
COMPUTER
PROCESSING AND
MODELING - Full

Papers

Evaluation of Non-Gaussian Diffusion in Cardiac MRI
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Purpose: The diffusion tensor model assumes Gaussian diffu-

sion and is widely applied in cardiac diffusion MRI. However,

diffusion in biological tissue deviates from a Gaussian profile

as a result of hindrance and restriction from cell and tissue

microstructure, and may be quantified better by non-Gaussian

modeling. The aim of this study was to investigate non-

Gaussian diffusion in healthy and hypertrophic hearts.
Methods: Thirteen rat hearts (five healthy, four sham, four

hypertrophic) were imaged ex vivo. Diffusion-weighted images

were acquired at b-values up to 10,000 s/mm2. Models of dif-

fusion were fit to the data and ranked based on the Akaike

information criterion.
Results: The diffusion tensor was ranked best at b-values up

to 2000 s/mm2 but reflected the signal poorly in the high b-

value regime, in which the best model was a non-Gaussian

“beta distribution” model. Although there was considerable

overlap in apparent diffusivities between the healthy, sham,

and hypertrophic hearts, diffusion kurtosis and skewness in

the hypertrophic hearts were more than 20% higher in the

sheetlet and sheetlet-normal directions.

Conclusion: Non-Gaussian diffusion models have a higher

sensitivity for the detection of hypertrophy compared with the

Gaussian model. In particular, diffusion kurtosis may serve as

a useful biomarker for characterization of disease and remod-
eling in the heart. Magn Reson Med 78:1174–1186, 2017.
VC 2016 The Authors Magnetic Resonance in Medicine pub-
lished by Wiley Periodicals, Inc. on behalf of International
Society for Magnetic Resonance in Medicine. This is an
open access article under the terms of the Creative Com-
mons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original
work is properly cited.
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INTRODUCTION

Diffusion MRI is used to noninvasively provide informa-
tion about tissue microstructure (1). Diffusion tensor
imaging (DTI) is a widely used method in which a mini-
mum of six diffusion-weighted (DW) images, in addition
to a reference image without diffusion weighting, are
used to derive a diffusion tensor (2). In cardiac MRI, the
primary, secondary, and tertiary eigenvectors of the dif-
fusion tensor have been shown to correspond to the so-
called fiber, sheetlet, and sheetlet-normal orientations
within the myocardium, respectively (3,4). Indices
derived from DTI such as apparent diffusion coefficient
(ADC) and fractional anisotropy (FA) can be linked
broadly to a range of tissue properties, including water
molecule mobility and coherence of regionally prevailing
cell orientation (fiber orientation). In the heart, these
indices have been used to assess remodeling of tissue
structure in disease states such as hypertrophic cardio-
myopathy (5) and after myocardial infarction (6).

The diffusion tensor model assumes that the displace-
ment profile of water diffusion follows a Gaussian distri-
bution. However, it is well established that diffusion in
biological tissue deviates from a Gaussian profile as a
result of hindrance and restriction from cell and tissue
microstructure (7). To address this, a number of models
have been proposed to more accurately describe the non-
Gaussian behavior of diffusion in tissue, including the
diffusion kurtosis model (8), biexponential models (9),
stretched exponential models (10), and statistical models
(11–13). These models have been widely applied in brain
MRI, and it has been shown that models of diffusion kur-
tosis can act as a biomarker for clinical development of
Alzheimer’s disease (14), provide improved characteriza-
tion of microstructure in the developing brain (15), and
improve characterization of tumors (16) compared with
diffusion tensor modeling. Compartmental models of
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diffusion have also been successful in estimating axon
diameter, density, and dispersion (17).

To date, non-Gaussian analysis of cardiac MRI data has
been limited. A bi-exponential model has been investigat-
ed in perfused rat, rabbit, and guinea pig hearts, with the
fast and slow components associated with contributions
from perfusion and diffusion, respectively (3,18,19). It has
also been shown that non-monoexponential diffusion is
present in both healthy and infarcted fixed rabbit hearts
(20). However, this study was limited to quantifying devia-
tions from the diffusion tensor and did not use models of
non-Gaussian diffusion.

Non-Gaussian diffusion models may offer metrics that
are more sensitive to the presence of restrictions such as
cell membranes and organelles. This could be particularly
relevant in disease states such as hypertrophy, in which
proliferation and enlargement of cardiomyocytes leads to
changes in the distribution of cellular restrictions to water
diffusion (21). Transverse aortic constriction (TAC) is
widely used to surgically generate animal models of heart
failure (22). Partial constriction of the transverse aorta via
a metal clip or suture results in a rapid increase in left
ventricular load with consequent development of hyper-
trophy, ultimately leading to heart failure.

The aim of this study was to systematically investigate
non-Gaussian diffusion in healthy and hypertrophic
fixed rat hearts. A conventional diffusion tensor model
as well as a number of non-Gaussian models were fit to
DW images of rat hearts, and ranked based on the Akaike
information criterion (AIC) (23). Next, the non-Gaussian
diffusion of healthy hearts was compared with hypertro-
phic hearts. We hypothesize that non-Gaussian diffusion
modeling provides more sensitive biomarkers in hyper-
trophic hearts than diffusion tensor modeling. A prelimi-
nary version of this work was presented previously (24).

