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A B S T R A C T

Internationally, policy makers are increasingly focussed on reducing the detrimental consequences and rising

costs associated with unhealthy diets, inactivity, smoking, alcohol and other risk factors on the health of their

populations. This has led to an increase in the demand for evidence-based, cost-effective Population Health

Interventions (PHIs) to reverse this trend. Given that research designs such as randomised controlled trials

(RCTs) are often not suited to the evaluation of PHIs, Natural Experiments (NEs) are now frequently being used

as a design to evaluate such complex, preventive PHIs. However, current guidance for economic evaluation

focusses on RCT designs and therefore does not address the specific challenges of NE designs. Using such gui-

dance can lead to sub-optimal design, data collection and analysis for NEs, leading to bias in the estimated

effectiveness and cost-effectiveness of the PHI. As a consequence, there is a growing recognition of the need to

identify a robust methodological framework for the design and conducting of economic evaluations alongside

such NEs. This paper outlines the challenges inherent to the design and conduct of economic evaluations of PHIs

alongside NEs, providing a comprehensive framework and outlining a research agenda in this area.

1. Introduction

Evaluating the effectiveness and cost-effectiveness of Population

Health Interventions (PHIs) has become an area of increasing interest

for researchers and decision makers. The UK's National Institute for

Health and Care Excellence (NICE) recently updated their methods

guidance to account for the specific requirements of PHIs economic

evaluation (e.g. broader cost-benefit framework)(NICE, 2012, 2014). In

line with this, and very much in tune with the increased attention being

paid to the broader topic of ‘The Economics of Prevention’ (Merkur

et al., 2013) there has been an increase in both applied and methodo-

logical research on the economic evaluation of PHIs (Carter et al., 2009;

Edwards et al., 2013; Greco et al., 2016; McDaid et al., 2015; Tudor

Edwards and McIntosh, 2018; Weatherly et al., 2009).

Given the complex nature of many PHIs (Byford and Sefton, 2003;

Smith and Petticrew, 2010) in addition to the complexity of systems

within which they are delivered (Shiell et al., 2008), the identification

of a credible causal effect is a key methodological issue. Randomised

controlled trials (RCTs) have traditionally been regarded as the ‘gold

standard’ methodology for estimating the causal effects of PHIs (Bonell

et al., 2011). The attractiveness of RCTs stems mainly from

randomisation, resulting in a ‘closed’ system, where researchers can

control exposure of participants to the intervention or to the control

group, eliminating or controlling those factors which have been re-

tained to be potential confounders (McDonnell et al., 2009). This results

in the most important advantage of RCTs, namely protection against

selection bias due to observed and unobserved differences between

treatment groups.

The researcher's control within an RCT design also extends to data

collection, which can be tailored to directly measure outcomes and

costs deemed to be relevant for the economic evaluation, as well as

identify potential confounders, that may need to be adjusted for, to

increase the precision of estimates.

However, randomisation might be neither practical, nor ethical for

PHIs, which are often not amenable to standard evaluation metho-

dology (Craig et al., 2008; Manca and Austin, 2008). Furthermore,

randomisation per se does not guarantee unbiased estimates of average

treatment effects (ATEs) in every setting, (for example because of

practical failures to balance treatment and control groups or non-ad-

herence to treatment), thus ruling out the superiority of RCT with re-

spect to other methodologies to estimate the causal effect (Deaton and

Cartwright, 2018). In such situations, natural experiments (NEs) can
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provide a viable alternative ‘vehicle’ for evaluation and economic

evaluation.

NEs can be defined as “naturally occurring circumstances in which

subsets of a population have different level of exposure to a supposed

causal factor, in a situation resembling an actual experiment where

human subjects would be randomly allocated to groups”(Last et al.,

2001). Unlike RCTs, NEs have a non-randomised design, where as-

signment to intervention cannot be controlled by the researcher, in-

stead the ‘intervention’ and ‘control’ groups are distinguished with re-

spect to observable and unobservable factors that may be related to the

outcome of interest (Deeks et al., 2003). Non-randomisation represents

a threat to internal validity, and a credible source of exogenous varia-

tion (e.g. random geographical and temporal variations in the avail-

ability of the intervention) is required to be able to identify the true

causal effect (Meyer, 1995). In NEs, since the researcher cannot control

the source of randomness, the use of statistical designs and methodol-

ogies to deal with any resulting selection bias is advocated.

Despite arguably lower internal validity however NEs have the po-

tential for a higher external validity and higher “real world” relevance

than RCTs (Baltussen et al., 1999). For these reasons, this methodology

is increasingly being adopted for the evaluation of PHIs (Craig et al.,

2017). Existing guidance for designing, conducting and reporting eco-

nomic evaluations alongside RCTs (Drummond et al., 2015; Glick et al.,

2007; Husereau et al., 2013) do not address the specific challenges of

economic evaluation alongside NEs. In addition, existing literature on

conducting evaluations of NEs is scant and focuses on effectiveness only

(e.g. Craig et al. (2017)). A related literature explores specific statistical

and econometric issues inherent to non-randomised studies, for eco-

nomic evaluations (Kreif et al., 2013a; Rovithis, 2013), but does not

explore the specific issues related to PHIs.

