physical viewpoint of
energy consumption. More specifically, the deterministic and stochastic protocols include the graph
(p+1)-Laplacian, a nonlinear generalization of the standard graph Laplacian. We show that, unlike
the protocols with the standard (linear) graph Laplacian, those with the graph (p + 1)-Laplacian
solve the finite-time as well as the fixed-time consensus problems. By using the finite-time and fixed-
time stability theory and the algebra graph theory, sufficient conditions are established to ensure the
finite-time and fixed-time consensus. Finally, numerical simulations are presented to illustrate the
correctness of the theoretical results.
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1. Introduction. When a large number of similar units move and interact, un-
der some conditions there may exist a transition in which individual agents start
behaving in a coherent fashion, and individuals no longer move independently. When
the states of all individuals reach a sort of agreement, a new ``mesoscopic"" unit emerges
and its coherent motion can be described by a new set of variables [40].

Flocking [29], swarming [12], formation control [27], and opinion dynamics [1] are
examples of collective behavior, which has a long history and has been attracting an
increasing attention across many fields, including biology, physics, mathematics, and
engineering [11, 8, 32, 40]. Due to its broad applications, many authors have been
trying to uncover the mechanisms leading to eventual consensus [39, 24, 20, 14]. This
latter has been often modeled by agent-based models, in which individuals adjust
their behavior according to the states of their neighbors [39].

In a more recent approach, each agent is viewed as a node of a graph and interac-
tions among agents are represented by the edges of the corresponding network. Along
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112 Y. SUN, W. LI, H. SHI, D. ZHAO, AND S. AZAELE

this line of research and based on algebraic graph theory, Olfati-Saber and Murray [30]
investigated the consensus problem of multiagent networks with fixed and switching
topologies. It was shown that the average consensus can be achieved if the network
topology is connected and balanced.

Interactions among moving agents are not necessarily instantaneous, because the
information transmission times are finite. Consensus problems of a multiagent sys-
tem with constant and time-varying delays have been also analyzed in [24, 20]. More
recently, some studies have recognized the importance of noise and, by using stabil-
ity theory of stochastic differential equations, the consensus problems of multiagent
networks with multiplicative and additive noise have been discussed [21, 35].

In some practical applications, it is important to drive the multiagent system to
a desirable state as soon as possible. Therefore, the convergence rate is an important
indicator in the design of protocols. It was shown that, under the linear consensus
protocol, the convergence rate is proportional to the algebraic connectivity of the
network topology. Several researchers endeavored to improve the convergence rate by
optimizing network topologies according to an increased algebraic connectivity [28].
However, the convergence time for the linear consensus protocols was proved to be
unbounded [41]. In addition, the infinite time of such protocols costs more energy
than the corresponding finite-time ones, because external control is needed before the
consensus is reached.

In many applications, it is often required that the eventual consensus is reached in
a finite time, whether or not this depends on the initial configuration of the system.
This approach is more appealing because parameters can then be used to achieve
faster convergence rates [5]. In [10], a discontinuous consensus protocol was proposed
to solve the finite-time consensus problem. Some other continuous non-Lipschitz
finite-time consensus protocols have been presented in [41, 19]. Most previous studies
added the control to each agent. However, this is impractical when the group size is
too large. Thus this leaves open a key question: Can consensus be achieved in finite
time by controlling a fraction of the interacting agents? This paper will investigate
this problem by combining the finite-time and pinning control techniques. Unlike
previous investigations on pinning synchronization of complex networks [44], the con-
trol protocols presented in this paper ensure that the time to eventual consensus is
finite.

Another important element of disturbance is noise, which is ubiquitous in nature
as well as in manmade systems. The collective motion of self-propelled multiunits
is inevitably affected by intrinsic or environmental noise, which should be taken into
account when investigating more realistic multiagent systems [23, 38]. The conver-
gence analysis of the consensus problem in noise-perturbed multiagent systems has
been systematically investigated in the literature [35, 36], but so far, to the best
of our knowledge, the finite-time stochastic consensus with pinning control has not
been studied. This paper will specifically address this issue based on the finite-time
stochastic stability theory.

Our analysis will naturally lead to looking into how the settling time of the finite-
time consensus depends on the initial states of the system. On the one hand, the
settling time provides us with information about characteristic temporal scales for
achieving a final coherent state; on the other, however, it seems to be of limited ap-
plicability, because of its dependence on the initial states of the system, which should
be given beforehand [7]. Recently, this limitation has been overcome by introducing
a new control method, named fixed-time control [31]. Unlike the finite-time control,
the settling time of network systems with fixed-time control is independent of the
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CONSENSUS WITH PINNING AND NOISE 113

initial states. This new methodology has been successfully used in the stabilization
and synchronization of complex network systems [7, 26, 25, 17]. Also, as it has been
analytically and numerically validated, the fixed-time control techniques cost less time
than the finite-time control methods, which, however, usually need less control terms.
Thus, the energy cost of the fixed-time control technique may be very high, especially
if we add controllers to all nodes. This therefore suggests controlling only part of
the nodes, instead of the whole network system. This paper is aimed at investigat-
ing the fixed-time consensus problem by using the pinning control technique, in both
the deterministic and the stochastic setting. Analytical validations and numerical
illustrations will show the high quality of the proposed control technique.

Algebraic graph theory is a natural tool for analyzing consensus problems and
in linear consensus protocols the properties of the graph Laplacian of the network
topology play a crucial role [30]. Indeed, a necessary condition for a multiagent
network to reach the average consensus state is that its graph Laplacian has a zero
eigenvalue with geometric and algebraic multiplicity one. Also, the converging speed
is proportional to the second smallest eigenvalue of the graph Laplacian. In order to
reach the consensus state in a finite time, we propose a nonlinear (and non-Lipschitz)
consensus protocol by introducing a nonlinear generalization of the graph Laplacian,
the graph (p + 1)-Laplacian [2, 3, 6], which has important applications in machine
learning [16, 22]. In this paper, we show that the graph (p + 1)-Laplacian can make
the system converge to consensus in finite time.

The rest of this paper is organized as follows. The problem formulation and
preliminaries are given in section 2. Analytical arguments for the finite-time consensus
with and without noise are investigated in section 3. Sufficient conditions for the fixed-
time consensus problem with and without noise are given in section 4. Simulation
results are presented in section 5, where we show the usefulness of the proposed
protocols. In section 6, concluding remarks and perspective on the future research
are presented.

Notation. Throughout this paper, | \cdot | denotes the absolute value. If A is a vector
or matrix, its transpose is denoted by AT . For a symmetric matrix A, \lambda max(A) and
\lambda min(A) denote its largest and smallest eigenvalues, respectively.