THEORY

In a standard pulsed-field-gradient sequence with rectan-
gular gradient pulses of strength G (in T/m), diffusion
gradient duration d (in s), and diffusion time D (in s), the
diffusion weighting is quantified by the b-value, given

by b ¼ ðgdGÞ2 D� d
3

� �
(in s/m2), where c is the gyromag-

netic ratio (in rad/s/T). Models of diffusion are used to
parameterize the relationship between the b-value and
the measured signal attenuation. Assuming a voxel con-
tains a spectrum of diffusion environments, each exhibit-
ing Gaussian diffusion, the measured signal is given by

SðbÞ
Sð0Þ ¼

Z
PðDÞ e�bDdD; [1]

where PðDÞ describes the probability density function
(PDF) of diffusivity D. Various distributions have been
proposed for PðDÞ, including the truncated Gaussian
(13), gamma (11,25,26), log-normal (12,27), and beta (26)
distributions. For a given PðDÞ, the mean diffusivity is
given by the expectation of D, E½D�. Excess kurtosis
(referred to hereafter as kurtosis) is given by the normal-
ized variance of the diffusivity profile as follows:

K ¼ 3
E½D2�
E½D�2

: [2]

The displacement profile is obtained via the inverse Fou-
rier transform of the signal with respect to the wave vec-
tor q ¼ gdg

2p
(28). Figure 1 presents the signal attenuation,

diffusivity profile, and displacement profile of selected
models. These models are primarily sourced from the
review article of Yablonskiy and Sukstanskii (26) and are
described in greater detail hereafter. Additional details
about mathematical functions required for the models
are given in the appendix.

Monoexponential Model

The well-known monoexponential model makes the
assumption that a voxel contains a single compartment
exhibiting unrestricted diffusion. It is derived from the
Taylor series of the relationship between the b-value and
logarithm of the MRI signal SðbÞ as follows:

ln
SðbÞ
Sð0Þ ¼ �bDapp þOðb2Þ: [3]

Truncating this series at the first term yields the mono-
exponential model

FIG. 1. A comparison of model fitting based on synthetic data. All models were fit to data generated using a biexponential model with
Dfast¼1.5�10�3 mm2/s, Dslow¼0.5�10�3 mm2/s, and v¼0.9. (a) The log-linear plot of normalized signal intensity versus b-values
shows the similarity of all models for b�3000 s/mm2. (b) Diffusivity profile for all models. The relative magnitudes of the fast and slow

components of the biexponential model are indicative of their volume fraction. (c) Displacement profile for all models. The full-width
half-maximum (FWHM) and full-width tenth-maximum (FWTM) are also displayed. The FWTM gives an estimation of the length scale for

the fastest moving molecules (28).
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SðbÞ
Sð0Þ ¼ expð�bDappÞ; [4]

where Dapp is the apparent diffusion coefficient (in mm2/

s). The PDF associated with the monoexponential model

is a delta function at Dapp.

Stretched Exponential Model

The stretched exponential model was first introduced in

1854 to describe the discharge of a capacitor (29). It was

proposed in the context of diffusion MRI by Bennett

et al. (10) and later linked to the concept of fractal

dimension (30). This model is defined as

SðbÞ
Sð0Þ ¼ expð�baDsÞ; [5]

where a is a dimensionless stretching index, 0 < a�1

and Ds is the “stretch-adjusted” diffusivity.
Neither the mean diffusivity nor the diffusion kurtosis

can be derived from this model because ba cannot be

described by a Taylor series for noninteger values of a.

However, a decreased stretching index a may intuitively

be interpreted as having greater deviation from a Gauss-

ian displacement profile, which is associated with higher

kurtosis. A decreased stretching index has also been

associated with more crowded microstructure and more

complex water excursions (30). The diffusivity PDF does

not have an analytical form but can be computed numer-

ically (31).

Diffusion Kurtosis Model

The diffusion kurtosis (DK) model (8) is derived from

the Taylor series expansion of ln SðbÞ
Sð0Þ truncated at the

second-order term and is defined as follows:

SðbÞ
Sð0Þ ¼ exp �bDDK þ

KDK

6
b2D2

DK

� �
: [6]

The mean diffusivity and kurtosis of this model are giv-

en by DDK and KDK, respectively. The PDF of the DK

model is a Gaussian distribution with mean DDK and var-

iance 1
3 D2

DKKDK. Thus, kurtosis is a measure of the hetero-

geneity of the diffusion environment, where higher

values of kurtosis indicate a wider spread of apparent

diffusivities within a voxel. The decay curve is a qua-

dratic on a log-scale, with a minimum at b ¼ 3
DDKKDK

. The

selection of b-values is important in diffusion kurtosis

imaging; the maximum b-value must be high enough that

that the Oðb2Þ is measurable in the presence of noise, but

low enough that the truncated Oðb3Þ term is negligible.

Biexponential Model

The biexponential model (9) assumes that the diffusion

signal attenuation can be attributed to two populations,

described as a fast and slow component, each of which

exhibits Gaussian diffusion.

SðbÞ
Sð0Þ ¼ v expð�DfastbÞ þ ð1� vÞexpð�DslowbÞ: [7]

Parameter v is the volume fraction of the fast compo-

nent. Mean diffusivity and kurtosis may be computed

from the biexponential model as follows:

Dbi ¼ vDfast þ ð1� vÞDslow [8]

Kbi ¼ 3 v ð1� vÞ ðDfast � DslowÞ2

D2
bi

: [9]

The biexponential model corresponds to a PDF consist-

ing of a weighted sum of two delta functions.

Truncated Gaussian Distribution Model

The truncated Gaussian distribution (13) is appealing

because it approximates the DK model at low b-values

but is monotonically decreasing at arbitrarily high b-

values. The PDF is defined as

PðDÞ ¼
Aexp �ðD � DmÞ2

2s2

 !
; D � 0

0 D < 0

;

8>><
>>: [10]

where Dm and s (both in mm2/s) control the location

and scale of the distribution, respectively, and A is a

normalizing coefficient. The normalizing coefficient is

dependent on both Dm and s. The observed signal from

this model is given by

SðbÞ
Sð0Þ ¼

1þ erf Dmffiffi
2
p

s
� bsffiffi

2
p

� �
1þ erf Dmffiffi

2
p

s

� � exp �bDm þ
1

2
b2s2

� �
; [11]

where erfð�Þ denotes the error function (see Eq. [A1]).