Following general RCT guidelines does not account for the specific

challenges of NEs in the design and conduct of economic evaluation of

PHIs such as identifying appropriate sources of linked data from the

early stage of design, encompassing methodologies to reduce selection

bias into a cost-effectiveness framework and incorporating externalities

and spatial spillovers using observational data sources. This could lead

to a biased estimation of the causal effect of the intervention thus

lowering the quality of evidence on effectiveness and cost-effectiveness.

Drawing on equivalent standards available for reporting and pre-

senting the results of economic evaluation alongside RCTs (Husereau

et al., 2013), this paper formally contrasts established methods and

guidance for conducting cost-effectiveness analysis (CEA) alongside

RCTs in a bid to emphasise key differences with NEs. In doing so, we

review existing literature, identify gaps in existing methodological re-

search and provide a framework to guide the researcher from the early

design phase through to conducting the economic evaluation, including

a set of recommended best practices: the selection of multiple com-

parisons groups; identification of the most appropriate sources of data

to conduct the economic evaluation; appropriate sensitivity analysis

using different comparison groups/different methodologies; use of de-

cision modelling; inclusion of an economic logic model. From this ex-

ercise we develop a critical appraisal checklist with the aim to outline

the specific requirements for designing and conducting economic eva-

luations alongside NEs. This checklist can also be used as a practical

tool for improving the quality and consistency of economic evaluations

alongside NEs.

2. Methods

A targeted scoping review of existing literature and reporting

guidelines was carried out to identify the key methodological issues

inherent to the economic evaluation of PHIs alongside NEs (details are

provided in the online appendix, A2).

This literature review is accompanied by a critical review of the

most common reporting guidelines: CHEERS (Husereau et al., 2013),

STROBE (Von Elm et al., 2014) and TREND (Des Jarlais et al., 2004).

CHEERS summarizes a comprehensive set of well-established best

practices covering economic evaluations alongside RCTs. STROBE and

TREND, while not considering economic evaluation, cover non-rando-

mised PHIs and observational studies framework, respectively.

All three guidelines were critically reviewed in terms of their ap-

plicability and relevance for economic evaluations in NEs and synthe-

sised to identify best practices for reporting economic evaluations in

NEs. Every item listed in the three guidelines has been critically as-

sessed in relation to existing literature on NEs and PHIs e.g. (Craig

et al., 2017; Drummond et al., 2007; Lorgelly et al., 2010; Petticrew

et al., 2005; Weatherly et al., 2009) and good design, conduct and re-

porting standards for RCTs (Drummond et al., 2015; Glick et al., 2007;

Petrou and Gray, 2011). Only the items which were identified to be

relevant to evaluate PHIs alongside NEs were retained, while items

specific to RCTs or to other frameworks (e.g. observational studies ex-

ploring the association between a risk factor and a health outcome)

were discarded. An iterative approach was used to adapt and refine

existing reporting standards to our specific NE focus.

The output of the scoping review was a critical appraisal checklist of

good practice for designing and conducting economic evaluations

alongside NEs. The checklist comprises a set of recommendations,

corresponding to ten broad items, which have been described in rela-

tion to the challenges for the economic evaluation alongside NEs with

the view of emphasising key differences with respect to RCTs. Concrete

examples of economic evaluations alongside NEs from the literature,

when available, have been used throughout the paper to exemplify

adherence to this suggested set of best practices. The checklist has been

critically reflected upon by applying it to the economic evaluation of a

case study, the Healthy Start Voucher (HSV) scheme (Dundas et al.,

2014b), whose evaluation and economic evaluation has been funded by

the NIHR Public Health Research. A description of the HSV case study

and a practical application of the checklist to this specific case study

have been provided in the supplementary appendix A1.

3. Results

The scoping review resulted in the identification of four broad sets

of literature: i)research considering specific challenges in the economic

evaluation of PHIs (e.g. outcome measurement; intersectoral costs and

consequences; equity), but not specific to NEs, e.g. (Drummond et al.,

2007; Lorgelly et al., 2010; Smith and Petticrew, 2010; Weatherly et al.,

2009) ii) methodological research describing specific issues related to

the reduction of selection bias inherent to non-randomised studies in a

cost-effectiveness framework, (e.g Kreif et al. (2013a); Manca and

Austin (2008)); iii)research describing the benefits and challenges of

using NEs in PHIs, but not specifically referring to economic evaluation

(e.g. Craig et al. (2017); Petticrew et al. (2005)); iv)case studies of

economic evaluation of PHIs in a non-randomised context, (e.g.(Alfonso

et al. (2015); Leyland et al. (2017)). The analysis of reporting guide-

lines, complemented with a focussed revision of the literature, has re-

vealed a complete lack of comprehensive guidance on how to design

economic evaluations of PHIs alongside NEs. Table 1 lists items iden-

tified from this review.