2. Problem formulation and preliminaries. Consider a group of N moving
agents. Let xi \in \BbbR denote the state of agent i. Suppose that the dynamics of each
agent is given by

(2.1) \.xi = ui, i \in \scrI ,

where \scrI = \{ 1, 2, . . . , N\} , ui is the protocol to be designed. System (2.1) is said to
reach the consensus asymptotically if there exists an asymptotically stable equilibrium
x\ast such that xi(t) \rightarrow x\ast \forall i as t\rightarrow \infty . More specifically, if x\ast = 1

N

\sum N
i=1 xi(0), system

(2.1) is said to reach the average consensus.
In the following, we introduce some basic concepts and notation of algebraic graph

theory. Let an N \times N nonnegative matrix A be the adjacency matrix of the graph
\scrG (A) = (\scrV , \scrE ), where \scrV = \{ v1, . . . , vN\} is the vertex set and \scrE \subseteq \{ (vi, vj) : vi, vj \in \scrV \} 
is the edge set of the graph. The adjacency matrix A accounts for the influence of
agent j on agent i in such a way that (vi, vj) \in \scrE if and only if aij > 0. Moreover, we
assume aii = 0 \forall i \in \scrI . Let an N \times N diagonal matrix D = diag\{ d1, . . . , dN\} be the

degree matrix of \scrG (A), whose diagonal elements are di =
\sum N

j=1 aij \forall i \in \scrI . Then the
(standard or linear) graph Laplacian of the digraph \scrG (A) is defined as LA = D  - A.
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114 Y. SUN, W. LI, H. SHI, D. ZHAO, AND S. AZAELE

The following linear protocol was proposed by Olfati-Saber and Murray in [30] to
solve the average consensus problem:

(2.2) ui =
\sum 
j\in \scrN i

aij(xj  - xi), i \in \scrI ,

where \scrN i = \{ j : (vi, vj) \in \scrE \} is the set of neighbors of agent i. Using the graph
Laplacian LA, the multiagent system (2.1) with the linear consensus protocol (2.2)
can be rewritten as

dx

dt
=  - LAx,

where x(t) = (x1, x2, . . . , xN )T . The graph Laplacian LA always has a zero eigenvalue
corresponding to the right eigenvector 1 = (1, . . . , 1)T \in \BbbR N . If the network topology
\scrG (A) is strongly connected and balanced, the linear consensus protocol (2.2) can solve
the average consensus problem and the converging rate is proportional to the second
smallest eigenvalue of graph Laplacian [30]. A drawback of linear protocol is that
the decay rate is exponential and it costs infinite time to reach the consensus. More
realistically, it is interesting to investigate when the agreement can be achieved in
finite time. So it makes sense to introduce the following definitions.

Definition 2.1. System (2.1) is said to reach the finite-time (or fixed-time) con-
sensus if there exists a time function T1 depending on (or independent of) the initial
values, such that

lim
t\rightarrow T1

| xi(t) - x\ast | = 0, and xi(t) = x\ast ,\forall t \geq T1, \forall i \in \scrI ,

where T1 = inf\{ T : xi(t) = x\ast \forall t \geq T\} is called the settling time.

3. Finite-time consensus with pinning control. As explained in the intro-
duction, the linear consensus protocol can only guarantee the asymptotic consensus.
In order to reach the finite-time consensus, some continuous as well as discontinuous
consensus protocols have been proposed [41, 10, 19]. However, most of them can only
solve the average consensus problem, where the final state of each individual is the
mean value of the initial states of all agents. More generally, it is desirable to drive
the system toward some specific state, rather than the average state. Therefore, some
suitable controllers should be added to achieve this goal. Since the agents have usu-
ally stronger connections with their neighbors, it is more practical to control part of
the agents rather than adding controllers to all of them. An effective way to reduce
the number of controlled agents is to use the pinning control technology [44]. In the
following we are going to investigate the finite-time consensus problem of multiagent
networks---with or without noise perturbation---by combining the finite-time control
and the pinning control technologies. In this paper, the pinning strategy is applied on
a small fraction \delta (1/N < \delta < 1) of the agents in system (2.1). Suppose that the nodes
i1, i2, . . . , il are selected, where l = [\delta N ] represents the least integer that is greater
than or equal to \delta N . Without loss of generality, rearrange the nodes and let the first
l nodes be controlled.

3.1. Finite-time consensus without noise perturbation. It is well known
that the linear protocol with standard graph Laplacian can only solve the asymptotical
consensus problem [30]. To tackle the finite-time consensus problem, we propose a
nonlinear protocol with the use of the graph (p+1)-Laplacian. Suppose we are given
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CONSENSUS WITH PINNING AND NOISE 115

a weighted graph \scrG (A) = (\scrV , \scrE ). Let i \in \scrV ; then the graph p-Laplacian is defined as

(3.1) (\Delta p\zeta )i =
\sum 
j\in \scrN i

aij\phi p(\zeta i  - \zeta j),

where \zeta is a function on \scrV and \phi p : \BbbR \rightarrow \BbbR is defined for z \in \BbbR as \phi p(z)
.
=

| z| p - 1sign(z). Note that \phi 2(z) = z, and it is easy to see that LA\zeta = \Delta 2\zeta , i.e.,
the graph p-Laplacian becomes the standard (linear) graph Laplacian when p = 2.

In this paper, we consider the following finite-time pinning protocol:

ui =  - (\Delta p+1x)i  - \alpha \phi p+1(xi  - x\ast ), i \in \scrI c,
ui =  - (\Delta p+1x)i, i \in \scrI c,

(3.2)

where \scrI c = \{ 1, 2, . . . , l\} represents the index set of controlled nodes, \scrI c = \{ l + 1, l +
2, . . . , N\} , 0 < p < 1, \alpha > 0, (\Delta p+1x)i =

\sum 
j\in \scrN i

aij\phi p+1(xi  - xj), and \phi p+1(z) =
| z| psign(z).

Remark 3.1. According to the theory of differential equations, there exists a
unique solution to the controlled system (2.1) if the protocol is Lipschitz continuous.
Thus, the Lipschitz continuity of the control protocol can only guarantee the asymp-
totic consensus. Notice that the function \phi p+1 is continuous, but it does not satisfy
the Lipschitz condition at some points, which is the least requirement for finite-time
consensus protocols. Our main motivation for the use of the graph (p+ 1)-Laplacian
in (3.2) is that the graph p-Laplacian is a natural nonlinear generalization of the stan-
dard graph Laplacian [6]. From the physical standpoint, although linear interactions
between pairs of agents are appealing for their simplicity, it is also interesting to study
what kind of new features emerge when similar---but nonlinear---interactions are con-
sidered. These may be important in collective behavior of flocking, where we do not
know the specific form of interaction. We will show that the non-Lipschitz properties
of the graph (p+ 1)-Laplacian are crucial to reach consensus in finite time.