Mean diffusivity, �D, is given by Dm þ s

ffiffiffi
2
p

q exp �D2
m

2s2

� �
1þerf Dm

s
ffiffi
2
p

� �, and

kurtosis is given by 3
�D

2 ðs2 � �D
2 þ �DDmÞ.

Gamma Distribution Model

The gamma distribution (11,25,26) allows more variation

in the shape, and in particular the skewness, than the

truncated Gaussian model. The PDF is defined as

PðDÞ ¼
1

GðkÞ uk
Dk�1 exp �D

u

� �
; D � 0

0 D < 0

;

8><
>: [12]

where G denotes the gamma function (see Eq. [A2]).

Parameters k and u control the shape of the distribution.

The observed signal is given by

SðbÞ
Sð0Þ ¼ ð1þ buÞ�k : [13]

Mean diffusivity is given by ku, and kurtosis is given by
3
k. The skewness of this distribution is given by 2ffiffiffi

k
p .

Beta Distribution Model

A limitation of the truncated Gaussian and gamma distri-

butions is the presence of positive tails with diffusivity
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greater than that of unimpeded water. The beta distribu-
tion model (26) addresses this by imposing an upper lim-
it Dmax on the PDF as follows:

PðDÞ ¼ 1

Bða;bÞ
D

Dmax

� �a�1

1� D

Dmax

� �b�1

; D2ð0;DmaxÞ ;

[14]

where B denotes the beta function (see Eq. [A3]) and
parameters a and b control the shape of the distribution.
The observed signal is given by

SðbÞ
Sð0Þ ¼ Mða;aþ b;�bDmaxÞ; [15]

where M is the confluent hypergeometric function (see
Eq. [A4]). Because Dmax is generally not known, it can be
treated as another parameter. Mean diffusivity and kurto-

sis are given by a
aþb

Dmax and 3 b
a ðaþbþ1Þ, respectively.

Skewness is given by 2ðb�aÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
aþbþ1
p

ðaþbþ2Þ
ffiffiffiffiffi
ab
p .

METHODS

Tissue Preparation

Experimental investigations conformed to the UK Home
Office guidance on the Operations of Animals (Scientific
Procedures) Act 1986 and were approved by the Univer-
sity of Oxford’s ethical review board. Hearts were
excised from five healthy Sprague–Dawley rats (body
weight¼211 6 9 g) during terminal anesthesia. Isolated
hearts were swiftly perfused in Langendorff constant
pressure mode (80 mm Hg) with Krebs-Henseleit buffer
at 37�C (in [mM]: NaCl 118, KCl 4.7, MgSO4 � 7H2O 1.2,
NaHCO3 25, KH2PO4 1.2, glucose 11, CaCl2 � H2O 1.8,
and oxygenated with 95% O2/5% CO2). The hearts were
arrested in slack state using high potassium cardioplegic
solution (in [mM]: NaCl 125.0, KCl 20.0, MgCl2 1.0,
HEPES 5.0, glucose 11.0, CaCl2 1.8; bubbled with oxy-
gen). Time from excision to fixation was approximately
4–5 minutes. The hearts were subsequently perfusion-
and immersion-fixed in isosmotic Karnovsky’s fixative
(300 6 10 mOsm; in [%]: paraformaldehyde (PFA) 0.45,
glutaraldehyde 0.57, sodium cacodylate 0.97) containing
2 mM gadolinium chelate (ProHance; Bracco, Eden Prai-
rie, Minnesota, USA), and stored at 4�C. Prior to imag-
ing, the hearts were rinsed three times in phosphate-
buffered saline with 2 mM gadolinium chelate and
embedded in 1% agarose gel (Web Scientific, Crewe,
UK) made with phosphate-buffered saline containing
2 mM gadolinium chelate. Gel was used to retain sample
geometric stability, immobility, and hydration, and gado-
linium chelate shortened T1 and increased signal-to-
noise ratio (SNR) efficiency.

Eight additional male Sprague–Dawley rats (body
weight, 206 6 5 g) were divided into sham (n¼ 4) and
TAC (n¼4) groups. Animal studies for the sham and
TAC groups followed National Institutes Health guide-
lines and were approved by the University of California
San Diego Institutional Animal Care and Use Committee.
Animals were anesthetized to an appropriate level with
1.25%–2% inhaled isoflurane, which was confirmed via

toe pinch. A lateral thoracotomy exposed the aortic arch.
Aortic stenosis was induced in animals in the TAC
group by means of a ligature hemo-clip on the transverse
aorta between the right innominate and left carotid arter-
ies with a final, constricted width of 0.5 mm. Sham con-
trols underwent thoracotomy without application of the
clip. The surgical site incisions were closed in layers,
and the animal was allowed to recover. Four weeks after
surgery, M-mode echocardiographic measurements were
made, left ventricular pressures were recorded, and
hearts were excised, arrested, fixed, and embedded for
imaging in the same manner as the healthy hearts. Imag-
ing was performed approximately 2 wk after fixation.

Imaging

Diffusion spectrum imaging data were acquired with q-
space sampled on a three-dimensional (3D) Cartesian
grid. A nonselective 3D fast spin echo sequence was
used. Imaging was performed on a 9.4T horizontal bore
MRI scanner (Agilent, Santa Clara, California, USA) with
shielded gradients (max gradient strength¼1 T/m, rise
time¼ 130 ms), and a transmit/receive quadrature-driven
birdcage coil (inner diameter¼ 20 mm; Rapid Biomedi-
cal, Rimpar, Germany).