As shown in Table 1, RCTs and NEs differ for most items, however

for items which do not differ, we refer readers to existing CHEERS

guidelines (Husereau et al., 2013). With many of the items listed

inTable 1 being correlated (e.g. the choice of an appropriate time

horizon relates to data availability, outcomes and costs) these were

grouped into ten categories pertinent to the design and conduct of

economic evaluations alongside NEs. Building on these ten items, a

critical appraisal checklist was developed addressing specific require-

ments for designing and conducting economic evaluations alongside

NEs (Table 2). The following sections describe the items presented in

the checklist, highlighting challenges, item-specific differences with the

RCT framework and providing practical examples.
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3.1. Category 1: data sources and measurement

It is usually unfeasible or unpractical in a NE setting to conduct

individual patient-level data collection tailored to the specific require-

ments for a health economic evaluation. Hence, using multiple, some-

times linked, observational data sources (e.g. surveys, registries, ad-

ministrative records or census data) will likely represent standard

practice. The choice of observational data sources should be justified in

relation to their capability to capture the broad spectrum of inter-

sectoral cost and consequence impacts often associated with PHIs (item

1.1.1). Furthermore, suitability of data sources in relation to the chosen

statistical approaches to reduce selection bias (e.g. longitudinal study

for a before/after approach; adequacy of sample size; availability of

suitable instruments for Instrumental Variable (IV) approach) should be

explicitly justified (item 1.1.2).

Leyland et al. (2017) evaluated the Health in Pregnancy (HiP) grant,

a universal conditional cash transfer, introduced for women reaching

the 25th week of pregnancy, with the aim of improving birth weight

and other birth outcomes. They used several data sources including a

maternity and neonatal database, morbidity records, mother's obstetric

records to capture relevant outcomes (e.g. birthweight; gestation at

booking, booking before 25 weeks) and costs (e.g. hospitalizations and

delivery costs) for all registered birthsacross the pre-intervention, in-

tervention and post-intervention period. The period covered by the

linked data was sufficiently long to exploit temporal variation, and

compare outcomes in periods immediately after the introduction of the

HiP grant with those periods before its introduction and after its

withdrawal.

The use of administrative data can often represent an advantage

over primary data collection, by overcoming issues of loss to follow-up

and low response rates, which can represent considerable challenges

when evaluating PHIs targeted towards disadvantaged populations

(Petticrew et al., 2005). Using routinely collected administrative data is

also likely to reduce measurement error and mitigate challenges of

recall bias inherent in survey data. Administrative data arguably pro-

vides fairly precise and objective estimates of healthcare usage and

costs incurred by the NHS, the healthcare provider, society and the

individual (Husain et al., 2012). Furthermore, observational data may

be available for a longer time span than data collected alongside short

follow up RCTs. This allows the researcher to track the identified target

population both prospectively and retrospectively (Husain et al., 2012).

Despite these advantages, there are challenges such as bureaucratic

procedures, anonymization, privacy and confidentiality requirements

which may cause delays in data availability (item 1.2).

In addition to handling attrition and missing values (item 1.3), the

researcher has to address issues which are more specific to observa-

tional data such as measurement errors in confounding variables, due to

discrepancies between the timing of the intervention and period of data

availability (item 1.4). Whilst the methodology employed to handle

missing data (e.g. multiple imputation) is often reported in economic

evaluations of PHIs alongside NEs (e.g. (Dundas et al., 2014a; Leyland

et al., 2017), only few examples address the possible bias arising from

specific issues related to observational data. For example, Alfonso et al.

(2015) address the potential bias stemming from different data sources

(household survey and health facility register) used to capture the main

outcome pre and post intervention.

3.2. Category 2: setting and location

Unlike RCTs, where the researcher decides the target population

and location, in a NE framework, setting and location are fixed and

determined by the intervention or policy being evaluated. The target

population may be defined by a policy-maker (who sets eligibility cri-

teria of the programme), potentially influenced by social or political

priorities. For example, a high maternal mortality rate motivated the

intervention evaluated by Alfonso et al. (2015), while concerns related

to the health of mothers of low socioeconomic background lead to the

design of the HiP evaluated by (Leyland et al., 2017). The researcher

needs to state these social and political priorities (item 2.1).

The use of secondary data sources typically allows the assessment of

effectiveness and cost effectiveness of the intervention over larger

sample size (often the entire population) than would be available in an

RCT, but these sources might also restrict the choice of target popula-

tion. For example, the choice of Scottish mothers even if the policy has

been implemented throughout the UK as target population for the

economic evaluation of HiP (Leyland et al., 2017) was driven not only

by the availability of high quality routine data, but also by the specific

characteristics of Scotland in terms of concentration of deprivation

Table 1

Reporting guidelines.