In the following, we shall derive sufficient conditions for the finite-time consensus.
Let ei(t) = xi(t)  - x\ast be the state error of agent i and define e(t) = (e1, . . . , eN )T .
From (2.1) and (3.2) we have the following error systems:

\.ei =  - (\Delta p+1e)i  - \alpha \phi p+1(ei), i \in \scrI c,
\.ei =  - (\Delta p+1e)i, i \in \scrI c.

(3.3)

Consider the following Lyapunov function:

(3.4) V (t) =
1

2

N\sum 
i=1

e2i (t).

Differentiating the function V (t) along the trajectory of (3.3) gives

dV (t)

dt
=

N\sum 
i=1

ei

N\sum 
j=1

aij\phi p+1(ej  - ei) - \alpha 
l\sum 

i=1

ei\phi p+1(ei)(3.5)

.
= V1 + V2.
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From Lemma A.2, we have

V1 =  - 1

2

N\sum 
i,j=1

aij(ej  - ei)\phi p+1(ej  - ei)

=  - 1

2

N\sum 
i,j=1

aij | ej  - ei| p+1.(3.6)

Let \alpha i = \alpha when i \in \scrI c and \alpha i = 0 while i \in \scrI c, thus

(3.7) V2 =  - 
N\sum 
i=1

\alpha i| ei| p+1.

Therefore, from Lemma A.3, we have

V1 + V2 =  - 1

2

N\sum 
i=1

\left[  N\sum 
j=1

aij | ej  - ei| p+1 + 2\alpha i| ei| p+1

\right]  
=  - 1

2

N\sum 
i=1

\left[  N\sum 
j=1

(a
1

p+1

ij | ej  - ei| )p+1 + ((2\alpha i)
1

p+1 | ei| )p+1

\right]  (3.8)

\leq  - 1

2

\left\{   
N\sum 
i=1

\left[  N\sum 
j=1

a
2

p+1

ij | ej  - ei| 2 + (2\alpha i)
2

p+1 | ei| 2
\right]  \right\}   

p+1
2

.

Define a new matrix B = (bij) and bij = a
2

p+1

ij , then the matrix B can be regarded as
the adjacency matrix of the graph \scrG (B). Let LB denote the Laplacian matrix of the
graph \scrG (B). If the graph \scrG (A) is strongly connected and undirected, then the graph
\scrG (B) is strongly connected and undirected as well. Then, according to Lemma A.1,

(3.9)

N\sum 
i,j=1

a
2

p+1

ij | ej  - ei| 2 = 2eTLBe.

Let D\alpha = diag(
\bigl( 
2\alpha )

2
p+1 , . . . , (2\alpha )

2
p+1\underbrace{}  \underbrace{}  

l

, 0, . . . , 0\underbrace{}  \underbrace{}  
N - l

\bigr) 
; then we have

(3.10)

N\sum 
j=1

(2\alpha i)
2

p+1 | ei| 2 = eTD\alpha e.

From (3.9) and (3.10), we have

(3.11) V1 + V2 \leq  - 1

2

\bigl[ 
eT (2LB +D\alpha )e

\bigr] p+1
2 .

If the graph \scrG (A) is strongly connected, then the graph \scrG (B) is also strongly connected
and LB is irreducible. According to Definition A.4, the matrix 2LB+D\alpha is irreducibly
diagonally dominant if l \geq 1. If the graph \scrG (A) is undirected, then the matrix
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CONSENSUS WITH PINNING AND NOISE 117

2LB + D\alpha is symmetric with strictly positive entries in its diagonal. Thus, from
Lemma A.5 we obtain that all eigenvalues of 2LB+D\alpha are strictly positive. Therefore,

(3.12) V1 + V2 \leq  - 1

2
(\lambda 1e

Te)
p+1
2 =  - 1

2
\lambda 

p+1
2

1 (2V )
p+1
2 ,

where \lambda 1
.
= \lambda min(2LB +D\alpha ).

Combining (3.5) and (3.12), one has

(3.13)
dV

dt
\leq  - 1

2
\lambda 

p+1
2

1 (2V
\bigr) p+1

2 .

By Lemma A.6, V (t) converges to zero in a finite time. And the settling time is
estimated by

(3.14) T1 \leq 2V
1 - p
2 (0)

\lambda 
p+1
2

1 2
p - 1
2 (1 - p)

,

where V (0) = 1
2

\sum N
i=1 e

2
i (0), ei(0) = xi(0) - x\ast is the initial value of ei(t).

From the above analysis, we have the following theorem.

Theorem 3.2. Consider the multiagent network (1) with topology \scrG (A). If the
graph \scrG (A) is undirected and strongly connected, then under the pinning protocol (3.2),
the system (2.1) can reach the finite-time consensus and the settling time satisfies

T1 \leq 2V
1 - p
2 (0)

\lambda 
p+1
2

1 2
p - 1
2 (1 - p)

.

Remark 3.3. Theorem 3.2 shows that the non-Lipschitz form of the graph (p+1)-
Laplacian is responsible for the finite-time consensus. The inequality (3.14) gives an
upper bound estimation of the settling time. We expect a dependence of the settling
time for the finite-time consensus on the parameters p, \lambda 1 and the initial values of the
multiagent system. The upper bound in (3.14) indicates that a steeper behavior of
the function \phi p+1 close to the origin allows the system to converge faster to the final
state, for a given initial error. Although the estimate in (3.14) does not explicitly
indicate the effect of the parameters l and \alpha on the settling time, the eigenvalue \lambda 1
does depend on the number of pinned nodes and the control parameter \alpha . Thus, the
settling time also depends on the density of pinned nodes and \alpha as will be further
illustrated in section 5.

3.2. Finite-time stochastic consensus. In noisy environments, the agent can-
not measure its neighbor's state exactly. To investigate the impact of environmental
noise on the finite-time consensus, we consider the following stochastic consensus
protocol:

(3.15)

ui =  - (LAx)i  - (\Delta p+1x)i  - k(xi  - x\ast i ) - \alpha \phi p+1(xi  - x\ast )

+ \gamma 
\sum 
j\in \scrN i

\sigma ij(xj  - xi)\xi i(t), i \in \scrI c,

ui =  - (LAx)i  - (\Delta p+1x)i + \gamma 
\sum 
j\in \scrN i

\sigma ij(xj  - xi)\xi i(t), i \in \scrI c,

where (LAx)i = (\Delta 2x)i =
\sum 

j\in \scrN i
aij(xi  - xj) is the ith component of LAx, 0 <

p < 1, k > 0, \gamma > 0, \xi i(t) are independent white noises with statistical properties
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\langle \xi i(t)\rangle = 0 and \langle \xi i(t), \xi j(t\prime )\rangle = \delta ij\delta (t  - t\prime )(i, j = 1, 2, . . . , N), and \delta is the Dirac
delta function. The parameter \sigma ij \geq 0 represents the strength of noise. The matrix
\Xi = [\sigma ij ] \in \BbbR N\times N is called the noise intensity matrix. To highlight the presence of
noise, it is natural to assume that \sigma ij > 0 if and only if aij > 0.

