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This paper deals with the identification of two-time scale linear dynamic systems, which are an important class of multiscale systems.
Classical identification processes may fail to yield accurate parameters for systems of this class and, for this reason, the authors
propose two different techniques to estimate the system parameters. The first technique utilizes two prefilters that are iteratively
tuned. The second one considers wavelet filters that are tuned based on the results of the first iterative algorithm. Identification and

analysis results for a dynamical aircraft model are shown to demonstrate the algorithm’s performance.

1. Introduction

The development of system models is an essential task to any
branch of science. Being a complex task, the construction
of a model based on observations of the modelled system is
most often developed from a single view or observation scale.
Taking the example of the human body, models are developed
considering scales of observation on the level of organs,
tissues, cells, and molecules. The human body system works
from the harmonious integration of subsystems observed on
these various levels. However, the construction of a model
that integrates all these scales of observation is not a trivial
task. As exemplified with the human body system, complex
dynamic systems can be modelled per scale of observation.
The construction of several models that consider their various
scales of observation and subsequent integration is what is
called multiscale modelling [1].

Complex systems are characterized by a hierarchical
multiscale nature with respect to not only space but also time
[1]. Considering this nature of the systems, methodologies
of study and modelling are in demand. Any multiscale
methodology must consider the following issues: correlation
between phenomena at different scales, trade-off between
different dominant mechanisms, coupling between spatial
and temporal structural changes, and critical phenomena
occurring in complex systems.

Two-time scaled systems (TTSS) are a particular and
important case of multiscale systems because several physical
systems such as batteries [2], aircraft longitudinal dynamical
model [3], and thermal building models [4] present two-scale
behaviour. In this particular case, the system has two well
defined time scales (one slow and the other fast) and one
of the objectives is to identify these dynamics [5, 6]. Spatial
scales are not considered in this paper.

Works related to two-time scaled systems have particular
importance because traditional prediction error methods
(PEMs) tends to overemphasize dynamical modes that affect
the overall model response more heavily [2, 7-9].

A two-time scaled system identification procedure pre-
sented in [7] is one of the main related works. The authors of
that paper show that the classical least squares (LS) method
typically fails to give an accurate estimation because the data
of a two-time scaled system is scattered in the frequency
domain. In that paper, the authors propose a new technique to
identify this kind of system and present a second-order two-
time scaled system as example. The approach proposed by the
authors is compared with the classic least squares method.

In [8, 9], the authors show that measurement noise
can result in further model inaccuracies. The application
considered therein was a model for a battery system (applied
in electric vehicles) that exhibits two-time scales. In batteries,
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FIGURE 1: Identification using prefilters.

the main two phenomenological effects [2] are charge transfer
and diffusion, two of the most important effects in battery
dynamics. Charge transfer occurs on a time scale of 0.1-100
Hz, while diffusion occurs from around 1 Hz down to 0.001
Hz. The authors in [2] also compare their technique with the
LS method and show that the proposed method produced
better estimated models.

Both [2, 7] consider a prefiltering data mechanism to
separate the slow and fast dynamics. In both papers, the
prefilter design is carried out based on previous knowledge
of the system’s characteristics. The cut-off frequencies of
the filters are calculated offline and kept fixed during the
estimation procedure.

The contribution of this paper is to present techniques
that estimate two-time scaled models. The first one is an
iterative algorithm that computes cut-off frequencies for
classical prefilters and these frequencies are corrected during
the iterations. The second one takes the result (cut-off
frequencies) of the mentioned iterative algorithm and uses
it as parameter of a second estimation stage. This second
estimation stage is based on wavelets. A Lockheed F104G
aircraft model example is shown to demonstrate the efficiency
of the proposed procedures. This paper is organized as
follows: the Materials and Methods section summarizes a
theoretical background on two-time scaled system identifica-
tion, presents the algorithm based on classic filters, and shows
the framework that considers wavelet filters using the results
of the iterative algorithm; the section Application Example
and Results shows results obtained for an example, and the
last section brings the conclusions.

2. Materials and Methods

In this section, we will briefly define TTSS. The definition is
presented in continuous time because of the simplicity of the
formulation and its easy extension to discrete time.