Item differs between RCTs and NEs Item is reported in the guideline

CHEERS TREND STROBE

Background/objectives Yes Yes Yes Yes

Target population Yes Yes Yes Yes

Sample size Yes No Yes Yes

Subgroup definition and analysis Yes Yes Yes Yes

Setting and location Yes Yes Yes Yes

Study perspective Yes Yes No No

Comparators Yes Yes Yes No

Time horizon/length of follow-up Yes Yes Yes Yes

Data sources/measurement Yes No No Yes

Choice of health outcomes Yes Yes Yes Yes

Measurement and valuation of preference based outcomes Yes Yes No No

Estimating resources and costs Yes Yes No No

Currency, price, date and conversion No Yes No No

Analytical methods Yes Yes Yes Yes

Methods to address confounding Yes No Yes Yes

Variables (outcomes, exposure, predictors, potential confounders, effect modifiers) Yes No No Yes

Bias and methodology to correct bias Yes No Yes Yes

Missing data imputation methods No Yes Yes Yes

Study parameters No Yes No No

Incremental costs and outcomes No Yes No No

Characterising uncertainty No Yes No Yes

Characterising heterogeneity No Yes Yes Yes

Discount rate No Yes No No
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Table 2

Checklist for the economic evaluation of PHIs alongside NEs.

Item description Has the study complied with the

item?

YES No NA

1. Data sources and measurement

1.1 The data used and the reason(s) why it has been chosen has been identified, stated and described in relation to:

1.1.1 all relevant intersectoral outcomes and costs being captured

1.1.2 implementation of the chosen statistical design

1.2 The application to routinely collected administrative data has been done on time to avoid delays in conducting economic

evaluations (e.g. due to bureaucratic procedures, anonymization, privacy and confidentiality requirements).

1.3 The study recognize and address attrition and missing data and its consequences for the health economics analysis (bias)

1.4 The study recognize and address measurement errors (e.g. due to discrepancies between the timing of the intervention

and period of data availability) and its consequences for the health economics analysis (bias)

2. Setting and location

2.1 Setting and location are stated and explained in relation to social and political priorities

2.2 The source of secondary data that best meets the economic evaluation needs in terms of setting and location has been

stated

2.3 Concurrent interventions have been:

2.3.1 Identified

2.3.2 Tackled with appropriate statistical analysis (e.g. robustness checks; subsample analysis)

2.4 Potential spillovers/externalities effects have been:

2.4.1 Identified through the usage of an economic evaluation logic model

2.4.2 Addressed through appropriate sensitivity analysis

3. Choice of comparators

3.1 The choice of comparators is justified in relation to reduction of selection bias due to non-randomisation, the unit of

assignment (individual or aggregate) and data availability

3.2 The existence of potential spillovers/crossovers has been considered in the choice of comparators

3.3 Multiple intervention/control groups have been used to examine sensitivity of the economic evaluation to multiple

sources of bias

4. Subgroups

4.1 If equity concerns are included in the economic evaluation, subgroups are defined in relation to distributional concerns

4.2 Potential behavioural responses (e.g. ‘nudge effects’), have been identified and measured

5. Outcome

5.1 An economic evaluation model mapping routinely collected intermediate outcomes to QALYs has been developed, using

additional evidence from systematic reviews to identify utility values.

5.2 An economic evaluation framework such as CCA, CBA or MCDA has been chosen and justified

6. Costs

6.1 Costing has been done considering a societal perspective

6.2 When unit cost data associated to a specific resource use are not available, a decision rule (e.g. usage of the average unit

cost of the most frequently used service) is explained and justified.

6.3 When specific categories of resource use are not publicly available a decision rule is explained and justified.

6.4 The opportunity cost of transfer payments (i.e. transfer of resources from the government to beneficiaries, with a null net

impact on society) has been identified and measured

7. Time horizon

7.1 Linked data are adequate to capture the presence of long term effects

7.2 Appropriate discount rates, in line with the most up to date guidance have been applied

8. Inclusion of a logic model

8.1. A logic model has been developed, and it addresses:

8.1.1 Time horizon(e.g. effects that would 'carry over' after the intervention ended)

8.1.2 possible subgroups effect

8.1.3 externalities and spillovers

9. Analytical methods

9.1 The researchers have justified the source of variation in the exposure to the intervention, choosing a design and a

statistical approach which is appropriate in relation to that source of variation.

9.1.1 If the study is a before after design frequent measurements of data on long pre-treatment time periods have been collected

9.2 Multiple statistical designs have been employed to examine the sensitivity of economic evaluation to multiple sources of

bias

9.3 The list of potential confounders has been presented

9.4 Causal effects have been interpreted considering potential contaminating policies

9.5 The interpretation of the estimated cost-effectiveness is in line with the estimated parameter

9.6 The methodologies to reduce selection bias have been incorporated into an economic evaluation framework, considering

health economics-specific challenges (i.e. skewed outcome and cost data, correlated outcome and cost data).