For the healthy hearts, the following acquisition
parameters were used: pulse repetition time¼ 250 ms;
echo time¼ 15 ms; echo spacing¼ 4 ms; echo train
length¼ 8; matrix¼100�80� 80; field of view¼
20�16� 16 mm; isotropic resolution¼ 200 mm; number
of non-DW images¼ 4; number of DW directions¼ 257;
bmax¼ 10,000 s/mm2; diffusion duration d¼ 5 ms; diffu-
sion time D¼ 9 ms; acquisition time¼ 14 h, 30 min. The
images were acquired at 20.2�C. Systematic temperature
bias was minimized by pseudo-randomizing the DW
acquisition such that consecutive scans were acquired
with widely different b-values (32). Diffusion MRI
experiments were followed by high-resolution anatomi-
cal imaging using the following parameters: pulse repeti-
tion time¼20 ms; echo time¼ 4 ms; flip angle¼30�;
matrix¼ 600�480�480; field of view¼ 20� 16�16 mm;
isotropic resolution¼ 33 mm; acquisition time¼ 10 h,
14 min. The acquisition protocol for the sham and TAC
hearts was identical to that for the healthy hearts, with
the following exceptions: matrix¼120�80� 80; field of
view¼21.6� 14.4� 14.4 mm; isotropic resolution¼
180 mm; number of DW directions¼ 514; acquisition
time¼ 28:46 h. Symmetric q-space acquisition and higher
imaging resolution was used in the latter protocol due to
greater availability of scan time.

Data Analysis

The noise distribution of the magnitude of MR signals
with complex Gaussian noise is Rician. The non-zero
mean of the noise results in biased estimates of parame-
ters when fitting using least-squares minimization. This is
particularly apparent in data with low SNR, as is common
in high b-value imaging. To mitigate this bias, the phase
was removed, yielding a zero-mean Gaussian noise distri-
bution (33). Specifically, the mean of the complex non-
DW images was computed, and the phase was subtracted
from both the non-DW and DW images. The real
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component of the resulting images was extracted. These
images can be assumed to have normally distributed noise
and therefore can accommodate model fitting using least
squares minimization algorithms. The noise level was
estimated using the method described previously (34).

The diffusion tensor model was fit to the phase-
corrected data. The eigenvalues of tensor D are given by
k ¼ ½l1 l2 l3�. The mean ADC and FA are defined as

Mean ADC ¼ k ¼ 1

3

X3

i¼1

li [16]

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

X3

i¼1
ðli � kÞ2X3

i¼1
l2

i

vuuut : [17]

Helix, transverse, and sheetlet angle maps were comput-
ed from the eigenvectors of the diffusion tensor, using
the definitions of angles by Hales et al. (35). The angles
were defined relative to a local coordinate system as
described by Teh et al. (32) to mitigate biases in angle
maps arising from local tissue deformations. The helix
angle is the angle subtended by the projection of the pri-
mary eigenvector onto the circumferential-longitudinal
plane and the short-axis plane. The transverse angle is
the angle subtended by the projection of the primary
eigenvector onto the short-axis plane and the
circumferential-longitudinal plane. The sheetlet angle is
the angle subtended by the projection of the tertiary
eigenvector onto the longitudinal-radial plane and the
long axis.

We follow the approach of De Santis et al. (36) in
describing the observed attenuation from non-Gaussian
models as the product of the attenuation in the direction
of each of the three eigenvectors, as follows:

SðbÞ
Sð0Þ ¼

Y3
i¼1

f ðbiÞ; [18]

where bi is the magnitude of the diffusion weighting b in
the direction of the ith eigenvector of D and f is given by
the right-hand side of Eqs. 4-7, 11, 13, and 15. This
approach assumes that non-Gaussian diffusion shares
the reference frame of the diffusion tensor model. Thus,
each of the non-Gaussian models required six additional
parameters to define the reference frame. A list of mod-
els in this study and total number of parameters for each
is given in Table 1.

Each of the models was fit to all data sets (healthy,
sham, and TAC) using nonlinear least squares regression.
All models were fit in MATLAB R2013A (MathWorks,
Natick, Massachusetts, USA) using a trust-region-
reflective algorithm (37), with positivity constraints
enforced where appropriate. The source code can be
obtained through the gerardus project (https://github.
com/vigente/gerardus/tree/papers). The initial values of
the diffusion tensor and diffusion kurtosis model param-
eters were obtained using linear least squares regression
on the logarithm of the signal. The input data to the DK
model was restricted to a maximum b-value of 5000 s/
mm2 (25).

Initial values of biexponential model parameters were
determined by fitting a monoexponential model to low
(<1000 s/mm2) and high (>6000 s/mm2) b-values to esti-
mate the fast and slow diffusion rate, respectively (38).
The stretched exponential model was initialized with
the fit from the diffusion tensor model (i.e., a¼ 1). In the
case of the truncated Gaussian, gamma, and beta distri-
bution models, initial estimates of parameters were
derived using the mean diffusivity and kurtosis of the
DK model. The parameter controlling the maximum dif-
fusion coefficient in the beta distribution model, Dmax,
was initialized with the diffusion coefficient of pure
water at room temperature, 2.3�10�3 mm2/s (39).

