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Over geological timescales, CO2 levels are determined by the operation of the long term carbon cycle, and it is
generally thought that changes in atmospheric CO2 concentration have controlled variations in Earth's surface
temperature over the Phanerozoic Eon. Here we compile independent estimates for global average surface tem-
perature and atmospheric CO2 concentration, and compare these to the predictions of box models of the long
term carbon cycle COPSE and GEOCARBSULF.
We find a strong relationship between CO2 forcing and temperature from the proxy data, for timeswhere data is
available, andwe find that current publishedmodels reproducemany aspects of CO2 change, but compare poorly
to temperature estimates. Models are then modified in line with recent advances in understanding the tectonic
controls on carbon cycle source and sink processes, with these changes constrained bymodelling 87Sr/86Sr ratios.
We estimate CO2 degassing rates from the lengths of subduction zones and rifts, add differential effects of erosion
rates on the weathering of silicates and carbonates, and revise the relationship between global average temper-
ature changes and the temperature change in key weathering zones.
Under these modifications, models produce combined records of CO2 and temperature change that are reason-
ably in line with geological and geochemical proxies (e.g. central model predictions are within the proxy win-
dows for N~75% of the time covered by data). However, whilst broad long-term changes are reconstructed, the
models still do not adequately predict the timing of glacial periods. We show that the 87Sr/86Sr record is largely
influenced by the weathering contributions of different lithologies, and is strongly controlled by erosion rates,
rather than being a good indicator of overall silicate chemical weathering rates. We also confirm that a combina-
tion of increasing erosion rates and decreasing degassing rates over the Neogene can cause the observed cooling
and Sr isotope changes without requiring an overall increase in silicate weathering rates.
On the question of a source or sinkdominated carbon cycle, wefind that neither alone can adequately reconstruct
the combination of CO2, temperature and strontium isotope dynamics over Phanerozoic time, necessitating a
combination of changes to sources and sinks. Further progress in this field relies on N108 year dynamic spatial re-
constructions of ancient tectonics, paleogeography and hydrology.Whilst this is a significant challenge, the latest
reconstruction techniques, proxy records and modelling advances make this an achievable target.
© 2018 TheAuthors. Published by Elsevier B.V. on behalf of International Association forGondwana Research. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords:
Carbon cycle
Modelling
Paleoclimate
Biogeochemistry
Tectonics
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2. Global average surface temperature record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

2.1. Whole Phanerozoic δ18O record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2.2. Mesozoic and Cenozoic temperature proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.3. Glaciation ice line record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
. on behalf of International Association for Gondwana Research. This is an open access article under the CC BY license (http://

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gr.2018.12.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.gr.2018.12.001
b.mills@leeds.ac.uk
https://doi.org/10.1016/j.gr.2018.12.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/1342937X
www.elsevier.com/locate/gr


173B.J.W. Mills et al. / Gondwana Research 67 (2019) 172–186
3. Record of atmospheric CO2 concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.1. Phanerozoic CO2 proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.2. Relationship between Phanerozoic CO2 and surface temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4. Earth system box models for the long-term carbon cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.1. Carbon cycle processes and fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.2. Strontium cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.3. Published Phanerozoic reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5. Revisiting and extending model reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.1. Tectonic forcings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.2. Effect of erosion on weathering fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.3. Strength of weathering-temperature feedbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.4. COPSE model reconstructions for CO2 and surface temperature from 750 Ma to present . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.5. GEOCARBSULF model reconstructions for CO2 and surface temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.6. Comparisons of revised COPSE and GEOCARBSULF models to Phanerozoic CO2 and surface temperature records . . . . . . . . . . . . . . 180
5.7. Strontium cycling and 87Sr/86Sr from 750 Ma to present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6. Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.1. Links between the long-term carbon cycle, CO2, and Earth surface temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2. Model discrepancies: late Ordovician cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.3. Reconciling box modelling with Neogene and Quaternary proxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.4. A source and sink driven long-term carbon cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.5. Spatial weathering regimes and the future of box modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Appendix A. Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
1. Introduction

Atmospheric carbon dioxide appears to have been essential in the
maintenance of habitable conditions throughout Earth history by pro-
viding additional radiative forcing under a less luminous ancient sun.
CO2-related climatic stabilization is attributed to the feedbacks between
planetary surface temperature and the long-term carbon cycle, which
allow atmospheric CO2 to increase in response to global cooling, and de-
crease in response to warming, over timescales of N100 kyrs (Walker
et al., 1981; Kasting, 1989).

Simple ‘box’models of the long-term carbon cycle have been devel-
oped to demonstrate and test these ideas against known temperature
and CO2 variations over the Phanerozoic Eon (Berner et al., 1983;
Berner, 1991, 1994; Berner and Kothavala, 2001; Royer et al., 2004),
and have been combined with models of other elemental cycles to
also estimate concentrations of atmospheric oxygen, ocean sulphate
and the behaviour of geochemical tracers such as δ13C of carbonates
and δ34S of sulphates (Bergman et al., 2004; Berner, 2006; Arvidson
et al., 2006).

The most recent Earth system box models are powerful predictive
tools, used to reconstruct changes in global biogeochemistry and cli-
mate for times when proxy estimates are either unavailable or unreli-
able (Arvidson et al., 2013; Royer et al., 2014; Mills et al., 2016; Lenton
et al., 2018; Krause et al., 2018), or used as a framework in which to
test hypotheses about processes driving climate or biosphere changes
over geological timescales (e.g. Falkowski et al., 2005; Mills et al.,
2011; Boyle et al., 2014; Schachat et al., 2018; Lenton et al., 2018).