10. Uncertainty and sensitivity analysis

10.1 All sources of uncertainty have been identified using appropriate methods (e.g. probabilistic sensitivity analysis;

tornado diagrams)

10.2 Cost-effectiveness results according to the different analytical choices have been reported

10.3 Sensitivity analysis has been done in relation to:

10.3.1 assumptions made in relation to unit cost

10.3.2 potential spillovers

10.3.3 comparators

10.3.4 different designs

10.3.5 econometric methodology chosen

10.3.6 unobserved confounding

10.3.7 transfer payments and administrative costs
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(Leyland et al., 2017). Hence, the choice of a target population that best

meets the evaluation needs is important (item 2.2).

Identifying who is affected by the PHI in a NE framework is often

not straightforward, especially in relation to the complexity of PHIs,

which usually involve several interacting components (Craig et al.,

2008). Moreover in a real-world setting, several concurrent, interacting

policy interventions may be in place at the same time making it chal-

lenging to separately identify the effects of the different policies. Such

concurrent interventions should be identified (item 2.3.1), and mea-

sured by employing appropriate statistical analyses (e.g. robustness

checks; subsample analysis) (item 2.3.2). In the HiP study, the in-

troduction of the ban on smoking in enclosed public spaces in Scotland

was considered as a potentially contaminating policy and an analysis

that restricted pre-treatment periods to after the introduction of the

smoking ban was carried out. (Leyland et al., 2017).

The possibility of externalities (when producing or consuming a

good/intervention causes a positive or negative impact on third par-

ties), spillovers (wider health benefits), and ‘cross-over’ effects or

‘contamination’ (individuals from the control group migrating towards

the intervention group) while also possible in RCT settings, poses an

increased challenge for NEs (Petticrew et al., 2005). First, any treat-

ment ‘contamination’ can lead to misclassification of individuals into

intervention and control groups, Second, even if the intervention and

controls groups are well-defined, the effect a PHI may affect several

groups, or extend to individuals or areas, which are beyond the scope of

the intervention. While general frameworks to incorporate spill-over

effects within economic evaluations have been developed (e.g. Al-

Janabi et al. (2011)), these might require additional data collection

outwit the NEs framework which typically makes use of existing ob-

servational data sources.

The existence of cost and consequence spill-overs and externalities

could be identified using an economic evaluation logic model, (de-

scribed in Section 3.8) (item 2.4.1), and addressed through a sensitivity

analysis that would include a broad set of multi-sectoral costs and

outcomes into the analysis (item 2.4.2).

3.3. Category 3: comparators

The choice of intervention and control group is a major challenge in

non-randomised studies (Petticrew et al., 2005). In an evaluation of

NEs, this needs to be aligned with the choice of methodology to reduce

selection bias due to non-randomisation, the unit of assignment (in-

dividual or aggregate) and data availability (item 3.1).

It is important to choose the control group which maximises internal

validity, increasing a researcher's ability to attribute differences in

outcomes and costs to the intervention, and not to other confounding

factors. In this regards, the existence of spill-overs and contamination,

should be identified in the early stages of study design, in order to

identify the most appropriate sources of secondary data (item 3.2).

Hence, the use of multiple intervention/control groups is recommended

to examine the sensitivity of the economic evaluation to multiple

sources of bias (Craig et al., 2012; Meyer, 1995) (item 3.3).

3.4. Category 4: subgroups

Since many PHIs are often directed towards the reduction of health

inequalities (Cookson, 2016) identification of subgroups within an

economic evaluation of PHIs alongside NEs could be informed by

considerations of equity, in addition to efficiency considerations (item

4.1). In the case of HiP, given the potential of such an intervention to

have a greater effect in deprived subgroups, a subgroup analysis by

level of deprivation was a key component of the evaluation (Leyland

et al., 2017).

Considerations of equity in economic evaluations can be achieved

by identifying appropriate subgroups, incorporating value judgments or

employing methods that explicitly incorporate equity in the decision

making process such as Distributional Cost-Effectiveness analysis

(DCEA) (Asaria et al., 2016) or extended cost-effectiveness analysis

(Verguet et al., 2015).

Methods which specifically address equity concerns, such as DCEA,

are preferred to subgroup analysis if there is potential that the inter-

vention generates an unfair health distribution. However, these

methods might be more burdensome in terms of data and computa-

tional requirement and may not be feasible when using observational

data.

Identification of subgroups would also allow researchers to disen-

tangle potential behavioural responses, such as ‘nudge effects’ that may

arise alongside the intervention. While such nudge effects are rarely

investigated alongside economic evaluations, they could be used for

developing more effective PHIs. It is recommended that researchers

complement the traditional economic evaluation methods with the

additional of behavioural economic insights by identifying and mea-

suring the existence of potential nudge effects within the PHI (item 4.2).

3.5. Category 5: outcomes

Within prospectively designed economic evaluations alongside

RCTs researchers typically include a preference based measure of out-

come such as the EuroQol EQ-5D (EuroQol Group, 2015) to facilitate

calculation of Quality Adjusted Life Years (QALYs). Furthermore,

measures that capture spillover QOL effects (e.g. to family members,

carers etc.) such as the Carer Experience Scale (CES) (Al-Janabi et al.,

2011) can be included. However, without researcher input in the design

of outcomes, preference-based outcomes may not be routinely col-

lected, relying on intermediate outcomes. As such, researchers typically

focus on the causal effect of the program on intermediate outcomes

(e.g. birth weight in the HiP (Leyland et al., 2017). These could sub-

sequently be mapped to generic health measures such as QALYs or

Disability Adjusted Life Years (DALYs) using a decision analytical

model (Briggs et al., 2006)(item 5.1).