Definition 3.4. Under the control protocol (3.15), system (2.1) is said to reach
the finite-time (or fixed-time) consensus with probability one if there exists a time
function T1 depending on (or independent of) the initial values, such that

P\{ | xi(t) - x\ast | = 0\} = 1, \forall t \geq T1 \forall i \in \scrI ,

where T1 = inf\{ T : xi(t) = x\ast \forall t \geq T\} is called the stochastic settling time.

Remark 3.5. To investigate the influence of environmental noise on the collec-
tive behavior, additive or multiplicative noises have been added to the deterministic
model [21, 35]. Here, we introduce a multiplicative noise to protocol (3.2). The
multiplicative structure of the noise term in (3.15) implies that the measurement er-
ror increases when the group alignment is low. This assumption on the noise term
is satisfied in most biological systems, including swarming locusts [34] and flocking
birds [36, 13]. Therefore the noise term in (3.15) may hinder the emergence of con-
sensus. Unlike the consensus protocol in (3.2), the stochastic consensus protocol in
(3.15) contains the standard graph Laplacian, the graph (p + 1)-Laplacian, and the
linear feedback control. This is because the linear graph Laplacian and the linear
feedback control facilitate suppressing the negative effect of noise and guarantee that
the system moves in a neighborhood of the desired state x\ast .

In the following, we will derive sufficient conditions that guarantee the multiagent
system will reach the finite-time stochastic consensus. From (2.1) and (3.15) we have
the following error system:

(3.16)

\.ei =  - (LAe)i  - (\Delta p+1e)i  - kei  - \alpha sigp(ei) + \gamma 
\sum 
j\in \scrN i

\sigma ij(ej  - ei)\xi i(t), i \in \scrI c,

\.ei =  - (LAe)i  - (\Delta p+1e)i + \gamma 
\sum 
j\in \scrN i

\sigma ij(ej  - ei)\xi i(t), i \in \scrI c.

Let \sigma i =
\sum 

j\in \scrN i
\sigma ij , L\Xi = diag(\sigma 1, . . . , \sigma N ) - \Xi , which can be regarded as the Lapla-

cian matrix of graph \scrG (\Xi ). Then,\sum 
j\in \scrN i

\sigma ij(ej  - ei)\xi i(t) =  - (L\Xi )ie\xi i(t),

where (L\Xi )i denotes the ith row of matrix L\Xi .
With the same Lyapunov function as (3.4), the diffusion operator \scrL defined in

(A.3) on to the function V (t) along the error system (3.16) gives

\scrL V (t) =  - 
N\sum 
i=1

ei(LAe)i +

N\sum 
i=1

ei

N\sum 
j=1

aij\phi p+1(ej  - ei)

 - k

l\sum 
i=1

e2i  - \alpha 

l\sum 
i=1

ei\phi p+1(ei) +
\gamma 2

2

N\sum 
i=1

\bigl[ 
(L\Xi )ie

\bigr] 2
(3.17)

.
= \~V1 + \~V2 + \~V3 + \~V4 + \~V5.
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It is easy to see that

\~V1 =  - eTLAe.(3.18)

Let Dk = diag(k, . . . , k\underbrace{}  \underbrace{}  
l

, 0, . . . , 0\underbrace{}  \underbrace{}  
N - l

\bigr) 
. Then,

(3.19) \~V1 + \~V3 =  - eT
\bigl( 
LA +Dk)e.

Note that the matrix LA + Dk is irreducibly diagonally dominant when the graph
\scrG (A) is strongly connected and l \geq 1. If graph \scrG (A) is undirected, then the matrix
LA+Dk is symmetric with strictly positive entries in its diagonal. From Lemma A.5,
all the eigenvalues of LA +Dk are strictly positive. Thus,

\~V1 + \~V3 \leq  - \lambda min(LA +Dk)e
Te.(3.20)

Similar to (3.12), we have

(3.21) \~V2 + \~V4 \leq  - 1

2
\lambda 

p+1
2

1 (2V )
p+1
2 .

For the last term in the inequality (3.17), we have

\~V5 =
\gamma 2

2

N\sum 
i=1

[(L\Xi )ie]
2

=
\gamma 2

2
eTLT

\Xi L\Xi e(3.22)

\leq \gamma 2

2
\lambda 2max(L\Xi )e

Te.

Combining (3.20)--(3.22), one has

(3.23) \scrL V \leq  - 2\lambda min(LA +Dk)V (t) + \gamma 2\lambda 2max(L\Xi )V (t) - 1

2
\lambda 

p+1
2

1 (2V )
p+1
2 .

If \gamma 2\lambda 2max(L\Xi ) \leq 2\lambda min(LA +Dk), then we have

(3.24) \scrL V \leq  - 1

2
\lambda 

p+1
2

1 (2V )
p+1
2 .

By Lemma A.10, V (t) converges to zero in a finite time with probability one, i.e., the
multiagent system (2.1) reaches the finite-time stochastic consensus. And the settling
time is estimated by

(3.25) \BbbE (T1) \leq 
2V

1 - p
2 (0)

\lambda 
p+1
2

1 2
p - 1
2 (1 - p)

.

Thus, from above analysis, we get the following result on the finite-time stochastic
consensus.

Theorem 3.6. Consider the multiagent system (2.1) with topology \scrG (A). Suppose
that the graph \scrG (A) is undirected and strongly connected. Suppose that \Xi = \Xi T and
\gamma 2\lambda 2max(L\Xi ) \leq 2\lambda min(LA + Dk). Then, under the pinning protocol (3.15), system
(2.1) can reach the finite-time stochastic consensus. And the stochastic settling time
satisfies the inequality (3.25).
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Remark 3.7. The analytical results in Theorem 3.6 show that the multiagent sys-
tems can reach the finite-time stochastic consensus if the strength of noise is small
enough. Moreover, it can be seen from (3.14) and (3.25) that the settling time of the
finite-time consensus depends on the initial states of the system. If the initial states
are not given, we cannot get the estimation of the settling time. And the settling time
may become very large when the initial state grows. In order to make the settling
time independent of the initial values, we propose a fixed-time consensus protocol in
next section.