2.1. Definition of Two-Time Scaled System. TTSS is a system
that can be characterized by two well defined scales, one
fast and the other slow. Mathematical descriptions of this
kind on system may be considered in time domain (singular
perturbation theory) or in frequency domain. In frequency
domain, the transfer function is written as a function of a
small parameter ¢ called scale parameter. Reference [5] gives
a complete characterization of two-frequency scale transfer
functions. In that paper, its authors describe a transfer
function matrix (MIMO) as a function of & that may be

characterized as two-time scaled given certain conditions.
In that paper, the class of systems that can be described by
that approach is very wide. In this paper, the mathematical
formulation is based on [5], but is more restricted and will be
described in the following.

Consider the following model in transfer function form
[7,10]:

T(s)=T, (E)Tf (s) )

where T,(s/e) models the slow system dynamics scaled by
the parameter € and T(s) corresponds to the fast dynamics.
Considering the frequency response of the system, for high
frequencies we can assume that

T (jw) =T, (22) Ty (j) = 1 (joo) Ty (o) (@)
and for low frequencies ew
T (gjw) = T, (jw) Ty (gjw) = Tg (jw) T (00 (3)

To keep these approximations, we will assume that the
static gain of Ty is nonzero and that the high-frequency
gain of T, is neither zero nor infinity. Adopting these
assumptions, we shall further consider that T, is biproper.
From a numerical point of view, T, must contain both slow
zeros and poles, with some of these still left in T';. This is to
allow near cancellation in T for higher frequencies.

The described system (TTSS) has a frequency response
whose Bode plot is monotonic over a “wide” frequency
bandwidth and such that the approximations (2) and (3) are
valid. In [5] the mathematical description of TTSS is not
restricted to the monotonic case.

2.2. Prefiltering in the Identification Process. As mentioned
before, prefilters are a classic solution to avoid inaccurate
results when identifying TTSS. The use of prefilters may be
illustrated by Figure 1.

Prefiltering has been known to increase the performance
of identification schemes by transforming the shape of noise
and reconditioning the excitation matrix as we can see in [5,
11, 12]. Considering this, we can define the low-pass and high-
pass prefilters in the following way:

. joy oo N

limmax (7. (%) - T.(jeo) ) (f“’>| 0 @
. . [N

sllj})?eauq){( |(Tf (gjw) =T (0)) w'F (]w). =0,
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where #, is the degree of T. Assumptions (4) and (5) are
tulfilled by taking F;, = 0 in low frequency and F; = 0
for sufficiently high frequencies, low and high frequencies
being adequately defined in the context of the respective
application.

In this paper, the first contribution considers classic
filters. The proposed iterative algorithm supplies as result
a good choice of the cut-off frequencies of the prefilter.
The second contribution consists of wavelet filters that work
in a frequency range defined by the mentioned iterative
algorithm. A more detailed discussion about the prefilters and
their structure will be given in the following sections.

2.3. Iterative Design of the Prefilters. The existing two-time
scale identification methods [2, 7] consider that the classical
identification requirements must be valid: the input signal
must be persistently exciting; a previous structure infor-
mation must be known; and an estimation algorithm must
converge with minimum error covariance.

A basic idea of [2, 7] is to find prefilter that suits the input
signal. The task of the prefilter is to supply an input signal that
excites the system in order to highlight the desired dynamics
and minimize the effect of nondesired dynamics. Usually, to
highlight the T, dynamics, a low-pass filter is designed, and to
highlight the T; dynamics, a high-pass filter is designed. The
cut-off frequency of the low-pass filter should be high enough
to encompass the passband of the slower mode, but should be
low enough to contain as little of the passband of the faster
mode as possible [2]. On the other hand, the passband of the
high-pass filter needs to overlap with passband of the faster
dynamics but has as little overlap with the passband of the
slower dynamics as possible [2].

2.4. Description of the Iterative Algorithm. The cut-off fre-
quency of the filter must maintain some relation with the cut-
off frequencies of the system. Considering this affirmation,
the proposed algorithm estimates (without filtering of the
excitation signal) an initial model (possibly wrong) in order
to obtain an initial cut-oft frequency. This initial cut-off
frequency will be considered for both, the low-pass and the
high-pass filters. The system is separately excited with the
two new signals (i.e., filtered signals) and the new data is
then considered for a second estimation process (separately).
The result of this second estimation process results in the
first approximation of T; and T, that will be called T, and
T ¢o. The cut-off frequencies of T, and T s, will entail other
low-pass and high-pass filters that will be considered for a
third estimation pass. The algorithm will repeat the described
process until a given stop criterion is satisfied. The estimation
algorithm considered here is the classic least squares (LS)
algorithm.