Region of Interest Selection

A 3D region of interest (ROI) was manually traced on dif-
fusion kurtosis maps in each heart, with reference to
high-resolution anatomical images (Fig. 2a). In each case,
the ROI was located in the myocardium of the left ventri-
cle lateral wall. Care was taken to avoid regions contain-
ing buffer, gel, or residual blood, as the kurtosis in these
regions was artificially increased, as shown in Figure 2b.
The ROIs had a volume of at least 1.6 mm3 (247 6 53
voxels).

Evaluation Using AICc

Complex models having a larger number of fitting param-
eters provide lower residual errors, but may overfit the
data, resulting in high parameter variance in the pres-
ence of noise. Conversely, simpler models with fewer
parameters return lower parameter variance, but may fail
to recover relevant information in the data.

This trade-off can be quantified using the AIC (23),
which is based on information theory. The model

Table 1
List of Models and Fitting Parameters

Model Number of Parameters Parameter List (n) Initialization Method

DT 7 S(0) (1), DT (6) Linear least-squares
Stretched exponential 13 S(0), DT, Ds (3), a (3), DT model

DK 13 S(0), DT, DDK (3), KDK (3) Linear least-squares
Biexponential 14 S(0), DT, Dfast (3), Dslow (3), v (1) Fitting fast and slow

components individually

Truncated Gaussian 13 S(0), DT, Dm (3), r (3) DK model
Gamma 13 S(0), DT, h (3), k (3) DK model

Beta 14 S(0), DT, a (3), b (3), Dmax (1) DK model

All of the non-Gaussian models require the definition of the DT as the models are fit along the major axes of this tensor. Parameters are
described in the Theory section.
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selected by the AIC is the one that minimizes informa-

tion loss. The AIC was selected for model comparison

because it provides a quantitative estimate of the amount

of information lost by different models and does not

require the arbitrary selection of a cutoff.
Performance was compared using the AIC with a cor-

rection for finite sample sizes (40), given by

AICc ¼ nlogðe2Þ þ 2P þ 2PðP þ 1Þ
n� P � 1

; [19]

where e2 is the mean squared error, n is the number of DW

images, and P is the number of model parameters (including

e2). Thus, P was equal to 8 for the DTI model; 14 for the

stretched exponential, diffusion kurtosis, truncated Gauss-

ian, and gamma distribution models; and 15 for the biexpo-

nential and beta distribution models. Because AICc is a

relative measure, the difference between the AICc of each

model and the minimum AICc was recorded. The relative

likelihood of model i (i.e. the probability that this model

minimises the estimated information loss) is given by

pi ¼ exp
AICmin

c �AICi
c

2

� �
; [20]

where AICmin
c refers to the minimum AICc of the models

considered.
To demonstrate b-value dependence, all models were

fit to the data in the ROIs in each of the nine hearts,

with diffusion data restricted to b-values lower than the

maximum b-value. The maximum b-value was varied

between 1200 s/mm2 and 10,000 s/mm2 in intervals of

400 s/mm2. AICc and relative likelihood was computed

in each case. The mean of the relative likelihood over all

hearts in each of the three categories (healthy, sham, and

TAC) is presented.

RESULTS

Pressure Overload

Aortic pressures measured in the TAC group before fixa-

tion verified the pressure overload, with the TAC ani-

mals having a greater left ventricular peak pressure

compared with sham (198 6 43 mm Hg versus 120 6

10 mm Hg). This resulted in an increase in heart weight

to body weight ratio (4.8 6 0.2 g/kg versus 3.5 6 0.2 g/kg).

Furthermore, the interventricular septum thickness was

higher in TAC versus sham (1.46 6 0.07 mm versus

1.19 6 0.02 mm) at end-diastole but not end-systole

(1.86 6 0.21 mm versus 1.58 6 0.09 mm), whereas the

internal dimension of the left ventricle was not different

between groups at end-diastole (7.94 6 0.79 mm versus

7.40 6 0.32 mm) or end-systole (4.93 6 0.53 mm versus

4.18 6 0.26 mm).

Gaussian Diffusion Modeling

Figure 3 presents parameters derived from the Gaussian

model of diffusion in a representative healthy heart. The

tensor model was fit to data with b-values up to 2000 s/

mm2. The mean ADC across the five healthy hearts is

1.01 6 0.02� 10�3 mm2/s in the left ventricle and 1.18 6

0.04� 10�3 mm2/s in the right ventricle. The mean frac-

tional anisotropy is 0.32 6 0.01 in the left ventricle and

0.25 6 0.01 in the right ventricle.
Helix angles indicate the well-known continuous tran-

sition between left-handed and right-handed cell orienta-

tions. Transverse angles close to 0� indicate that the cells

FIG. 2. High-resolution anatomical image (a) and kurtosis in the tertiary eigenvector (b) in heart 6 (sham). High kurtosis correlates well
with regions in the anatomical image that contain buffer. ROIs were traced in hypointense regions on kurtosis maps, with reference to
the anatomical images. The ROIs were used for all comparisons between the healthy, sham, and TAC hearts.
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have a predominantly circumferential orientation when

projected onto the short-axis plane. Sheetlet angle maps

display distinct clusters of voxels with similar sheetlet

angles.
Box-and-whisker plots of parameters derived from

the diffusion tensor model in the ROIs are presented in

Figure 4. On average, the diffusivity in the secondary

and tertiary eigenvectors was lower in the TAC hearts

compared with the sham hearts, resulting in increased

fractional anisotropy. However, there is a large overlap

in all DTI-derived parameters in the healthy, sham, and

TAC hearts. The interquartile ranges of the normal hearts

are greater than that of the sham and TAC hearts, most

likely because of the smaller number of samples in the

normal hearts (29 unique samples in q-space versus 41

in the sham and TAC hearts with b-values< 2000 s/

mm2) leading to lower precision.