A focus on unidimensional outcomes may be too narrow in PHIs

where a battery of multi-sector outcomes may be relevant for inclusion,

using a broader societal perspective including benefits to patients,

carers and the whole society. For example, PHIs aimed at improving

infant mental health result in long term improvements in infant health,

educational attainment and employment prospects (Deidda et al.,

2018)). This justifies collecting a wide range of outcomes, and the use

of broader evaluation frameworks such as cost-benefit analysis (CBA)

(Tudor Edwards and McIntosh, 2018), cost-consequence analysis (CCA)

(as recommended by the NICE public health economic evaluation gui-

dance) or multi-criteria decision analysis (Marsh et al., 2016) (MCDA).

Specifically, MCDA would facilitate the identification and measurement

of a plethora of outcomes which are relevant to decision makers,

weighting and valuing each of them with methods such as discrete

choice experiments (DCEs).

While these methods can be also used in a RCT framework to

complement the primary cost-utility analysis-, an increased use of

available secondary data in NE's is likely to justify further use of CBA,

CCA and MCDA (item 5.2).

3.6. Category 6: estimating resources and costs

A societal perspective is recommended best practice for economic

evaluations of PHIs (NICE, 2012, 2014), given the inter-sectoral costs

often associated with PHIs (item 6.1).

Routinely collected data may not allow for the identification of

specific resource use data; e.g. individuals may be asked about hospital

length of stay, without any detail on specialty or Health Related Group

(HRG). Conditional on the available information from several sources

(administrative data, published reports and literature) we recommend

that the researcher employs a decision rule for such proxy valuation

such as using the average unit cost of the most frequently used service
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or choosing the maximum/minimum among a set of available unit costs

(items 6.2 and 6.3). The choice should reflect the compilation of a

standard ‘average’ unit cost.

Transfer payments (transfer of resources from the government to the

beneficiaries with null net impact on society) will not be included, even

when a broad societal perspective is considered, and the impact of the

intervention on how resources are distributed is not taken into account

(Byford et al., 2003). However, it may still be informative to identify

and measure the opportunity cost or ‘benefits forgone’ of these pay-

ments in view of the value attached by the society to the redistribution

of wealth in sensitivity analyses (item 6.4).

3.7. Category 7: time horizon

The choice of a time horizon ought to account for the presence of

long term effects that may ‘carry over’ after an intervention ended. This

is particularly relevant for PHIs, where the outcomes of such ‘pre-

ventive’ interventions may arise in the future. Unlike RCTs, where the

length of time horizon is often constrained (Manca and Austin, 2008),

and long term effects can only be identified using extrapolation through

decision modelling, NE designs may facilitate a longer time horizon for

data collection. This would allow data to capture the, often elusive,

long term impacts of PHIs which may be incorporated into a long term

decision analytical model, developed following best practices for such

complex PHIs (Squires et al., 2016).

To this end, while effects carrying over after the intervention end

are not specific to NEs, stating suitability of linked data to capture these

effects within a NE framework is strongly recommended in order to

adequately take these effects into account.

If it is likely that an intervention has an effect that would ‘carry

over’ after an intervention ends, the time horizon should be adjusted to

take these effects into account, and should be reflected in the choice of

adequate data. If the available data do not allow to follow-up for a time

span that would capture such effects, or if the information about long

term outcomes of the intervention is not present, the use of external

sources is recommended (item 7.1).

In the event of longer term outcomes, discount rates in line with

most recent guideline (NICE, 2014) should be applied to costs and

benefits (item 7.2).

3.8. Logic models and economic evaluations

Within the complex framework of PHIs and NEs, an economic

evaluation logic model (NICE, 2014) represents a useful tool to describe

anticipated causal pathways and inter-relationships of resource use and

outcomes, providing guidance the choice of data collection identifying

the behaviour change induced by the intervention, the factors that exert

influence on program effectiveness and cost-effectiveness at different

levels (individual, social, group level)(e.g. (Deidda et al., 2018).

Despite its role in depicting complexity of PHIs evaluated alongside

NEs, thus potentially guiding the researcher from the early stages of

design, the economic evaluation logic model does not currently re-

present standard practice. Fig. 1 shows an illustrative example of the

logic model for the HSV project.

3.9. Category 8: analytical methods

3.9.1. Design elements and corresponding statistical approaches

While researchers evaluating a PHI using NE methods may not have

control over when, where and amongst whom an intervention has been

implemented, they will likely have some control over choosing design

elements of the evaluation that strengthen the credibility of the esti-

mated effects. The control group within randomised studies provide the

counterfactual outcome (i.e. what would have happened to programme

participants, in the absence of the programme), whereas evaluations of

NEs need to construct it, typically involving design elements with

appropriate statistical approaches.