4. Fixed-time consensus with pinning control. The converging time of
finite-time consensus depends on the initial states of agents. By using the fixed-
time control technology, we can obtain the estimation of the converging time which
is independent of the initial states of agents. This section investigates the fixed-time
consensus problem with or without noise.

4.1. Fixed-time consensus without noise. In order to realize the fixed-time
consensus, we consider the following pinning protocol:

(4.1)
ui =  - (\Delta p+1x)i  - (\Delta q+1x)i  - \alpha \phi p+1(xi  - x\ast ) - \beta \phi q+1(xi  - x\ast ), i \in \scrI c,
ui =  - (\Delta p+1x)i  - (\Delta q+1x)i, i \in \scrI c,

where 0 < p < 1, q > 1 and \alpha , \beta are positive constants.

Remark 4.1. Unlike the finite-time protocol in (3.2), the fixed-time protocol in

(4.1) contains both control inputs (\Delta \alpha 
p+1)i  - (\Delta p+1x)i  - \alpha \phi p+1(xi  - x\ast ) and (\Delta \beta 

q+1)i.
=  - (\Delta q+1x)i  - \beta \phi q+1(xi  - x\ast ). It is easy to see that | x| p < | x| < | x| q when | x| > 1
and 0 < p < 1 < q. Thus, the strength of control input (\Delta \alpha 

p+1)i is weaker (stronger)

than the control input (\Delta \beta 
q+1)i when \| x\| > 1 (\| x\| < 1). Thus, the settling time

for the finite-time protocol may become very large when the initial state grows. In
order to make the settling time independent of the initial values, we introduce both
(\Delta \alpha 

p+1)i and (\Delta \beta 
q+1)i to the fixed-time protocol. Based on the fixed-time Lyapunov

theorem in [31], we will show that the settling time of system (2.1) with protocol (4.1)
is independent of the initial states.

From (2.1) and (4.1) we have the following error system:

(4.2)
\.ei =  - (\Delta p+1e)i  - (\Delta q+1e)i  - \alpha \phi p+1(ei) - \beta \phi q+1(ei), i \in \scrI c,
\.ei =  - (\Delta p+1e)i  - (\Delta q+1e)i i \in \scrI c.

Define the Lyapunov function as in (3.4); differentiating it along (4.2), one has

dV (t)

dt
=

N\sum 
i=1

ei

N\sum 
j=1

aij\phi p+1(ej  - ei) +

N\sum 
i=1

ei

N\sum 
j=1

aij\phi q+1(ej  - ei)

 - \alpha 

l\sum 
i=1

ei\phi p+1(ei) - \beta 

l\sum 
i=1

ei\phi q+1(ei)(4.3)

.
= \^V1 + \^V2 + \^V3 + \^V4.

Similar to the analysis in the above section, if the graph \scrG (A) is strongly connected
and undirected we have

(4.4) \^V1 + \^V3 \leq  - 1

2
\lambda 

p+1
2

1 (2V )
p+1
2 .
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Let \beta i = \beta when i \in \scrI c and \beta i = 0 while i \in \scrI c, thus

\^V2 + \^V4 =

N\sum 
i=1

ei

N\sum 
j=1

aij\phi q+1(ej  - ei) - 
N\sum 
i=1

\beta iei\phi q+1(ei)

=  - 1

2

N\sum 
i=1

\left[  N\sum 
j=1

aij | ej  - ei| q+1 + 2\beta i| ei| q+1

\right]  (4.5)

=  - 1

2

N\sum 
i=1

\left[  N\sum 
j=1

(a
1

q+1

ij | ej  - ei| )q+1 + ((2\beta i)
1

q+1 | ei| )q+1

\right]  .
From Lemma A.3, we obtain

(4.6) \^V2 + \^V4 \leq  - 1

2
N

1 - q
2

\left(  N\sum 
i,j=1

a
2

q+1

ij | ej  - ei| 2 +
N\sum 
i=1

(2\beta i)
2

q+1 | ei| 2
\right)  

q+1
2

.

Let cij = a
2

q+1

ij ; then the matrix C = (cij) can be regarded as the adjacency matrix
of a graph \scrG (C). Let LC denote the Laplacian matrix of the graph \scrG (C). Then,
according to Lemma A.1,

(4.7)

N\sum 
i=1

N\sum 
j=1

a
2

q+1

ij | ej  - ei| 2 = 2eTLCe.

Define D\beta = diag
\bigl( 
(2\beta )

2
q+1 , . . . , (2\beta )

2
q+1\underbrace{}  \underbrace{}  

l

, 0, . . . , 0\underbrace{}  \underbrace{}  
N - l

\bigr) 
; then we have

(4.8)

N\sum 
j=1

(2\beta i)
2

q+1 | ei| 2 = eTD\beta e.

From (4.6) and (4.8), we have

(4.9) \^V2 + \^V4 \leq  - 1

2
N

1 - q
2

\bigl[ 
eT (2LC +D\beta )e

\bigr] q+1
2 .

If the graph \scrG (A) is undirected and strongly connected, then the graph \scrG (C) is
undirected and strongly connected as well. Then, from Lemma A.5, the matrix 2LC+
D\beta is positive definite. Hence,

(4.10) \^V2 + \^V4 \leq  - 1

2
N

1 - q
2 (\mu 1e

T e)
q+1
2 =  - 1

2
N

1 - q
2 \mu 

q+1
2

1 (2V )
q+1
2 ,

where \mu 1 = \lambda min(2LC +D\beta ).
Combining (4.4) and (4.10), we have

(4.11)
dV

dt
\leq  - 2

p - 1
2 \lambda 

p+1
2

1 V
p+1
2  - 2

q - 1
2 N

1 - q
2 \mu 

q+1
2

1 V
q+1
2 .

Therefore, from Lemma A.7, we have

V (t) \equiv 0 \forall t \geq \^T,
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and the settling time is estimated by

(4.12) \^T \leq 2

\biggl[ 
1

\kappa (1 - p)
+

1

\varrho (q  - 1)

\biggr] 
,

where \kappa = 2
p - 1
2 \lambda 

p+1
2

1 and \varrho = 2
q - 1
2 N

1 - q
2 \mu 

q+1
2

1 . Therefore, the above performed argu-
ment leads to the following theorem.

Theorem 4.2. Consider the multiagent system (2.1) with topology \scrG (A). Suppose
that the graph \scrG (A) is undirected and strongly connected. Then, under the pinning
protocol (4.1), the multiagent system (2.1) can reach the fixed-time consensus. And
the settling time satisfies the inequality (4.12).