Model Selection Using AICc

Model selection was highly dependent on the maximum

applied b-value: Figure 5 presents the relationship

between model fitting performance and the maximum

b-value employed during fitting. In all hearts, the beta

distribution model yielded the model with the lowest

root-mean-square error (RMSE) and highest relative like-

lihood at maximum b-values up to 10,000 s/mm2 (i.e.,

when all data were considered). At maximum b-values

between approximately 3000 s/mm2 and 7000 s/mm2,

the truncated Gaussian model yields the highest relative

likelihood in the healthy and TAC hearts, despite having

a higher RMSE than the beta or biexponential models. In

the sham hearts, the DK model outperformed the truncat-

ed Gaussian model for maximum b-values between 3800

s/mm2 and 5400 s/mm2, although the difference between

the two models is small. The stretched exponential mod-

el yielded the highest relative likelihood for maximum b-

values between approximately 3000 and 3800 s/mm2 in

the sham and TAC hearts. Finally, in all hearts, the con-

ventional diffusion tensor model yielded the highest rel-

ative likelihood for maximum b-values up to

approximately 2000 s/mm2.
Figure 6 presents maps of the model with the highest

relative likelihood at maximum b-values of 2000 and

10,000 s/mm2. At 2000 s/mm2, the diffusion tensor mod-

el yields the highest relative likelihood for the majority

of voxels in gel, buffer, and the myocardium. The

stretched exponential model yields the highest relative

likelihood in most voxels on the interfaces between myo-

cardium and gel/buffer. At 10,000 s/mm2, the beta model

most commonly has the highest relative likelihood in the

myocardium. The truncated Gaussian model has the

highest relative likelihood in a large number of voxels,

particularly in the right ventricle of the healthy heart.

The biexponential model has the highest relative likeli-

hood in some myocardial voxels, particularly in the

sham heart, and very frequently has the highest relative

likelihood on the interfaces between myocardium and

gel/buffer. In the voxels on these interfaces, the fast com-

ponent of the model corresponded to the gel/buffer with

diffusivity of approximately 2.3� 10�3 mm2/s.

Kurtosis and Skewness Analysis

Figure 7 presents box-and-whisker plots of kurtosis and

skewness generated from the beta distribution model in

healthy, sham and TAC hearts, using all b-values up to

10,000 s/mm2. These data are also presented in Table 2.

The beta model was selected due to its superior perfor-

mance when fitting these data, as described above. Both

FIG. 3. Digitally resected parameter maps derived from Gaussian fitting of a healthy heart. (a) Mean apparent diffusion coefficient. (b)
Fractional anisotropy. (c) RMSE. (d) Helix angle. (e) Transverse angle. (f) Sheetlet angle.
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kurtosis and skewness values were lowest in the direc-

tion of the primary eigenvector and highest in the direc-

tion of the tertiary eigenvector. Skewness was negative

in all eigenvector directions, indicating left-skewed (or

left-tailed) distributions.
The sham hearts had similar kurtosis and skewness

values to the healthy hearts in all three eigenvectors.

Two-tailed Mann–Whitney U tests were performed on the

mean of model parameters in each of the ROIs in the

sham and TAC hearts, at a 5% significance level. The

kurtosis and skewness of the TAC hearts did not differ

from that of the healthy or sham hearts in the primary

eigenvector, but was significantly higher in the secondary

and tertiary eigenvector directions. On average, kurtosis

in TAC hearts was 31% higher than in sham hearts in the

secondary eigenvector direction (P< 0.05), and 20%

higher in the tertiary eigenvector direction (P< 0.05). Sim-

ilarly, the skewness of the TAC hearts was 86% higher in

the TAC hearts than in the sham hearts in the secondary

eigenvector direction (P< 0.05), and 81% higher in the

tertiary eigenvector direction (P<0.05). Although the

mean maximum diffusivity in the TAC hearts was slightly

higher (1.50 mm2/s) than in the healthy (1.46 mm2/s) or

sham (1.43 mm2/s) hearts, there was a large degree of

overlap between the samples in the three categories.

Biexponential Modeling

Biexponential model parameters are presented in Table 2.

The mean volume fraction of fast diffusing components

was significantly lower in ROIs in the TAC hearts

(0.82 6 0.01) than in the healthy (0.86 6 0.00) or sham

(0.86 6 0.01) hearts (P< 0.05). On average, the fast

diffusing components in the TAC hearts had higher dif-

fusivity in v1 and lower diffusivity in v2 and v3 than the

healthy and sham hearts. However, the variance across

the hearts in each category was relatively high. Similarly,

differences between the TAC and healthy/sham hearts in

the slow diffusing component were small relative to the

interheart variance.

Diffusivity PDFs

Figure 8 presents the PDFs derived from the beta distri-

bution model in the three eigenvectors. These were gen-

erated from averaged parameters in the ROIs of healthy,

sham, and TAC hearts. The distributions in the primary

eigenvector contain sharp peaks at 1.3–1.5�10�3 mm2/s.

The distributions in the secondary and tertiary eigenvec-

tors contain peaks at the same location, but with a

broader spectrum (i.e., higher kurtosis) and greater con-

tributions from low diffusivities (i.e., more positive

skewness).
The diffusivity profiles of TAC hearts in the secondary

and tertiary eigenvectors are characterized by broader

profiles than the healthy or sham hearts, indicating

greater non-Gaussianity. This is in agreement with the

higher volume fraction of the slow diffusion compart-

ment in the biexponential model.