In this paper we return to the core predictions of Earth system box
models, for atmospheric CO2 and global surface temperature. These
are among the most easily-testable predictions, as a wealth of pCO2 es-
timates exist (Royer, 2014) and during the Cenozoic at least, surface
temperature proxies are able to produce signals beyond the inherent
uncertainties and climatic noise (e.g. Zachos et al., 2001; Hansen et al.,
2013). In the following sections we attempt to construct broad esti-
mates for both global average surface temperature and atmospheric
CO2 concentration over the Phanerozoic and beyond, given the available
information. We then test current Earth system box models against
these constraints, and those provided by the geological strontium iso-
tope record, which responds to changes in the carbon cycle. Finally,
we modify current models to take into account recent revisions of tec-
tonic forcings, revise the strength of model feedbacks, and extend pre-
dictions back into the Neoproterozoic.
2. Global average surface temperature record

2.1. Whole Phanerozoic δ18O record

Throughout this work we will seek to compile and model the
changes to Earth's global average surface temperature, noting that an
agreed record of global average surface temperature for the Phanerozoic
Eon does not currently exist. The only current continuous Phanerozoic
dataset pertaining to planetary temperature is the oxygen isotope com-
position ofmarine shells (Veizer et al., 1999; Veizer and Prokoph, 2015).
However, the record shows a long-term trend towards more negative
values further back in time. Fig. 1A shows low latitude brachiopod and
planktonic foraminifera oxygen isotope data from the compilation of
Veizer and Prokoph (2015), and the black line in Fig. 1B shows global
average surface temperature estimates by assuming a linear relation-
ship between δ18O and local seawater temperature (Visser et al., 2003;
see Supplementary File), and converting to global average surface tem-
perature by assuming a scaling factor of 1.5 between low latitude and
global temperature changes (Hansen et al., 2008).

Despite the trend towards more negative values, and thus higher
temperatures, the low latitude oxygen isotope record shows cooling pe-
riods that agree very well with the timings of geological evidence for
glaciation (Veizer et al., 2000). The record has been de-trended by as-
suming a gradual evolution of the oxygen isotope composition of sea-
water over the Phanerozoic following either a linear (Veizer et al.,
2000) or quadratic (Veizer and Prokoph, 2015) function, and these cor-
rections are applied in Fig. 1B. Much debate surrounds this dataset
(Royer et al., 2004; Shaviv and Veizer, 2004; Grossman, 2012; Veizer
and Prokoph, 2015; Bernard et al., 2017), and no clear mechanism has
been defined to explain the proposed evolution of ocean δ18O values, al-
though it is known that hydrothermal processes can cause fractionation
(Gregory and Taylor, 1981), as can changes to ice mass. Here we take
the de-trended records as a starting point, and compare these to other
independent estimates.
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Fig. 1. Phanerozoic temperature estimated from low latitude oxygen isotopes. A. δ18O
record from planktonic foraminifera and brachiopods after Veizer and Prokoph (2015),
black curve is a LOESS fit with a span of 10%, dashed lines show ±1 st. dev. B. Estimates
for global average surface temperature from above record (see text), assuming the
temperature function of Visser et al. (2003) and a seawater δ18O value that is constant
(black), or increases quadratically (red) or linearly (yellow) over the Phanerozoic (e.g.
Veizer and Prokoph, 2015; Veizer et al., 2000). Global average temperature change is
assumed to be 1.5× tropical temperature change (Hansen et al., 2008).
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Fig. 2. Cretaceous and Cenozoic temperature change records. A. δ18O record from benthic
foraminifera after Friedrich et al. (2012). Black curve is a LOESS fit with a span of 30%.
Dotted lines show ±1 st. dev. B. Global average surface temperature estimated from
panel A (light blue), compared to recent temperature estimates from the Cenozoic
portion of the record. C. Tropical sea surface temperatures from TEX86

paleothermometry and Mg/Ca ratios. D. Global average surface temperature comparison.
The dark shaded area for δ18Olowlat shows the LOESS fit to data under the quadratic or
linear variation in δ18Oseawater, and the lighter shaded area shows ±1 st. dev. For the
benthic data, the blue lines encompass ±1 st. dev.
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2.2. Mesozoic and Cenozoic temperature proxies

Earth surface temperature estimates are a commonly-used and
seemingly-reliable metric in studies of Cenozoic climate change
(Hansen et al., 2013). A detailed oxygen isotope record from benthic fo-
raminifera (Zachos et al., 2001) has been instrumental in defining cli-
mate events such as the Paleocene-Eocene Thermal Maximum (PETM)
and Early Eocene Climatic Optimum (EECO) (Zachos et al., 2008). A re-
cent combined record of benthic foraminiferal δ18O (Friedrich et al.,
2012), including data for the Cretaceous, is reproduced in Fig. 2A. Tem-
perature estimates from the smoothed record are plotted in Fig. 2B, fol-
lowing the formula in Hansen et al. (2013; see Supplementary File), and
compare well with the Cenozoic temperature record presented in that
paper.

A recently-developed and potentially promising paleothermometer
is the organic lipid tetraether index, TEX86 (Schouten et al., 2002). The
relationship between TEX86 and sea surface temperature has been dem-
onstrated for the present day ocean, although uncertainty remains in
the response to dissolved oxygen concentrations (Qin et al., 2015).
Fig. 2C plots TEX86 sea surface temperature reconstructions from low
latitudes, as calculated by recent studies (Zhang et al., 2014; Inglis
et al., 2015; O'Brien et al., 2017), alongside estimates based onMg/Ca ra-
tios (Evans et al., 2018). A comparison of theMesozoic and Cenozoic re-
cords with the de-trended Phanerozoic δ18Olowlat record is shown in
Fig. 2D, and defines three periods of elevated surface temperatures dur-
ing the mid Cretaceous, early Paleogene and early Neogene. However,
the magnitude of these changes is generally less than implied by the
de-trended oxygen isotope record. Recent TEX86 measurements from
early Jurassic cores (Robinson et al., 2017) indicate sea surface temper-
atures in excess of modern values, generally agreeing with the de-
trended δ18Olowlat curve. The generally lower temperatures recorded
by TEX86 may indicate mixing with deeper waters (e.g. Jonas et al.,
2017).
2.3. Glaciation ice line record

A commonly-usedqualitative Earth surface temperature proxy is the
paleolatitude of ice caps (Crowley, 1998; Royer et al., 2004). This record
helps define the general oscillation between greenhouse (ice free) and
icehouse (permanent ice cap) periods during the Phanerozoic and has
been critical in the arguments presented for low-latitude ‘snowball
Earth’ glaciations during the Neoproterozoic Era (Kirschvink, 1992;
Hoffman et al., 1998). Simple one-dimensional energy balance models
have been used to demonstrate the advance of ice caps towards the
equator under either a decreasing solar flux, or decreasing concentra-
tion of atmospheric carbon dioxide (Budyko, 1969; Ikeda and Tajika,
1999; Hoffman and Schrag, 2002), and demonstrate a clear positive
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Fig. 4. Estimates of surface temperature from glaciation paleolatitude. A. Paleolatitude of
glaciation (as compiled by Crowley, 1998; Cather et al., 2009). B. Estimated global
average surface temperature for pre-Cenozoic time, using the relationship shown in
Fig. 3. Grey area shows combined estimates from Figs. 1 and 2.
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relationship between the latitude of the ice line and the global average
surface temperature, before reaching the ‘snowball’ instability.