In order to create a credible design it is strongly recommended that

researchers understand and justify the source of variation in the ex-

posure to the intervention (item 9.1), which needs to have an exo-

genous element for credible causal inference (Meyer, 1995).

Different sources of variation can lead to three distinct designs and

corresponding statistical and econometric approaches:

1. Designs using temporal and geographical variation: one-group be-

fore-after comparisons (Auer et al. (2016)); interrupted time series

(Leyland et al., 2017); difference-in-difference (DiD) (Nandi et al.

(2016)) and panel data methods (Pesko et al., 2016); synthetic

control approach (Abadie et al., 2010). For before-after designs,

identifying a potential control group and collecting frequent mea-

surements of data on long pre-treatment time periods (Wagenaar

et al., 2001) is a recommended best practice to offset the con-

founding role of potential anticipatory effects as well as other po-

licies introduced at the same time (item 9.1.1).

2. Designs using individual level variation, where “nature” provides a

variation in treatment assignment that resembles randomisation in

the controlled situation of an actual experiment: IV eg. (Ichida et al.,

2013; Yen et al., 2008); regression discontinuity design (RDD)

(Andalón, 2011; Calonico et al., 2014; Imbens and Lemieux, 2008;

Ludwig and Miller, 2007)

3. Designs aiming to construct a control group which best approx-

imates an ideal randomised experiment: matching (e.g. propensity

score matching and more recent covariate-balancing multivariate

matching methods) (Caliendo and Kopeinig (2008); Stuart (2010);

Zubizarreta, 2012) Melhuish et al. (2008)).

Often, more than one design is embedded in the evaluation (Craig

et al., 2012), or different designs are combined. Exploring the sensi-

tivity of cost-effectiveness results to approaches used to reduce the se-

lection bias inherent to non-randomised studies allow examination of

the sensitivity of economic evaluation to multiple sources of bias and

strengthens the credibility of results (item 9.2). If all results are in the

same direction with a similar magnitude, this gives the analyst in-

creased confidence that the intervention had a true effect.

Most of the research designs previously described corresponds to

well defined statistical and econometric methods (reviewed for example

in (Athey and Imbens, 2017; Imbens and Rubin, 2015; Imbens and

Wooldridge, 2009). For each design and statistical method, it is re-

commended to specify the list of potential confounders to control for,

using substantive knowledge on the relationship between the inter-

vention and the outcomes, and the mechanism of the assignment to the

intervention (item 9.3).

In line with recommendations provided for item 2.3, if any con-

current intervention is identified, the causal effect should be interpreted

with caution, in consideration of potential contaminating policies (item

9.4).

The design of a NE has implications for several aspects of the as-

sociated economic evaluation, especially the choice of an appropriate

statistical method and the interpretation of the estimated effectiveness

and cost-effectiveness parameters (e.g. IV and RDD only facilitate the

estimation of local ATEs, which can be interpreted as incremental cost

and incremental effectiveness parameters among a specific population).

Interpretation of the estimated effectiveness and cost-effectiveness

results needs to be aligned to the estimated parameters (ATE, ATE on

the Treated, Local ATE). When combining estimated parameters from

different research design and data sources, or when reporting results

using different statistical methods researchers need to transparently

report which of these parameters are identified (item 9.5).

3.9.2. Implementation of the statistical approaches in an economic

evaluation setting

Existing literature regarding the implementation of some of the
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above listed statistical approaches (e.g. Stuart (2010) and Caliendo and

Kopeinig (2008) Jacob et al. (2012)) rarely cover the specific challenges

of economic evaluations, such as skewed and correlated cost and out-

come data. Extensions of statistical approaches for the purposes of

economic evaluation is a growing strand of methodological literature,

for example, IV approaches have been extended to handle binary out-

come data (Terza et al., 2008) as well as correlated cost and outcome

data (DiazOrdaz et al., 2018).

Regression and matching methods can handle correlated data using

a Bayesian framework (Nixon and Thompson (2005); Manca and Austin

(2008)), as well as the non-parametric bootstrap (Sekhon and Grieve

(2012) (Kreif et al. (2012); Kreif et al. (2013b)). Furthermore, flexible

parametric and semiparametric approaches have been proposed to

handle skewed cost distributions (Jones et al., 2015) and outcomes, e.g.

quality of life data (Basu and Manca, 2012). For complex interventions,

beyond the correlated costs and outcomes, a further challenge is

handling potentially correlated multiple outcomes (Teixeira-Pinto and

Normand, 2009).

If needed, clustering needs to be handled, e.g. using multilevel

modelling or two-stage bootstrap, following recommendations that

extend these methods for economic evaluations (Gomes et al., 2012).

Given the importance of routinely collected data, as well as survey data

in the evaluation of NEs, missing data is expected to be an important

challenge for economic evaluation (See recommendations in Category

1)(Faria et al., 2014). The economic evaluation of PHIs alongside NEs

should encompass methodologies to reduce selection bias into an

econometric framework considering health economics-specific chal-

lenges (item 9.6).