DISCUSSION

In this study, we investigated the non-Gaussian behavior

of diffusion in ex vivo rat hearts using MRI. Hypertro-

phic hearts were compared with healthy and sham

hearts on the hypothesis that non-Gaussian parameters

FIG. 4. Box-and-whisker plots of parameters derived from the diffusion tensor model. Although the mean of the TAC hearts was lower
than that of the sham hearts in l2 and l3, there is considerable overlap, particularly between hearts 7 and 8. As a result, there is poor

separation between hearts in terms of mean ADC and FA.
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FIG. 5. Relationship between maximum b-value and model performance. (a–c) RMSE of the healthy (a), sham (b), and TAC (c) hearts for
maximum b-values between 1200 and 10,000 s/mm2, averaged over the ROIs. At the higher b-values, the beta distribution model has

the lowest RMSE. The standard deviation of the image noise is 243 6 17. The mean signal intensity in the non-DW images is 2.36 6

0.19�104. (d–f) Relative likelihood of each of the models.

FIG. 6. Maps of the model with the highest relative likelihood at maximum b-values of 2000 (top) and 10,000 (bottom) s/mm2.
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will be more sensitive to hypertrophy than parameters
derived from the Gaussian model.

In all hearts, greater non-Gaussianity was observed in
the directions of the secondary and tertiary eigenvectors.
This may arise from greater restrictions to water diffu-
sion perpendicular to cardiomyocyte orientations. Non-
Gaussianity was highest in the direction of the tertiary
eigenvector, which may arise from increased heterogene-
ity in diffusion environments in the sheetlet-normal
direction. In contrast, the profile of diffusivities in the
primary eigenvector was narrower, indicating greater

coherence of diffusion and a less restricted environment.
These results are in agreement with a previous study on
ex vivo pig hearts (41). Nguyen et al. (42) found higher
ADC in putative fibrotic regions, as identified with ADC
or extracellular volume (ECV) thresholds, in hypertro-
phic cardiomyopathy patients. This contrasts with our
finding that ADC was similar in the sham and TAC
groups. It is important to note here that Nguyen et al.
focused on the clinically observed manifestation of
hypertrophic cardiomyopathy in patients rather than
TAC-induced hypertrophy. Furthermore, there are

FIG. 7. Kurtosis along the principal eigenvectors (v1, v2, and v3) of the diffusion tensor, averaged over the ROIs for healthy, sham, and

TAC hearts. Kurtosis was computed from the beta distribution model.

Table 2
Selected Parameter Values in Healthy, Sham, and TAC Hearts

Parameter Healthy Sham TAC

Biexponential model Dfast (10�3 mm2/s)
v1 1.51 6 0.03 1.52 6 0.09 1.59 6 0.12
v2 1.14 6 0.07 1.13 6 0.06 1.08 6 0.08

v3 1.04 6 0.06 1.04 6 0.05 1.02 6 0.08
Biexponential model Dslow (10�3 mm2/s)

v1 0.48 6 0.04 0.48 6 0.06 0.55 6 0.01
v2 0.21 6 0.01 0.19 6 0.01 0.19 6 0.01
v3 0.16 6 0.01 0.14 6 0.00 0.17 6 0.01

Biexponential model v 0.86 6 0.00 0.86 6 0.01 0.82 6 0.01
Beta model kurtosis

v1 0.13 6 0.02 0.11 6 0.02 0.14 6 0.04
v2 0.45 6 0.04 0.45 6 0.04 0.59 6 0.03
v3 0.55 6 0.03 0.56 6 0.04 0.67 6 0.03

Beta model skewness
v1 �3.17 6 0.35 �3.85 6 0.54 �3.03 6 0.59

v2 �0.85 6 0.15 �0.91 6 0.04 �0.49 6 0.05
v3 �0.57 6 0.11 �0.67 6 0.05 �0.37 6 0.04

Beta model Dmax (10�3 mm2/s) 1.46 6 0.04 1.43 6 0.09 1.50 6 0.13

Biexponential and beta distribution model parameters (mean 6 standard deviation over the ROIs in each of the samples) are given along
each of the three eigenvectors.
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differences in species, tissue viability, contractility, fixa-
tion, and pulse sequence. Further investigation of such
differences is needed for more direct comparison of data.
Likewise, the community would benefit from greater har-
monization of methods and reproducibility and valida-
tion studies.

Hypertrophic hearts exhibited significantly greater
non-Gaussianity in the sheetlet and sheetlet-normal
directions than healthy hearts. Specifically, an increase
in low diffusivities was observed compared with the
healthy and sham hearts. This may be caused by meso-
scale tissue remodeling in response to pressure overload,
including cardiomyocyte hypertrophy, decreased capil-
lary density, and interstitial fibrosis (43).

The optimal model to describe the data was found to
be highly dependent on maximum b-value. At b-values
up to approximately 2000 s/mm2, the diffusion tensor
model yielded the highest relative likelihood. As the
maximum b-value increased, the effects of restricted dif-
fusion are increasingly affecting measured data, and the
truncated Oðb2Þ terms begin to become nonnegligible.
Thus, the non-Gaussian models start to fit the data bet-
ter. At the highest b-value considered in this study
(10,000 s/mm2), the beta distribution model offered the
best fit, with slightly lower RMSE values than the biex-
ponential model. Although we do not suggest that the
distribution of diffusivities necessarily matches either of
the distributions suggested by the models—it is clear
from Figure 1 that vastly different distributions can yield
almost identical signal attenuation profiles—we note that
the general trends of these models are in good agree-
ment. Neither model suggests that the maximum diffu-
sivity in the TAC hearts was lower than in healthy or
sham hearts, but rather that there was a greater volume
fraction of low diffusivities perpendicular to locally pre-
vailing cardiomyocyte orientations. The biexponential
model was frequently the best model in regions exhibit-
ing partial volume effects, most likely because this
model has the flexibility to represent two distinct popu-
lations of diffusion. Although the diffusion kurtosis
model frequently did not yield the highest relative likeli-
hood, it was useful for providing initial values for other
models, because it can be fit using linear least squares
regression. Overall, the truncated Gaussian model offered
the best fit out of the 13-parameter models.