The recursive procedure of the proposed idea is described
below.

Step 0. Set i«—0.

Step 1. Apply a persistent exciting signal u to the system and
sample its output.

Step 2. Estimate an initial model T, and compute its cut-oft
frequency (f).

Step 3. Set f; «— fyand f,; — fo.

Step 4. Design alow-pass filter and a high-pass filter with cut-
off frequencies f; and f;, respectively.

Step 5. Generate two signals u; and u ; by filtering u with Fj;
and Fy;, respectively.

Step 6. Apply the signals u; and u; to the system (separately)
and sample its outputs y; and y ;.

Step 7. Estimate T; and T ;; using LS algorithm.
Step 8. Set ie—i+l.

Step 9. Compute the cut-oft frequencies f;; and f},; consider-
ing Ty;_; and Ty 4.

Step 10. If the stop criterion (see in the following) is not
satisfied, go back to Step 4; else stop.

In this iterative procedure, the last estimated model is
the model that will be considered for validation. The cut-oft
frequencies are calculated by the following expression:

Weurofy = —Maxreal (poles (G (jw))) (6)

The stopping criterion is based on the convergence of
the cut-off frequencies. When both frequencies converge,
the algorithm stops. To evaluate the convergence of the
frequencies, the algorithm calculates the absolute difference
between the current frequency and the frequency in the last
step as in (7) and (8).

dl; = |fli - fli—1| @)
dh; = |fh1 - fhi—ll (8)

The tolerance value € is used to define the stopping
criteria; ie., when dl; < € and dh; < e, the iterative
procedure stops. When di; < € and dh; < e, the prefilters
will not change their cut-oft frequency significantly and the
new estimation will not be significantly different from the
previous estimation. Furthermore, if the cut-off frequency
does not change very significantly, the estimated parameters
also will not. This assertion is not general and is valid to
the class of systems described in this paper. The proposed
algorithm is based on the classic LS. The convergence and
consistency of this method are well established. In the filtered
case, the convergence and consistency of the estimator are
also well established [13].

2.5. Wavelet Prefilters. The Discrete Wavelet Transform
(DWT) is a powerful tool in processing signals. The main
issue of DWT is that the signal may be analyzed in both
time and frequency domains. In identification of systems,
wavelets are used mostly for nonlinear cases. In nonlinear
cases, unknown time-varying coefficients are expressed as
a linear combination of wavelet basis functions [14, 15]. In
linear case, there are two main related papers [16,17]. In those
papers, the authors use the wavelet decomposition in order to



prefilter the input/output signals. The applications related to
those papers are the identification of reduced order models.

Wavelet filters are justified by their simple structure in
frequency domain. They are orthogonal in time domain and
can be used to specifically determine the portion of infor-
mation from data without duplicity [17]. The next sections
will show how wavelets are used in linear identification and
the methodology proposed in this paper to identify two-time
scaled systems.

2.6. System Identification considering the Frequency Domain.
Considering an ARMAX model, the linear equations can be
written in the following matrix form:

Y-A0=0 (9)

where A is a regressors matrix, 6 is a parameter vector,
and Y is the output (measurement) vector. In the classic
LS, the method tends to provide a balanced estimation over
the whole frequency. In some cases, like in two-time scaled
systems, it is desirable that certain frequency bands are
privileged.

In order to delimit the desired frequency bands, we
will transform (9) via an orthogonal transformation. Let P
be an orthogonal operator; the projection of (9) onto the
orthogonal basis P is given by

P(Y - AB) =0 (10)

We can rewrite the i-th equation of (10) in the following
form:

(ol ym) + @ (0 yua) + -+ (] 30)
_bl <piT’un—1> _"'_bm <PiT’un—m>) =0

where m and n are the number of regressors of y and u,
respectively, and p; is the i-th row of P. We can conclude,
observing (11), that each transformed equation is associated
with a single eigenvector of P. The process data, after this
transformation, contains only information in the subspace
defined by the eigenvector p;. To control the relative effect of
the information in the subspace spanned by p;, (10) may be
premultiplied by a weighting matrix C.