It is clear that such models are extremely parameter-dependent and
must make simplified approximations for heat transport between lati-
tude bands that do not equate well to GCM models (Coakley and
Wielicki, 1979). Thus, in order to examine the relationship between glaci-
ation paleolatitude and global average surface temperature, we first plot
the paleolatitude of glaciation (Crowley, 1998; Cather et al., 2009) and
global average surface temperatures derived from benthic δ18O for the
Cenozoic in Fig. 3. These datapoints show a clear positive relationship
and lie on a strong linear fit, allowing us to speculatively apply thismetric
to pre-Cenozoic ice line latitudes, as shown in Fig. 4. It is important to
stress that this extrapolation involves uncertainty due to the differences
in continental positions and ocean heat fluxes earlier in Earth history.
Nevertheless, it is important to consider the quantitative implications of
this proxy, given that it is widely used to define Phanerozoic greenhouse
and icehouse climates. We find that the Paleozoic and Mesozoic temper-
ature reconstructions using this method are in reasonable agreement
with the area defined by the reconstructions in Sections 2.1 and 2.2.

Combining the ice-line temperature record with the
paleothermometer indices described earlier allows us to tentatively de-
fine a broad window for global average surface temperature that en-
compasses all of these estimates (Fig. 4b). Here, the dark shaded area
is derived from the δ18Olowlat record assuming either a linear or qua-
dratic variation in δ18Oseawater, in combination with the ice line proxy
for long glacial periods and the ±1 st. dev. uncertainty in the benthic
δ18O record. The lighter shaded area represents the ±1 st. dev. uncer-
tainty in the δ18Olowlat record and encompasses the scatter in the
TEX86 record and shorter-lived glacial periods. Much about the long
term global temperature record remains uncertain and we see this re-
construction as embodying a multi-proxy ‘best guess’ that attempts to
quantify the generally-understood long-term temperature changes
over the Neoproterozoic and Phanerozoic. Broadly, the picture appears
to be of temperatures below present day in the Cryogenian (Hoffman
et al., 1998), rising to a Cambrian greenhouse, cooling towards the late
Ordovician glaciation, hotter climates during the Silurian and early De-
vonian followed by a long descent into the Late Paleozoic Ice Age by
around 300 Ma, then warm but fluctuating temperatures in the Meso-
zoic (e.g. Dera et al., 2011) and a long term cooling from the Cretaceous
towards the present day.

3. Record of atmospheric CO2 concentrations

3.1. Phanerozoic CO2 proxies

A number of independent proxies have been developed to estimate
atmospheric CO2 concentrations over the Phanerozoic: The isotopic
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composition of carbon in carbonate minerals precipitated in
paleosols, when combined with an estimate of soil-respired pCO2

(Breecker et al., 2010), can be used to estimate atmospheric CO2 con-
centration via a mass balance calculation (Cerling, 1984). The boron
isotope ratio δ11B can be used to estimate oceanic pH due to different
isotopic compositions of the major boron species, which can then be
used to estimate atmospheric CO2 (Pearson and Palmer, 2000). The
carbon isotope composition of carbon in phytoplankton organic
alkenone molecules can be used to infer atmospheric CO2, as frac-
tionations generated by photosynthesis in the mixed layer depend
to some degree on local DIC concentration, thermocline depth and
nutrient availability (Jasper and Hayes, 1990; Pagani, 2002; Zhang
et al., 2013). Finally, given that plant stomata respond to atmo-
spheric pressure and CO2, a Phanerozoic pCO2 record can be derived
from the fossil stomatal index, which measures stomatal density
against epidermal cell density (Royer, 2001).

These proxy records have been carefully collated and summarised
by Royer (2014), and the reader is directed to that paper formore infor-
mation, including various critiques of the methods. The individual re-
cords from Royer (2014) are reproduced in Fig. 5 with moving
averages shown as solid lines and standard deviations shown as light
error bars. The lower panel shows a compilation of these CO2 proxy re-
cords for the Phanerozoic,where the uncertaintywindow is a smoothed
fit to the reported error window every 1 Myr. This window has a larger
uncertainty range than the multiple-proxy LOESS fit of Foster et al.
(2017), reflecting the divergent estimates between individual proxies,
but is generally similar in shape.

3.2. Relationship between Phanerozoic CO2 and surface temperature

Having now compiled Phanerozoic CO2 and temperature estimates,
it seems worthwhile to directly investigate the apparent long-term cli-
mate sensitivity to changing CO2 concentrations. The long-term climate
sensitivity, or Earth System Sensitivity (ESS; Lunt et al., 2010) differs
from the shorter term ‘direct’ climate sensitivity (e.g. Charney et al.,
1979) by considering additional factors such as changes in land surface
albedo, vegetation and hydrology. It is therefore expected to be
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somewhere above the canonical 3 K per CO2 doubling for the present-
day Earth, and perhaps over 6 K per CO2 doubling during glacial times
(Royer, 2016).

To calculate the ESS for the dataset, we use the temperature func-
tion from the GEOCARBSULF and COPSE biogeochemical box models,
which takes into account both the changes in solar luminosity and
the CO2 greenhouse (Berner, 2006; Royer et al., 2014; see Supple-
mentary File). The results are shown in Fig. 6A. Estimated ESS oscil-
lates around a value of around 5–10 K per CO2 doubling, consistent
with results of Royer (2016). Some very large sensitivities corre-
spond in general with glacial periods, as might be expected due to
ice-albedo positive feedback, but these also represent disagreements
between the median CO2 and temperature predictions over time-
scales b50 Myrs. That said, taking the median values of these two in-
dependent datasets confirms a clear positive correlation between
CO2 change and climate warming over the last ~420 Myrs (e.g.
Royer et al., 2004). An important result is that one can use the CO2 re-
cord to directly estimate temperature, using the GEOCARBSULF/
COPSE function and a fixed ESS of 5 K, and produce results that
agree reasonably well with the temperature proxy, as shown in
Fig. 6B. The only clear disagreement here is during the Triassic-
Jurassic, where proxy CO2 concentration is high but surface temper-
ature is relatively low. But even here, taking the lower bound of
proxy CO2 concentration produces temperature estimates towards
the middle of the defined window. Therefore, there exists the possi-
bility that models such as COPSE or GEOCARBSULF, in which the
global average surface temperature is a function of only the solar
flux and CO2 greenhouse, may be able to competently reconstruct
both of these metrics.
4. Earth system box models for the long-term carbon cycle