Remark 4.3. The estimation of the settling time for the fixed-time consensus in
(4.12) depends on the control parameters p, q and the eigenvalues \lambda 1, \mu 1. As shown
in Remark 3.3, both \lambda 1 and \mu 1 depend on the number of pinned nodes. In section 5,
we will numerically show that the settling time of the fixed-time consensus decreases
with increasing pinned nodes.

4.2. Fixed-time stochastic consensus. To investigate the impact of envi-
ronmental noise on the fixed-time stochastic consensus, we consider the following
stochastic consensus protocol:

(4.13)

ui =  - (LAx)i  - (\Delta p+1x)i  - (\Delta q+1x)i + \gamma 
\sum 
j\in \scrN i

\sigma ij(xj  - xi)\xi i(t)

 - k(xi  - x\ast ) - \alpha \phi p+1(xi  - x\ast ) - \beta \phi q+1(xi  - x\ast ), i \in \scrI c,

ui =  - (LAx)i  - (\Delta p+1x)i  - (\Delta q+1x)i + \gamma 
\sum 
j\in \scrN i

\sigma ij(xj  - xi)\xi i(t), i \in \scrI c.

where 0 < p < 1, q > 1, \gamma > 0. Therefore, we have the following error systems:

(4.14)

\.ei =  - (LAe)i  - (\Delta p+1e)i  - (\Delta q+1e)i + \gamma 
\sum 
j\in \scrN i

\sigma ij(ej  - ei)\xi i(t)

 - kei  - \alpha \phi p+1(ei) - \beta \phi q+1(ei), i \in \scrI c,

\.ei =  - (LAe)i  - (\Delta p+1e)i  - (\Delta q+1e)i + \gamma 
\sum 
j\in \scrN i

\sigma ij(ej  - ei)\xi i(t), i \in \scrI c.

With the same Lyapunov function as in (3.4), the diffusion operator \scrL defined in
(A.3) on to the function V (t) along the error system (4.14) gives

\scrL V (t) =  - 
N\sum 
i=1

ei(LAe)i +

N\sum 
i=1

ei

N\sum 
j=1

aij\phi p+1(ej  - ei)

+
\gamma 2

2

N\sum 
i=1

\bigl[ 
(L\Xi )ie

\bigr] 2  - k

l\sum 
i=1

e2i  - \alpha 

l\sum 
i=1

ei\phi p+1(ei)(4.15)

+

N\sum 
i=1

ei

N\sum 
j=1

aij\phi q+1(ej  - ei) - \beta 

l\sum 
i=1

ei\phi q+1(ei).

Combining (3.20), (3.21), (3.22), and (4.10), we have
(4.16)

\scrL V \leq  - 2\lambda min(LA +Dk)V + \gamma 2\lambda 2max(L\Xi )V  - 2
p - 1
2 \lambda 

p+1
2

1 V
p+1
2  - 2

q - 1
2 N

1 - q
2 \mu 

q+1
2

1 V
q+1
2 .
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If \gamma 2\lambda 2max(L\Xi ) \leq 2\lambda min(LA +Dk), then we have

(4.17) \scrL V \leq  - 2
p - 1
2 \lambda 

p+1
2

1 V
p+1
2  - 2

q - 1
2 N

1 - q
2 \mu 

q+1
2

1 V
q+1
2 .

By Lemma A.11, V (t) converges to zero in the fixed time with probability one, i.e., the
multiagent system (2.1) reaches the fixed-time stochastic consensus, and the settling
time is estimated by

(4.18) \BbbE (T1) \leq 2

\biggl[ 
1

\kappa (1 - p)
+

1

\varrho (q  - 1)

\biggr] 
.

Thus, from the above analysis, we can get the following result on the fixed-time
stochastic consensus.

Theorem 4.4. Consider the multiagent system (2.1) with topology \scrG (A). Suppose
that the graph \scrG (A) is undirected and strongly connected. Suppose that \Xi = \Xi T and
\gamma 2\lambda 2max(L\Xi ) \leq 2\lambda min(LA+Dk). Then, under the pinning protocol (4.13), system (2.1)
can reach the fixed-time stochastic consensus and the stochastic settling time can be
estimated by the inequality (4.18).

5. Simulation results. In this section, some numerical simulations will be given
to verify the theoretical results established in previous sections. In all the simulations,
we take the undirected and strongly connected scale-free networks as the network
topologies with N = 200 and mean degree \langle d\rangle = 10. All the scale-free networks are
generated by using the algorithm in [4]. The strength of noise is \sigma ij = \sigma 0 = 1.5 if
and only if aij > 0. The desirable state x\ast of the system is 0.5. The initial states of
multiagent networks are uniformly taken from the interval [ - 1, 1].

First, we randomly select ND nodes as pinned nodes. Let nD = ND/N be the
density of pinned nodes. All edges have weight 0.1. Taking \alpha = \beta = 0.5, k = 0.1, p =
0.9, q = 1.1, nD = 0.2, \sigma 0 = 1.0, Figures 1 and 2 display the evolutions of the states
x(t) and the consensus indicator E(t) = 1

N

\sum N
i=1 | xi(t)  - x\ast | for the finite-time and

fixed-time consensus, respectively. It is shown that the finite-time and fixed-time
consensus are achieved with the proposed pinning protocols. According to (3.14) and
(4.12), the theoretical upper bounds of the settling time for the finite-time and fixed-
time consensus are 150.57 and 296.93, respectively. The settling times of Figure 1(a)
and (b) are 36.73 and 23.59, respectively. The settling times of Figure 2(a) and (b)
are 18.13 and 14.18, respectively. Clearly, the numerical settling times of Figures 1
and 2 are far less than the theoretical upper bounds. Compared with the finite-time
protocols, the fixed-time protocols contain extra control terms. Thus, as shown in
Figures 1 and 2, systems with fixed-time protocols converge faster than systems with
finite-time protocols.

The theoretical results in the above sections show that the upper bound of the
settling time for the finite-time and fixed-time consensus is inversely proportional
to the values of \lambda 1 and \mu 1. In Figure 3, we plot \lambda 1 and \mu 1 as a function of nD,
respectively. It can be seen that both \lambda 1 and \mu 1 are increasing functions of nD, which
means that the settling time may decrease by increasing the number of controlled
nodes. This is confirmed by Figure 4, where we plot the settling time estimated
from numerical simulations as a function of the density of pinned nodes. We also
observe the decrease of the settling time with increasing density of pinned nodes,
which implies that controlling more nodes can reduce the settling time significantly.
Figure 4 shows that, for given nD, the fixed-time consensus protocol takes less time
than the finite-time consensus protocol.
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Fig. 1. (a) Finite-time consensus for multiagent system (2.1) with protocol (3.2). (b) Fixed-
time consensus for multiagent system (2.1) with protocol (4.1). The parameter values used are
N = 200, \alpha = \beta = 0.5, p = 0.9, q = 1.1. All the edges have weight 0.1 and the density of pinned
nodes is nD = 0.2.