In this study, models of non-Gaussian diffusion were
fit in a diagonalized reference frame, based on the

assumption that the principal directions of non-Gaussian
diffusion are the same as those derived from the DTI mod-
el. Fitting in the diagonalized reference frame was neces-
sary to make use of statistical models, which are only
defined in a single dimension. Although our preliminary
work (24) supports the assumption that Gaussian and
non-Gaussian diffusion are well aligned in the myocardi-
um, this removes the possibility to derive the kurtosis ten-
sor (8) and therefore to estimate kurtosis in arbitrary
orientations. It also may limit our understanding of the
non-Gaussian behavior of regions with multiple popula-
tions of differently oriented cells, such as at the right ven-
tricular wall or papillary muscle insertion points.

In this study, gadolinium chelate was used to reduce
tissue T1 and scan times. Gadolinium chelate is a known
extracellular contrast agent in vivo, and differential
localization in the intra- and extracellular compartments
may affect the diffusion MRI signal. However, the distri-
bution of gadolinium chelate ex vivo depends on the
integrity of cell membranes after fixation. One in vitro
study found that the T1 of fixed cells doped with gado-
linium chelate was reduced by >20� relative to fresh
cells doped with gadolinium chelate and suggested that
this finding constituted evidence of structural and func-
tional alterations to the cell and nuclear membranes
with formaldehyde fixation (44). Another study reported
that the transmembrane water exchange rate was dramat-
ically increased after fixation with Karnovsky’s fixative
(45), as we have used. These suggest that gadolinium
chelate may have diffused into the intracellular space,
thereby shortening T1 in both intra- and extracellular
compartments. It is also possible that with sufficiently
high water exchange rates and long diffusion times, the
intracellular and extracellular water may become well
mixed. Further investigation would be needed for
verification.

At present, it is technically challenging to measure
non-Gaussian diffusion in the heart in vivo. In clinical
diffusion imaging, non-Gaussian models have the poten-
tial to help in assessing myocardial perfusion (19). How-
ever, gradient hardware in clinical scanners typically
limit b-values to 500 s/mm2 (46–48), reducing sensitivity
to non-Gaussian diffusion arising from finer tissue struc-
tures as demonstrated here. Stimulated echo approaches
afford higher b-values for a given maximum gradient
amplitude due to long diffusion times. Longer D would
increase the interactions of water molecules with cellular

FIG. 8. PDFs of diffusivity for the healthy, sham, and TAC hearts derived from the beta distribution model. Profiles were generated from
averaged parameters over all ROIs.
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restrictions and likely enhance non-Gaussian effects, par-
ticularly in the directions of the second and third eigen-
vectors. However, stimulated echo sequences are subject
to myocardial strain, necessitating strain correction (48)
or limiting imaging to temporal “sweet spots” (49).
Higher b-values result in lower signal, thus higher SNR
is needed to avoid noise floor bias. Furthermore, one
DW readout is typically acquired at every other cardiac
cycle, and a large number of b-values are required for
non-Gaussian parameter estimation, increasing acquisi-
tion time. These drive the need for better SNR efficiency.
Ongoing developments in high performance gradient sys-

tems, and the use of spin echo methods (50), convex
optimized diffusion encoding (51), simultaneous multi-
slice imaging (52), and compressed sensing (34) promise
to improve SNR efficiency and therefore feasibility of in
vivo cardiac non-Gaussian diffusion imaging.

CONCLUSION

This study represents the first systematic study of non-
Gaussian diffusion in cardiac tissue. Several models of
diffusion were presented and applied to fixed ex vivo rat
hearts. At b-values up to approximately 2000 s/mm2, the
diffusion tensor model yielded the highest relative likeli-
hood, but reflects the signal poorly in the high b-value
regime. The best model at high b-values, as selected by

the AIC, was the beta distribution model. Differences in
kurtosis and skewness, but not in DTI-derived parameters,
were observed between healthy and hypertrophic hearts,
demonstrating the higher sensitivity of the beta distribu-
tion model to pathology compared with the diffusion ten-
sor model. We conclude that non-Gaussian models best
represent the diffusion MRI signal in the myocardium at
b-values exceeding 2000 s/mm2, and that parameters
derived from these models may serve as useful bio-
markers for assessing cardiac disease and remodeling.

APPENDIX

Here we provide additional details about a number of
mathematical functions described in the Theory section.

The error function is related to the integral of the
Gaussian distribution, and is defined as follows:

erfðxÞ ¼ 2ffiffiffiffi
p
p

Zx
0

e�t2

dt: [A1]

The gamma function is an extension of the factorial
function from positive integers to real and complex num-
bers. It is also known as the Euler integral of the second
kind and is given as follows:

GðtÞ ¼
Z 1

0

xt�1e�xdx: [A2]

The beta function is the Euler integral of the first kind
and is given by

Bðx; yÞ ¼
Z 1

0

tx�1 ð1� tÞy�1dt ¼ GðxÞGðyÞ
Gðx þ yÞ : [A3]

Kummer’s function is a standard form of confluent

hypergeometric function and is given by

Mða;b; zÞ ¼
X1

n¼0

aðnÞzn

bðnÞn!
; [A4]

where að0Þ ¼ 1, aðnÞ ¼ aðaþ 1Þðaþ 2Þ � � �ðaþ n� 1Þ denotes

the rising factorial.
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