4.1. Carbon cycle processes and fluxes

A number of biogeochemical boxmodels have been designed to cal-
culate the transfer of carbon between the surface system (ocean plus at-
mosphere) and sediments, based on the scheme originally proposed in
theGEOCARBmodel (Berner, 1991). This system considers a reservoir of
surface CO2 (atmospheric CO2 plus ocean DIC), and much larger sedi-
mentary reservoirs of buried carbonates (Ccarb) and organic carbon
(Corg). The major reservoirs and fluxes of the carbon cycle are shown
in Fig. 7A, corresponding to the setup used in the most recent iteration
of the COPSE model (Lenton et al., 2018).

In summary, long-term (N100 kyr) carbon inputs to the surface sys-
tem occur through: direct mantle injection; the tectonic recycling and
degassing of carbon-bearing sediments; and via the subaerial
weathering of carbonates or fossil organic carbon. Long-term outputs
from the surface system to the sediments occur via burial of organic car-
bon and precipitation of marine carbonates. The blue arrows in Fig. 7A
show the supply of cations (e.g. Ca2+, Mg2+) from terrestrial silicate
weathering and from seafloor hydrothermal alteration (‘seafloor
weathering’), which contribute to overall marine carbonate burial.

Carbon cyclemodels aim to reconstruct variations in the surface sys-
tem CO2 reservoir by reconstructing themagnitude of all input and out-
put fluxes over geological timescales. Fluxes are estimated by
considering ‘forcings’ and internal variables. Forcings are primarily tec-
tonic and evolutionary changes and are imposed on the model, whilst
internal variables are quantities such as pCO2 and surface temperature,
which the model is free to calculate over time. Both forcings and vari-
ables may influence model fluxes.

In this paper we will mostly experiment with the COPSE model, but
we also run the latest version of GEOCARBSULF (Royer et al., 2014).
These models are both based on the carbon cycle shown in Fig. 7A,
and both also model the long-term geochemical cycles of sulphur and
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oxygen, but use very different treatments of the organic components of
these cycles: COPSE calculates organic fluxes using built-in nutrient cy-
cles (Van Cappellen and Ingall, 1994, 1996; Lenton andWatson, 2000a,
2000b), where the oceanic concentrations of phosphate and nitrate are
free to vary and control primary productivity; GEOCARBSULFderives or-
ganic fluxes from the isotopic records of carbon and sulphur using a
mass balance approach (Berner, 1987, 2001). There are also differences
in the choice of model forcings, and the representation of model pro-
cesses. Detailed reviews of both current models are available (Royer
et al., 2014; Lenton et al., 2018) and the reader is directed to these pa-
pers for further discussion and model equations.

Despite the complexities of the carbon cycle, and of individual
models, the regulation of atmospheric CO2 concentration over the Phan-
erozoic is generally considered to be a balance between the overall CO2

degassing rate, and the drivers of terrestrial silicate weathering rates
(e.g. Berner, 2004). There are reasonably good reasons for this simplifi-
cation: 1) carbonate (e.g. limestone) weathering is a source of surface
system CO2, but the products of weathering recombine over long time-
scales (N1 Myr) to form marine carbonates, 2) steady state for atmo-
spheric oxygen requires steady state of the organic side of the carbon
cycle (or an unsustainable imbalance in the sulphur cycle), 3) the rate
of seafloor weathering appears to be controlled by ocean temperature
and ridge generation rate, leaving it without an independent forcing
(a ‘slave variable’).

4.2. Strontium cycle

The cycle of strontium is closely linked to the inorganic carbon cycle:
strontium is delivered to the ocean following theweathering of silicates
and carbonates, and substitutes for calcium during the formation of ma-
rine carbonates (Fig. 7B). For this reason, the Sr cycle has long been seen
as a proxy for carbon cycle processes (Kump, 1989; Francois and
Walker, 1992). Early studies tied variations in 87Sr/86Sr ratios to the
weathering of different lithologies (e.g. Brass, 1976), but many modern
works instead view Sr ratios as a balance between river input from ter-
restrial weathering (for which the isotope ratio is high) and from the
mantle (for which the ratio is low) (Kennedy et al., 2006; Van Der
Meer et al., 2014; Torres et al., 2014; Caves et al., 2016). Whilst river
input is indeed more radiogenic, this interpretation is complicated by
the differential weathering of highly radiogenic lithologies (carbonates,
felsic silicates; blue lines in Fig. 7B; e.g. Galy et al., 1999), versus the
weathering of less radiogenic basalts (Dessert et al., 2003; Allegre
et al., 2010; red lines in Fig. 7B). The COPSE model includes a dynamic
strontium cycle as shown in Fig. 7B, allowing it to output estimates of
the seawater 87Sr/86Sr ratio over the Phanerozoic based on weathering
rates, changes in lithology and mantle inputs (Francois and Walker,
1992;Mills et al., 2014; Lenton et al., 2018). Following similar reasoning,
the GEOCARBSULFmodel uses the strontium isotope record to calculate
the mafic fraction of terrestrial silicate weathering (Berner, 2008).

4.3. Published Phanerozoic reconstructions

Fig. 8 shows the Phanerozoic CO2 and temperature reconstructions
from the COPSE (Lenton et al., 2018) and GEOCARBSULF (Royer et al.,
2014) models against the proxy estimates collated in earlier sections,
and against the 87Sr/86Sr record (McArthur et al., 2012; Cox et al.,
2016) for COPSE. Both models predict similar CO2 concentrations for
the Paleozoic Era, which fit reasonably well with proxies (Fig. 8A). Me-
sozoic CO2 reconstructions from COPSE fall within proxy data, whilst
GEOCARBSULF reconstructions are generally low. Neither model cap-
tures the apparent Paleogene maximum in pCO2, with GEOCARBSULF
underestimating pCO2 at this time by N700 ppm, and requiring an ex-
tremely high degassing rate (~3× present day levels) to raise model es-
timates in line with geochemical proxies for this period (Royer et al.,
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2014). A number of model parameters have high uncertainties, and it
has been shown that a plausible change in the degree to which gymno-
sperm plants amplify silicate weathering rates may reconcile the
GEOCARBSULF predictions for the Mesozoic (Royer et al., 2014).