CPY = CPA (12)

The estimated parameters vector, after selecting the suit-
able operator P and the weighting matrix C, in order to
fragment the spectra as desired, is obtained by classic LS
expression:

6= (ATP"cPA) " ATPTCPY (13)

The next subsection will show a possible choice of matrix
P (using wavelets).

2.7. System Identification Using Wavelets. The DWT decom-
poses the Hilbert space (L?) into two subspaces (approx-
imations V and details W). The resulting approximations
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subspace V can be decomposed further because it is closed
and has a countable basis. This process may be repeated in a
maximum number of levels. Denoting V' ;and W ; as the space
of approximations and details at the j-th level, respectively, we
can derive the following expressions at the 1°* and 2" level:

I’=V,eW, (14)
Vi=V,eW, (15)

or at the p'™ level:
L’=V,eW,eW,, 6...0W, (16)

The DWT decomposition considers a scale vector called
¢ (approximations) and a wavelet vector y (details). Multires-
olution analysis [18] shows us that even shifts of the same
vector are orthonormal as well as shifts of different vectors.
Let us define the operator shift for scale and wavelet vectors
of the following form:

q 'z (k) =z (ki) 17)

In practical analysis with DWT, the length of data
in a level is always split in half from the previous level.
Considering a data vector of length N, and j levels, we
should have N=2. In the approach considered by this paper
(see [17]), the data of length N,=N are decomposed into
approximations and details of both lengths considering the
following expression:

N, -L
N =t (S
S

(18)
where int(x) corresponds to the integer part of x, L is the
length of the filter, and S is the shift.

Considering this, we will show how to compute the
matrix P defined in the previous section using wavelet filters.
Analyzing the first level, the matrix P; must consider both
filters ¢ (approximations) and y (details) shifted in time.

AR

P=1--- (19)

2N,
Ld TP AN,

If we consider the analysis in just one level, we can see
clearly that, premultiplying P, by Y, considering that the
signal Y is a real signal, we would have the data projected
onto the space of approximation (lower frequencies) and
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details (higher frequencies). In this case, using a sampling
time T, (sampling frequency F,), the frequency range is split
in halves. In the details level, the frequency range would be
fmin:fs/4 andfmax:fs/z'

In higher levels, the matrices are computed of the follow-
ing form:

Ij 0
Pi=1" = (20)
0P| _. .
TA(EL, NN x(E2, N)+2N;
where the dimension of I jis
j j
dim (I;) = Y N, x YN, (1)
iz2 i=2
and
_ v -
2
Qv
q*Z(NjH*l)W
Pi=( - == (22)
%
-2
q ¢
~2(Nj,-1)
4 g"_zijNj,1

Considering the P;, j=I..p, matrices, the P matrix is
computed as

1
P=[]n (23)
i=p
where the dimension of P, considering p levels, is given by

j
dim (P) = (ZN,-) +2Nj,; x N, (24)
i=2

The weighting matrix C has some properties that we will
discuss. First, the matrix C normalizes the filtered data. As we
know, the gain of wavelet filters is not unitary. In this case, we
can compute the matrix C in order to compensate the change
of the system gain. Second, we can compute the matrix C in
order to select the desired frequency ranges. As we can see in
(24), the rows of P are blocks of size N;,N3,..N;,N;,; The C
matrix may have the following structure:

C = Czcl (25)

where C, is a matrix that compensates the filter gain and C, is
a matrix defined by the user. Some proposals of its structure
may be found in [16, 17]. Our approach is focused on the
matrix C; and will be shown in the next section.

5
TABLE 1: Frequency range in levels of wavelet decomposition.
Level Analysis fmin fmax
1 Details fi/4 12
2 Details f/8 fil4
3 Details f,/16 f,/8
h Details £/ f./2P
h Approximation 0 f./20!