3.10. Category 9: uncertainty & sensitivity analysis

The previous sections have outlined a range of sources of structural

or methodological uncertainty (Briggs et al., 2006) when conducting

economic evaluations alongside NEs. As for the RCT framework, all

sources of uncertainty need to be identified, using recommended

methods such as probabilistic sensitivity analysis, tornado diagrams

(item 10.1), and reporting cost-effectiveness results according to dif-

ferent analytical choices (item 10.2). However, the researcher needs to

address also additional sources of uncertainty specific to NEs that (item

10.3). Indeed, exploring sensitivity to several sources of unit costs (item

10.3.1) and assessing the sensitivity of potential spillovers (item 10.3.2)

are common to RCT frameworks. However, exploring sensitivity to the

different choice of comparators (item 10.3.3), designs (item 10.3.4),

econometric approaches (item 10.3.5), unobserved confounding (item

10.3.6) and description of transfer payments (item 10.3.7) are addi-

tional sensitivity checks that needs to be performed in a NE framework.

4. Discussion

In the paper we have outlined the need for methodological guidance

for conducting economic evaluations alongside NEs. Our guidance is

based on the most recent methodological advances and has identified a

set of best practices as a first step towards the development of a com-

prehensive framework. We have exemplified how the political and so-

cial aims inherent to PHIs and the selection bias inherent to the design

of NEs pose unique challenges for health economic evaluations. For

example, reliance on existing data sources does not allow the researcher

to design data collection instruments to include ‘final’, utility-based

outcomes, but offers advantages in terms of population

Fig. 1. Health Economics logic models.
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representativeness. We have also highlighted that conducting economic

evaluations of PHIs alongside NEs poses challenges which should be

considered in the early design stage, in order to enhance the quality of

the economic evaluation. For example, data linkage can overcome

limitations of individual data sources by extending available data to

also include a broad set of outcomes and costs. Similarly, long-term

decision modelling can help linking short term, intermediate outcomes

(e.g. children's birthweight) with longer term final outcomes (e.g.

QALYs, life expectancy). Being able to address these challenges ade-

quately and to robustly analyse NEs can be highly advantageous in

settings where RCTs are unsuitable.

Our paper adds to available reporting guidelines (CHEERS,

CONSORT, STROBE), recognizing the lack of a unique, comprehensive

framework addressing the specific challenges of designing and con-

ducting economic evaluations alongside NEs. We have focused on using

NEs, rather than RCTs, to evaluate PHIs and highlighting the additional

challenges arising from economic evaluation. Whilst recognizing that

the available literature only provides a partial view of the challenges

related to economic evaluation of PHIs alongside, the current work

adapts the available literature, re-interpreting existing best practice in a

systematic way.

This paper provides the first framework for conducting economic

evaluations of PHIs alongside NEs, and offers a set of recommendations

that can support researchers undertaking transparent and accurate

evaluations, in line with existing NICE guidelines on economic eva-

luations of PHIs. Our proposed framework aims to improve and stan-

dardise the way economic evaluations of PHIs alongside NEs are con-

ducted, providing a benchmark against which studies can be compared,

thus has the potential to improve the overall quality and transparency

of future evaluations. Furthermore, the set of guidelines we have de-

veloped is consistent with existing NICE guidance on conducting eco-

nomic evaluations of PHIs, by recommending the use of a societal

perspective, as well as alternative frameworks to CUA (e.g. CBA and

CCA) to capture the battery of multi-sectoral outcomes of PHIs.

This paper also contributes to and expands existing studies (e.g.

(Chalkidou et al., 2008; Lorgelly et al., 2010; Weatherly et al., 2009)

focussing on and drawing out the benefits and challenges related to

using NEs to evaluate PHIs, by highlighting methodological challenges

such as matters of equity, the publicness (i.e. non excludability) of

many PHIs, handling multiple outcomes and dealing with externalities.

While this paper has focused on NE methods for evaluating PHIs, rather

than clinical or healthcare interventions, further research should ex-

plore the challenges of conducting economic evaluations in those set-

tings.

While the majority of methodological considerations specific to

economic evaluation alongside NEs are not novel in themselves, our

contribution lies in their collective use to deliver a framework for

analysis to guide decision making. The paper has provided a starting

point for a new and emerging research area, by identifying key areas for

future research, including, but not limited to: developing well-estab-

lished econometric methodologies to encompass approaches to reduce

the selection bias inherent to NEs into an economic evaluation frame-

work; developing a logic/conceptual modelling framework to simplify

the intricacy inherent to economic evaluation of PHIs alongside NEs,

guiding the researcher from early design to model development; ex-

plore suitability of alternative economic evaluation frameworks such as

MCDA or CCA to evaluate PHIs in the presence of multiple, inter-sec-

toral outcomes; development of methodologies to incorporate long term

inter-sectoral spillovers into economic evaluation.
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