(a) (b)

Fig. 2. (a) Finite-time stochastic consensus for multiagent system (2.1) with protocol (3.15).
(b) Fixed-time stochastic consensus for multiagent system (2.1) with protocol (4.13). Here the
parameters are N = 200, \alpha = \beta = 0.5, k = 0.1, p = 0.9, q = 1.1, and \sigma 0 = 1.0. All the edges have
weight 0.1 and the density of pinned nodes is nD = 0.2.
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Fig. 3. The impact of the density of pinned nodes on \lambda 1 and \mu 1. (a) \lambda 1 versus nD for scale-free
networks with N = 200, p = 0.5, and \alpha = 0.5, 1.0, 1.5; (b) \mu 1 versus nD for scale-free networks with
N = 200, q = 1.5, and \beta = 0.5, 1.0, 1.5. All the edges have weight 0.1 and the results are averaged
over 100 realizations.
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Fig. 4. Settling time as a function of the density of pinned nodes for multiagent systems with
finite-time (squares) and fixed-time (circles) consensus protocols. The other parameter values are
the same as those in Figure 1 and the results are averaged over 100 realizations.
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Fig. 5. The impact of parameters p, q on the convergence rate of fixed-time consensus. (a)
The variations of consensus indicator E(t) of multiagent networks with \alpha = \beta = 0.5, q = 1.1, and
p = 0.3, 0.5, 0.7, 0.9. (b) The same as (a) but for networks with p = 0.9 and q = 1.1, 1.5, 2.0, 2.5. All
the edges have weight 0.1 and the density of pinned nodes is nD = 0.2.

To further verify the influence of the control parameters p, q on the settling time,
we simulate the multiagent systems with fixed-time protocol (3.15) by taking different
values of p, q. Figure 5(a) displays the evolutions of the consensus indicator E(t)
with p = 0.3, 0.5, 0.7, 0.9 and q = 1.1. It is shown that the smaller the parameter
p, the faster the fixed-time consensus can be reached. Taking p = 0.9 and q =
1.1, 1.5, 2.0, 2.5, the simulation results in Figure 5(b) imply that, for given parameter
p, the settling times for networks with different values of q are very similar. Thus, the
convergence rate for the fixed-time consensus depends weakly on the parameter q.

Finally, we investigate the effect of parameters \alpha , \beta on the settling time of fixed-
time consensus. For given density of pinned nodes, Figure 3 shows that \lambda 1 is an
increasing function of the parameter \alpha , and \mu 1 is an increasing function of the param-
eter \beta . The simulation result in Figure 6(a) implies that the larger the \alpha , the faster
the consensus can be realized. Figure 6(b) shows that the settling time is weakly
influenced by the parameter \beta . In order to make the settling time independent of
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Fig. 6. The impact of parameters \alpha , \beta on the convergence rate of fixed-time consensus. (a)
The variations of consensus indicator E(t) of multiagent networks with p = 0.9, q = 1.1, \beta = 0.5,
and \alpha = 0.5, 1.0, 1.5. (b) The same with (a) but for networks with p = 0.9, q = 1.1, \alpha = 0.5, and
\beta = 0.5, 1.0, 1.5. All the edges have weight 0.1 and the density of pinned nodes is nD = 0.2.

the initial value, we proposed the fixed-time protocol (4.1) by adding the additional
control term on the finite-time protocol. Note that | x| q < | x| p when | x| < 1 and
0 < p < 1 < q. Thus, compared with the control input \phi p+1(xi  - x\ast ), the control in-
put \phi q+1(xi - x\ast ) becomes very small when the error approaches zero. Therefore, the
simulation results in Figures 4, 5, and 6 show that the settling time depends mainly
on the parameters of the finite-time control term.

6. Conclusion. In this paper, we have investigated the finite-time and fixed-
time consensus problem of multiagent systems with pinning control and noise pertur-
bation. Both the theoretical and numerical results show that if the network topology
is undirected and strongly connected, the multiagent systems can reach the finite-time
and fixed-time consensus. The results in this paper complement and extend existing
results. Also, we have showed that the graph (p + 1)-Laplacian plays a crucial role
when considering consensus in network systems. Indeed, unlike linear protocols with
the standard graph Laplacian for the asymptotic consensus, protocols with the graph
(p+1)-Laplacian are able to solve the finite-time and fixed-time consensus problems.
Compared with the consensus protocols without pinning control, the proposed finite-
time and fixed-time pinning protocols are practical and show some advantages from
a physical viewpoint of energy consumption, since it only needs to control a small
fraction of agents. We found that, for given density of pinned nodes, the settling time
of the fixed-time consensus is less than that of the finite-time consensus.

How to minimize the energy and time cost is an important issue in network con-
trol theory. In our previous work [33], we found that, for networks without pinning
control, there is a trade-off between time and energy cost. For the multiagent net-
works with pinning control, it is very important to find the optimal number of nodes
to minimize the time and energy cost. In addition, communication time delays due
to finite information transmission and processing speed may arise naturally [34, 13].
Therefore, studying finite-time and fixed-time pinning consensus of time-delayed mul-
tiagent systems is important. The protocols designed in this paper can make all agents
converge to the same state, which is usually called the ``complete consensus."" How-
ever, in more realistic situations, a group of agents may evolve into several subgroups
where the consensus is achieved in each subgroup. As a result, agents in different
subgroups may evolve toward different states, which is known as the ``cluster consen-
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sus."" The protocols proposed in this paper can also be used to investigate the ``cluster
consensus."" These problems are our future research direction.

Appendix A. Lemmas. The following results are useful in order to prove the
theorems outlined in the text.

Lemma A.1 (see [41, 15]). If the graph \scrG (A) is strongly connected, then the
eigenvalue 0 of the graph Laplacian LA is algebraically simple and all other eigenvalues
are with positive real parts. If \scrG (A) is also undirected, then \xi TLA\xi =

1
2

\sum N
i,j=1 aij(\xi j - 

\xi i)
2, where \xi = (\xi 1, . . . , \xi N )T \in \BbbR N .

Lemma A.2 (see [19]). Suppose function \psi satisfies \psi (xi, xj) =  - \psi (xj , xi) \forall i, j \in 
\{ 1, . . . , N\} , i \not = j. Then for any undirected graph \scrG (A) and a group of numbers
y
1
, y

2
, . . . , y

N
,

N\sum 
i,j=1

aijyi\psi (xj , xi) =  - 1

2

N\sum 
i,j=1

aij(yj  - yi)\psi (xj , xi).