In contrast to the CO2 predictions, the global average surface tem-
perature reconstructions of both models vary considerably less than in-
ferred changes from proxy data (Fig. 8B). Average surface temperature
in both models does not exceed 20 °C at any point during the Phanero-
zoic, and whilst generally low model temperatures during the
Carboniferous-Permian agree with substantial glaciation at this time,
the variation in temperature over the Cretaceous and Cenozoic bears lit-
tle relation to the available direct estimates. This disagreement is a seri-
ous problem for these models, as the most recent ~100 Myr of Earth
history contains the vast majority of available geochemical evidence. If
a model bears no resemblance to the better constrained variations in
temperature over the Cenozoic, then its predictions for the operation
of the carbon cycle over deeper time should be treated with caution.

In the next section we investigate the possible reasons for the diver-
gence of Earth systemboxmodels from available data. Basing our inves-
tigation firstly on the COPSEmodel, then exploring newversions of both
COPSE and GEOCARBSULF. We revisit the model tectonic forcings, and
the way in which weathering fluxes are linked to global erosion rates
and temperature. We also take this opportunity to extend the COPSE
model forcings back to 750 Ma. In the subsequent sections, ‘unaltered
models’ refers to the most recent published COPSE (Lenton et al.,
2018) and GEOCARBSULF (Royer et al., 2014) models.

5. Revisiting and extending model reconstructions

5.1. Tectonic forcings

Key forcings affecting the long-term carbon cycle are the relative
rates of CO2 degassing, and the relative rates of material uplift and
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erosion. In both the GEOCARBSULF and COPSE models, degassing rates
are assumed to follow the rate of production at mid ocean ridges. This
follows the reasoning that long-term plate creation and destruction
rates are equal, and thus the ridge production rate is a proxy for both
the rate of ridge CO2 input and for the rate of subduction-recycling at
volcanic arcs. GEOCARBSULF (Royer et al., 2014) uses the sea-level in-
version of Gaffin (1987) to inform ridge production rates, whilst
COPSE (Lenton et al., 2018) uses a simplified version of the Gaffin
method (Mills et al., 2017) that is based onmore recent sea-level recon-
structions (Snedden and Liu, 2010; Haq, 2014).

The sea-level inversion method is unable to disentangle climate ef-
fects on the sea-level curve (Conrad, 2013), and an alternative method
of reconstructing plate creation and destruction rates is through
reconstructing the length of subduction zones. Subduction zone lengths
have been reconstructed from direct imaging (Van Der Meer et al.,
2014), plate tectonic reconstructions (Cao et al., 2017; Mills et al.,
2017) and through kinematic modelling (Merdith et al., 2017) and
show a general agreement over the last 750 Myrs (Mills et al., 2017).
Under the assumption of a long-term, near-constant spreading rate,
the rate of plate destruction, and therefore the total ridge and arc CO2

input, should be reasonably approximated by the total global subduc-
tion zone length.

Recently it has been proposed that extensional tectonics, such as
continental rifting, represents a significant and previously-ignored
long-term CO2 source, and it has been shown that basing the
GEOCARBSULF model degassing rate on rift lengths produces a better
fit to Paleogene CO2 proxies than can be achieved using subduction
zone lengths (Brune et al., 2017). Fig. 9A shows a record of global sub-
duction zone length (from Mills et al., 2017 for 750–200 Ma and Van
Der Meer et al., 2014 for 200–0 Ma), alongside the record of global rift
lengths from Brune et al. (2017). Assuming that ~37% of tectonic CO2

input is from continental rifts (Kelemen and Manning, 2015), and the
rest is from ridges and arcs, we combine these curves to modify the
CO2 degassing forcing (assuming constant rift input before 200 Ma).

An additional subduction-related forcing in COPSE and
GEOCARBSULF is the relative burial depth of carbonates. The evolution
of pelagic calcifiers has likely increased the amount of carbonate enter-
ing subduction zones, increasing in turn the overall rate of CO2

degassing (Volk, 1989). The current GEOCARBSULF model (Royer
et al., 2014) assumes that this contribution to degassing rates has
risen linearly over the period 150–0 Ma, and this formulation is used
in the most recent COPSE model (Lenton et al., 2018). Given that the
link between carbonate deposition and degassing is not straightforward
(Edmond and Huh, 2003), and that both current models predict low
temperature over the last 150 Myrs, we return this forcing to follow
its original description (Berner, 1991), where it rises from a value of
0.75 at 150 Ma to reach the modern day value (of 1), by ~100 Ma.

Erosion rates in both COPSE and GEOCARBSULF are informed by a
long-term polynomial fit to the sediment mass compilation of Ronov
(1993) and erosion-loss relationship of Wold and Hay (1990). We ex-
tend this forcing back to 750Ma using amoving average through an up-
dated version of this data which includes Quaternary values (Hay et al.,
2006), shown in Fig. 9B.

5.2. Effect of erosion on weathering fluxes

Global rates of silicate weathering are estimated in boxmodels from
the global average surface temperature following Arrhenius' equation
for the influence of temperature on chemical reaction rates, and scaling
by the global rate of runoff, which is itself a function of average surface
temperature (Berner, 1994). Aside from temperature and runoff, chem-
ical weathering is also influenced by the supply of material from ero-
sion, but the relationship between erosion rates and overall chemical
weathering is complex. Low erosion rates limit chemical weathering,
and a linear trend between physical and chemical weathering is ob-
served in low-erosion catchments (West et al., 2005). High erosion
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rates permit greater rates of chemical weathering (Gaillardet et al.,
1999), but there is no clear relationship between physical erosion and
chemical weathering in high erosion catchments as the reaction rate is
controlled by kinetics, rather than material availability (Gabet and
Mudd, 2009; West, 2012). Additionally, as might be expected under ki-
netic control, high erosion rates favour the chemicalweathering ofmore
reactive lithologies such as carbonates, over less reactive silicates (e.g.
Jacobson and Blum, 2003).

Box models aim to represent the global weathering flux in response
to changing global variables, and thus the overall erosion rate is consid-
ered in terms of the abundance of mountainous weathering environ-
ments, rather than simply the erosion rate in a single catchment. The
COPSE model therefore links the global rates of silicate and carbonate
weathering directly to the overall relative erosion rate. Other models
have differentiated between the effects of erosion on silicate and car-
bonate weathering (Li and Elderfield, 2013; Shields and Mills, 2017)
and we follow this interpretation here, allowing carbonate weathering
a near-linear relationship with erosion rates, and silicate weathering a
weaker relationship (see Supplementary File).
5.3. Strength of weathering-temperature feedbacks

The currentmodel reconstructions displayed in Fig. 8 show that both
the COPSE andGEOCARBSULFmodels strongly regulate surface temper-
ature at values close to the present day. This is chiefly because changes
in global average surface temperature cause a change in the silicate
weathering CO2 sink, which buffers against the original temperature
change by altering atmospheric CO2 concentrations. Overly-strong tem-
perature regulation in these modelsmay be due to an overestimation of
the effect of average surface temperature and runoff changes on
globally-integrated weathering rates. This can occur because not all sil-
icateweathering is kinetically limited, and temperature in low latitudes,
where much of the present-day runoff and weathering occurs (e.g.
Andes, Himalaya, Indonesia; Hartmann et al., 2014), varies less than
the average global surface temperature due to polewards heat trans-
port. In order to test weaker temperature feedbacks in COPSE, we define
an effective weathering temperature. This is defined to be the
temperature in the tropics, using the earlier defined ratio of 1:1.5 be-
tween tropical and global temperature changes proposed by Hansen
et al. (2008).
5.4. COPSE model reconstructions for CO2 and surface temperature from
750 Ma to present

Fig. 10 shows results of the COPSE model following the updates de-
tailed in the previous sections. Panels A and B show model reconstruc-
tions where surface processes are driven by the global average
temperature change, and panels C and D show model reconstructions
where surface processes are driven instead by low latitude temperature
change. We also run the model for a variety of Earth system tempera-
ture sensitivities to CO2 (ESS, coloured lines). Changing the ESS alters
the relationship between model CO2 and surface temperature, and this
effect is further enhanced when the CO2 negative feedbacks are weak-
ened by assuming that most chemical weathering occurs at low lati-
tudes. Taking ESS = 5 K and using the low-latitude temperature
change to drive surface reactions (green line in panels C and D) gives
predictions of CO2 and surface temperature that are largely within the
combined proxy data, and we take this as the new COPSE model
baseline.
5.5. GEOCARBSULF model reconstructions for CO2 and surface temperature

Uncertainty about the operation of the Neoproterozoic carbon cycle
currently prevents the GEOCARBSULF model being run beyond the
Phanerozoic, as the isotope mass balance approach to calculating or-
ganic fluxes fails when the input carbonate δ13C is below the mantle
value of ~−5‰, such as during the enigmatic Shuram excursion (e.g.
Rothman et al., 2003). Nevertheless, it is worthwhile to test our modifi-
cations to the COPSE model by applying them to GEOCARBSULF
(Sections 5.1, 5.2, 5.3). We alter the degassing and erosion rate forcings
for GEOCARBSULF tomatch the updated COPSE forcings, revise the rela-
tionship between uplift andweatheringfluxes (which includes adding a
dependency of carbonateweathering on uplift and erosion), and use the
effective weathering temperature at low latitudes.We fix the Earth sys-
tem temperature sensitivity, Γ, at 5 K per CO2 doubling, as in COPSE.We
also revise the forcing for ‘the fraction of land undergoing chemical
weathering’ (fAW/fA), to normalise the forcing to the present day (as in
Lenton et al., 2018).

In addition to these modifications, we also reconsider some recent
changes to GEOCARBSULF: A number of forcings were revised by
Royer et al. (2014) from the original Berner (2008, 2009) and Berner
(2008, 2009) version of GEOCARBSULF, which alter model outcomes
substantially, creating a larger discrepancy between the model and
the proxy record. These forcings are: the total land area (fA); the global
runoff (fD) due to changing paleogeography; the fraction of land under-
going chemical weathering (fAW/fA) and the global average continental
temperature (GEOG) due to changing paleogeography. Additionally,
the time invariant chemical weathering parameters: the rate of chemi-
cal weathering of volcanic, compared to non-volcanic, silicate rocks
(VNV); the variability of the 87Sr/86Sr of granites over time (NV); and
the rate of the basalt-seawater reaction at present (fB(0)), are also re-
vised by Royer et al. (2014). GEOCARBSULF is very sensitive to the
above forcings, and further analysis (not shown) confirms that much
of the variation in the two versions above comes from theGEOG and vol-
canicweathering parameters. In thiswork,we opt to revert all of the pa-
rameters discussed above to their descriptions in the earlier papers of
Berner. This should not be seen as a refutation of the work of Royer
et al., as we see these differing parameterisations as part of the model
uncertainty and our goal here is to determine, within this uncertainty,
whether or not the model can produce a reasonable reconstruction of
Phanerozoic temperature and CO2.
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5.6. Comparisons of revised COPSE and GEOCARBSULF models to Phanero-
zoic CO2 and surface temperature records

Fig. 11 plots comparisons between the unaltered and revised COPSE
and GEOCARBSULFmodels, and compares these to the uncertainty win-
dows defined in this work for Phanerozoic global average surface tem-
perature and atmospheric CO2 concentration. We also employ some
simple statistical tests of the ability of the models to simulate tempera-
ture and CO2 records that arewithin the proxy limits: %outbound is a cal-
culation of the percentage of the model output which falls outside the
highest confidence windows for both temperature and CO2 (the dark
grey windows); Total error is the sum of the distances between the
model outputs and the means through the proxy data windows. Both
of these statistics are calculated from 1 Myr bins over 423–0 Ma,
which defines the availability of the CO2 proxy data, and covers the
more reliable temperature reconstructions. If the model output is en-
tirely contained within the proxy window then %outbound would be
zero, and if the model output sits exactly on the data window mean
then Total error is also zero. The CO2-temperature data comparison in
Fig. 6 shows that it is technically possible for %outbound to be zero for
both CO2 and temperature, but it is not possible for Total error to be
zero in both cases, as there is some mismatch between the means of
the CO2 and temperature proxy windows.