Lemma A.3 (see [15]). Let z \in \BbbR n and 0 < r < s. Then the following norm
equivalence property holds: \Biggl( 

n\sum 
i=1

| zi| s
\Biggr) 1

s

\leq 

\Biggl( 
n\sum 

i=1

| zi| r
\Biggr) 1

r

and \Biggl( 
1

n

n\sum 
i=1

| zi| s
\Biggr) 1

s

\geq 

\Biggl( 
1

n

n\sum 
i=1

| zi| r
\Biggr) 1

r

.

Definition A.4. Let M = (Mij) \in \BbbR n\times n and R\prime 
i(M) =

\sum n
j=1,j \not =i | Mij | . We say

that matrix M is irreducibly diagonally dominant if
(a) M is irreducible;
(b) M is diagonally dominant, that is, | Mii| \geq R\prime 

i(M) \forall i = 1, 2, . . . , n; and
(c) for at least one value of i we have | Mii| > R\prime 

i(M).

Lemma A.5 (Taussky's theorem [18, p. 363]). Let M = (Mij) \in \BbbR n\times n be irre-
ducibly diagonally dominant. If M is Hermitian (or more generally, if A has only real
eigenvalues), and if all main diagonal entries are strictly positive, then all eigenvalues
of M are strictly positive.

Lemma A.6 (see [5]). Assume that the positive Lyapunov function V (x) is de-
fined on a neighborhood U of the origin, and

\.V (x) \leq  - \alpha V p(x), 0 < p < 1,

where \alpha > 0, then

V (x) \equiv 0 \forall t \geq T (x0)

and the settling time T (x0) can be bounded from above as

T (x0) \leq 
V 1 - p(x0)

\alpha (1 - p)
.
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Lemma A.7 (see [31]). Consider the following equation:

(A.1) \.x = f(t, x), x(0) = x0,

where x \in \BbbR n and f : \BbbR +\times \BbbR n \rightarrow \BbbR n is a nonlinear continuous function. Assume the
origin is an equilibrium point of (A.1). If there exists a continuous radially unbounded
function V : \BbbR n \rightarrow \BbbR + \cup \{ 0\} such that

(i) V (z) = 0 \Leftarrow \Rightarrow z = 0,
(ii) for some positive numbers \kappa , \varrho > 0, 0 < p < 1 < q, any solution z(t) satisfies

the inequality
\.V (z(t)) \leq  - \kappa V p(z(t)) - \varrho V q(z(t)),

then the origin is globally fixed-time stable and V (t) \equiv 0 if

t \geq 1

\kappa (1 - p)
+

1

\varrho (q  - 1)
.

To investigate the finite-time and fixed-time stochastic consensus, we need the
following definitions and lemmas.

Consider an n-dimensional stochastic differential equation:

(A.2) dx = f(x)dt+ g(x)dW (t),

where x \in \BbbR n is the state vector,W (t) is anm-dimensional standard Brownian motion
defined on a complete probability space (\Omega ,\scrF ,\scrP ) with the natural filtration \{ \scrF t\} t\geq 0

generated by W (t), and f : \BbbR n \rightarrow \BbbR n and g : \BbbR n \rightarrow \BbbR n\times m are Borel measurable,
continuous in x, and satisfy f(0) = 0, g(0) = 0 \forall t \geq 0. Clearly, (A.2) admits a trivial
zero solution. For a twice continuously differentiable function V , the second-order
differential operator of V with respect to (A.2) is defined as follows:

(A.3) \scrL V =
\partial V

\partial x
\cdot f +

1

2
trace

\biggl[ 
gT
\partial 2V

\partial x2
g

\biggr] 
.

Definition A.8 (see [43]). The trivial solution of system (2.1) is said to be finite-
time stable in probability if the solution exists for any initial state x0 \in \BbbR n, denoted
by x(t, x0), and the following statements hold:

(i) Finite-time attractiveness in probability: For every initial value` x0 \in \BbbR n\setminus \{ 0\} ,
the first hitting time \tau x0 = inf\{ t| x(t, x0) = 0\} , which is called the stochastic
settling time, is finite almost surely, i.e., P\{ \tau x0

<\infty \} = 1.
(ii) Stability in probability: For every pair of \varepsilon \in (0, 1) and \vargamma > 0, there exists a

\delta = \delta (\varepsilon , \vargamma ) > 0 such that P\{ | x(t, x0)| < \vargamma \forall t \geq 0\} \geq 1 - \varepsilon , whenever | x0| < \delta .

Definition A.9 (see [43]). A function \nu : \BbbR + \rightarrow \BbbR + is said to be a class \scrK 
function if it is continuous, strictly increasing, and \nu (0) = 0. A class \scrK function is
said to belong to class \scrK \infty if \nu (r) \rightarrow \infty as r \rightarrow \infty .

Lemma A.10 (see [43]). Assume that (A.2) admits a unique solution. If there
exists a twice continuously differentiable function V : \BbbR n \rightarrow \BbbR +, \scrK \infty class functions
\nu 1 and \nu 2, and positive constants \eta > 0 and 0 < \rho < 1, such that \forall x \in \BbbR n and t \geq 0,

\nu 1(x) < V (x) < \nu 2(x),

\scrL V (x) \leq  - \eta V \rho (x),

then the origin of system (A.2) is finite-time stable in probability, and the stochastic
settling time satisfies

\BbbE [T1(x0)] \leq 
V 1 - \rho (x0)

\eta (1 - \rho )
.
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For stochastic multiagent systems, the settling time function T1 not only depends
on the initial state x0 but also is a random variable. Hence, the finite-time property of
T1 ensues from 0 < \BbbE (T1) < +\infty . The stochastic Lyapunov theorem in Lemma A.10
can be regarded as the stochastic counterpart of the finite-time stability theorem for
deterministic nonlinear systems in Lemma A.6. The assumption of the uniqueness of
solution for the stochastic system (A.2) has been slightly relaxed in [42] and only the
existence of a solution is required. The following Lyapunov theorem is proposed in
[45] and will be used to investigate the fixed-time stochastic consensus problem.

Lemma A.11 (see [45]). Consider system (A.2). If there exists a regular, positive
definite, and radially unbounded function V : \BbbR n \rightarrow \BbbR + and positive constants \kappa , \varrho >
0, 0 < p < 1 < q such that

\scrL V (x) \leq  - \kappa V p(t) - \varrho V q(t) \forall x \in \BbbR n,

then the origin of system (A.2) is globally stochastically fixed-time stability in proba-
bility, and the stochastic settling time satisfies

\BbbE [T1] \leq 
1

\kappa (1 - p)
+

1

\varrho (q  - 1)
.
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