For COPSE, the revised CO2 predictions for the Paleozoic are broadly
similar to the unalteredmodel, showing a decline fromCambrian to Car-
boniferous, followed by a rise to a peak around 250Ma. CO2 reconstruc-
tions for the Mesozoic and Cenozoic now display broad peaks in the
Cretaceous and Paleogene, reasonably consistent with the long-term
pattern shown in proxy data, with the difference driven primarily by
the consideration of rift activity in the degassing rate of CO2 (Brune
et al., 2017). The statistical metrics plotted in Fig. 11C show no clear dif-
ference in the overall ability of the unaltered and revised COPSEmodels
to stay within the data windows for CO2, or to match the data means.
However, revised COPSEmodel temperature reconstructions are signif-
icantly closer to proxy data than those of the unaltered model. Around
80% of the model output is now within the stricter temperature range,
as opposed to b50% for the unaltered model. This is because the shape
of the model CO2 output now more closely resembles the changes in
temperature, and the increased Earth System Sensitivity leads to a
stronger relationship between CO2 forcing and surface temperature.
This is especially evident for Cretaceous to present. This level of detailed
box modelling has not previously been run for the late Neoproterozoic,
and the results here confirm the expected trend of increasing tempera-
ture between the Cryogenian and Ediacaran, which is largely due to the
increase in CO2 degassing rates (Mills et al., 2017). However, the model
does not produce the level of Cambrianwarmth implied by the available
proxies for this time, and does not show any significant cooling associ-
ated with the Hirnantian glaciation in the late Ordovician. The model
also produces a relatively warm Cryogenian, but a number of possibili-
ties exist for further cooling at this time, including intense weathering
of low-latitude flood basalts (Cox et al., 2016), or biologically-driven
chemical weathering (Lenton and Watson, 2004).

The modified GEOCARBSULF model improves the fit to the proxy
data substantially, and shows an evolution of pCO2 that is almost en-
tirely within the boundaries of the data compilation. For global average
surface temperature, the modified GEOCARBSULF model has similar
errormetrics to themodified COPSEmodel, but is less able to reproduce
the broad humps in temperature during the Cretaceous and Cenozoic.
As discussed earlier, our modification of GEOCARBSULF also includes
reverting some revisions made to that model by Royer et al. (2014).
However, these revisions may represent an increased understanding
of the processes themselves, and it is not acceptable to simply use the
forcings and relationships that give the closest match to proxies if
they are not supported by current research. The version of COPSE used
in this paper does however incorporate the updated forcings for fD
and fAW/fA, without resulting in very low temperature and CO2
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reconstructions for the Mesozoic and Cenozoic that are seen in the
Royer et al. version of GEOCARBSULF. This can be attributed to the in-
creased level of negative feedback in COPSE, which is a result of the dy-
namic biosphere and nutrient cycling in themodel. Thus it appears that
some key updated forcings and parameters in GEOCARBSULF could be
consistent with the observed operation of the long-term carbon cycle,
but only if the model were to also take biotic feedbacks into account.
COPSE does not include the GEOG parameter that alters the continental
temperature due to paleogeographic changes, and preliminary experi-
ments to include this parameter degrade the model predictions, even
with strong biotic feedbacks. Thus it may be the case that these changes
to continental temperature do not affect chemical weathering in a way
that is easily incorporated into a box model, or that other
counterbalancing processes have not been considered.

5.7. Strontium cycling and 87Sr/86Sr from 750 Ma to present

The COPSE model reconstruction of seawater 87Sr/86Sr (Fig. 12A) is
in reasonable agreementwith long-term geological trends for the Phan-
erozoic (aswas that in Lenton et al., 2018), and as in the previousmodel,
is driven largely by changes in erosion rates. Fig. 12B shows a break-
down of the strontium fluxes from each model process. The changes
in strontium input from the weathering of ancient silicates (‘granite’)
and carbonates (both relatively radiogenic) are driven largely by the
changing erosion rates.

The late Neoproterozoic 87Sr/86Sr reconstruction shows the same
general trend as is observed in the data but cannot reproduce the mag-
nitude of the rise between the Tonian and Cambrian. This is potentially
due to uncertainty in the rates of basalt weathering for the late
Neoproterozoic and Early Phanerozoic. In the model, the weathering
of basalts depends on the amount of exposed mafic rocks, which is
largely informed by records of Large Igneous Province (LIP) areas
(Ernst, 2014; Mills et al., 2014). An apparent paucity of Precambrian
and Paleozoic LIPs drives low and fairly stable basaltic area in the
model, but may simply be a consequence of the decline in preserved
crustal material with age. Future work could seek to correct for this
effect.
Fig. 12C shows the ratio of strontium river inputs to mantle input. If
all terrestrial Sr sources had the same isotopic composition (e.g.
87Sr/86Srriver is constant) then this quantity would be expected to track
the seawater 87Sr/86Sr reconstruction in Fig. 12A. This is clearly not the
case, and especially sowhen considering only silicateweathering versus
mantle input. The riverine strontium signal is a combination of at least
three sources, each with their own distinct controls and isotopic signa-
tures, and thus considerable caution is advised when considering any
direct back-calculation from ocean 87Sr/86Sr to silicateweathering rates.

6. Summary and conclusions

6.1. Links between the long-term carbon cycle, CO2, and Earth surface
temperature

By compiling independent proxy records of global average surface
temperature and atmospheric CO2 concentration for the Phanerozoic,
we have shown that when accounting for the solar flux, long-term
Phanerozoic surface temperature changes can be clearly related to var-
iations in the CO2 greenhouse (Fig. 6). CO2 appears to be a primary
driver of climate on geological timescales (e.g. Royer et al., 2004).

Furthermore, the long-term CO2 concentration derived from direct
proxies agrees reasonably well with that predicted by biogeochemical
box modelling at the Phanerozoic scale. This finding gives confidence
that suchmodels include broadly the right suite of processes, and accu-
rately discern the relative importance of these in driving climate regula-
tion. However, there are a number of instances where the models and
proxies disagree, suggesting that either the current forcings remain
poorly constrained, or additional processes become important at these
times.

6.2. Model discrepancies: late Ordovician cooling

A key area of model-proxy disagreement is the apparent cooling and
glacial period in the late Ordovician (Hirnantian). It has been proposed
that a reduction in CO2 concentration and temperature may be related
to reductions in CO2 degassing rates (based on lower abundances of
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young zircons,McKenzie et al., 2016), or to enhancedweathering of vol-
canic rocks (evidenced by a fall in seawater 87Sr/86Sr, Young et al., 2009;
Nardin et al., 2011). A reduction in degassing rates during the late Ordo-
vician is not yet validated by any quantitative tectonic reconstruction
(see Mills et al., 2017 for a compilation), and is not included in our
model. There is also no clear evidence for a significant increase in volca-
nic weathering during this time, although this is clearly possible, given
the tectonic events of the time (e.g. weathering of the Famatinian arc:
Young et al., 2009).

Fig. 13 shows the COPSE model reconstruction for the late Ordovi-
cian, which predicts generally static and high global average tempera-
tures and static 87Sr/86Sr (solid lines). Dashed and dotted lines show
model runs that explore adding additional volcanic basalt weathering
starting in the late Ordovician (from 450 to 430 Ma). The dashed lines
show the effects of adding the entire present day basalt weathering
area, and the dotted lines show the addition of twice this amount.
Such an event might be best explained by the emplacement of a Large
Igneous Province (LIP), as hypothesised for this time period (Lefebvre
et al., 2010). Enhancing silicate weathering in this manner causes CO2

and temperature to decline, and 87Sr/86Sr to fall (e.g. Fig. 7). In order
to not exceed the amount of variation observed in ocean 87Sr/86Sr,
global cooling is limited to about 3 °C on average, or around 2 °C in
the tropics – far below the degree of cooling proposed by examining
oxygen isotopes (Trotter et al., 2008). The rise of the first land plants
greatly accelerating weathering, particularly of easily-weathered volca-
nic rocks (Lenton et al., 2012), combinedwith a ‘tipping point’ in sea-ice
cover on the then ocean-covered Northern Hemisphere (Pohl et al.,
2014) may be the best way to explain this sharp cold interval.

6.3. Reconciling box modelling with Neogene and Quaternary proxies

A persistent problem with long-term Phanerozoic modelling has
been the inability to reproduce the events of the late Cenozoic. Due to
the abundance of proxy data for CO2 and temperature, and non-
traditional isotopic proxies such as lithium and beryllium (Misra and
Froelich, 2012; Willenbring and von Blanckenburg, 2010), the cooling
period in the late Cenozoic has long been the testing ground for hypoth-
eses about the long-term carbon cycle and regulation of Earth surface
temperature (Raymo and Ruddiman, 1992).

Our modifications to the COPSE model produce a reasonable fit to
Neogene andQuaternary records of global average surface temperature,
atmospheric CO2 concentration and ocean 87Sr/86Sr (Fig. 14). As noted
earlier, they confirm the established (but frequently overlooked) view
that late Cenozoic cooling does not require a long-term increase in sili-
cate weathering rates (Kump and Arthur, 1997): The silicate
weathering flux is set by the global carbon cycle balance, and increases
in erosion result in this global balance beingmaintained at a lower tem-
perature. A shift towards more positive 87Sr/86Sr values is the conse-
quence of the weathering of uplifted older terranes and sediments
during a period of generally increased erosion rates, but decreasing
global rates of silicate weathering (as required by a decreasing CO2

input rate).

6.4. A source and sink driven long-term carbon cycle

Recent studies have asked whether the long-term carbon cycle is
primarily controlled by the carbon sources from CO2 degassing
(McKenzie et al., 2016), or by the changing carbon sink due to silicate
weathering (Goddéris and Donnadieu, 2017). The COPSE model is
well-placed to investigate this question. Fig. 15 shows ‘source-only’
and ‘sink-only’ versions of the model, in which the other forcings are
kept at their present value. It should not be surprising that neither of
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thesemodels can reproduce the general long-term climate trends of the
full model, as model development aims to only include the most rele-
vant processes (see Lenton et al., 2018).

In agreement with Goddéris and Donnadieu (2017), the sink-only
model can explain climate shifts before the Jurassic reasonably well,
but not during the Cretaceous and Cenozoic. The source-only model
can explain the general trend in temperature increases and decreases,
and can do so quite well if the burial depth of carbonates (‘B forcing’)
is ignored. However, the source-only model cannot explain variations
in ocean 87Sr/86Sr. Whilst strontium isotope ratios are not a direct
weathering proxy, their variations are primarily controlled by changes
in carbon sinks. Thus, a source-driven carbon cycle cannot bemade con-
sistent with the 87Sr/86Sr record.

6.5. Spatial weathering regimes and the future of box modelling

Estimating long-term chemical weathering rates in a nondimen-
sional box model is a difficult task. The global rates of chemical
weathering on the present-day Earth are spatially heterogeneous (e.g.
Hilley and Porder, 2008; Hartmann et al., 2014), and depend on local
temperature, and rates of erosion and runoff (Gaillardet et al., 1999;
West, 2012). A reasonable marriage of these parameters can be
achieved in spatial models in order to estimate global silicate
weathering rates and CO2 drawdown for snapshots of the ancient car-
bon cycle, with impressive results (Goddéris et al., 2012, 2014, 2017),
but the number of computer CPU hours required to solve these models
means that they have not been used to create continuous 500-million
year records of isotope tracers, or represent non-steady-state dynamics,
such as the build-up of carbon in the Earth's crust and long-term ex-
changes with the mantle (Hayes and Waldbauer, 2006). Long integra-
tion times also affect model development and testing, limiting the
number of experiments that can be run.
There is scope to move beyond the current situation. One approach
would be to asynchronously couple between running ‘snapshots’ of a
climate model to derive spatially-explicit weathering fluxes and using
a box model to span much longer intervals between the snapshots.
More economically, if for a given paleogeography it can be established
from the climatemodel that the spatial pattern of precipitation changes
scales with global average temperature – as is the case for the modern
climate – then a pattern-scaling approach can be taken (Huntingford
et al., 2010; Huntingford and Cox, 2000). In this approach the spatial
pattern of precipitation and how it changes with global temperature
would be extracted from a climate model for a series of snapshots
through the Phanerozoic, and then an elaborated box model would
use these scaled patterns to driveweatheringfluxes. Thiswould provide
a computationally efficient solution, but still poses some issues such as
how to incrementally change between different paleo-geographies dur-
ing the operation of plate tectonics.

In conclusion, recent advances in reconstructing tectonic drivers
of the long-term carbon cycle, combined with established box
models, can resolve several outstanding anomalies between model
predictions and proxies for CO2 and temperature. To advance further
requires an improvedmodelling approach, for example, a continuous
box model that can better represent physical climate and surface
processes.
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