2.8. Computation of the Weighting Matrix. 'The contribution
of this paper in terms of a system identification using wavelet
methodology is to provide a framework of two-time scaled
systems identification that can be extended to multi-time
scale systems. This extension is natural because wavelet filters
split the frequency range into a given number of levels that
can be computed according to the number of scales of the
system. In the two-time scaled systems approach, the iterative
algorithm is considered to compute the fast and the slow cut-
off frequencies.

The proposed procedure is based on the structure of the
matrix C; that is given, considering p levels, by

Iy, © . 0
C1 = 00 I (26)
Np+1
00 INp+1

Each identity block weights a determined level in the
data decomposition (range of frequency). As we can see, it
is possible to modify C,, by replacing some identity matrices
by null matrices. By doing this, we disregard that frequency
range (corresponding to the details of DWT). This may be
very useful in the identification of two-time scaled systems. In
[16,17] the authors tune the weights according to the previous
knowledge of the system. In this paper, we will consider the
iterative algorithm presented in the previous Section 2.4 in
order to define the number of levels considered in wavelet
filtering process and which level will be considered or not by
setting the identity matrices of C; as null. To understand how
to set properly C;, we must understand how the wavelet filters
split the frequency range. Considering a sampled signal with
sample time ¢, ( f; is the sample frequency), Table 1 shows the
frequency range.

A more detailed explanation of the range frequencies
of Table 1 may be obtained from [17]. Considering that the
iterative algorithm converged, and denoting f; and f;, as
the cut-off frequencies of the low and high pass filters,
respectively, obtained from the iterative algorithm, we will
first compute the maximum number of levels from f;. The
maximum number of levels is given by

p = round <log2 (%) - 1> (27)

where round(x) is the nearest integer to x.



The low-pass filter considers p levels and the matrix C,
will be set considering the last p details and approximation
levels (two last rows of Table 1). The high-pass filter considers

jn levels:
A
Jp = roun 0g, ¥ 1 (28)
h

In order to tune the high-pass filter, the matrix C, will
be set considering the levels j = 1,---, j,. The wavelet filter
gain is usually (v2)’ where j is the level considered. The
compensation of the wavelet filter gain is done by setting the
matrix C, with 1/(+/2)’ in the corresponding j = 1,---, j,
levels.

The algorithm that estimates the TTSS considers the
wavelet prefilters. In the procedure, two wavelet matrices
and two weighting matrices are computed (one for each
time scale). For each time scale, a model is estimated. The
pseudocode of the algorithm is shown below.

Step 1. Apply a persistent exciting signal u to the system and
sample its output with sample frequency f,.

Step 2. Perform the iterative algorithm (see Section 2.4) and
store the cut-off frequencies f; and f;.

Step 3. Compute the maximum number of the wavelet
decomposition p via (27) that corresponds to the low-pass
prefilter.

Step 4. Compute the maximum level of the high-pass prefilter
jh via (28)

Step 5. Mount the regressor matrix A and the output vector
Y.

Step 6. Compute the wavelet matrix P considering p levels
(computed in Step 3).

Step 7. Compute the matrix C,, considering only thelevels j =
1,---, j, of the wavelet decomposition (that is, set the blocks
of (26),1;, j = j, +1,---, p, as null matrices).

Step 8. Compute the parameters that correspond to the fast
scale model as éf = (ATPTChPA)flATPTChPY.

Step 9. Compute matrix C; considering the p-th level (both
details and approximation).

Step 10. Compute the parameters that correspond to the slow
scale model as 8, = (ATPTC hPA)_lATPTClPY.

The estimated models in each time scale (T and Tf)
considering the parameters vectors 8, and  ;, respectively, are
the models that will be considered for validation. The overall
model is obtained by (1). One important consideration that
must be done is that wavelet filters are prone to noise. In order
to avoid this problem, all input/output data are denoised
when wavelet filters are considered.
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FIGURE 2: Doublet (3-2-1-1) persistent excitation signal.

3. Application Example and Discussion

The case study considered in this work is the identification of
the longitudinal dynamics of Lockheed F104G aircraft [19].
This kind of longitudinal dynamics indeed exhibits two-time
scale behaviour [3].

The excitation signal is a conventional flight test maneu-
ver signal. Because a persistent signal is needed for identifi-
cation, the flight test maneuver that has been considered is
the doublet (3-2-1-1), which is a persistent excitation signal
composed of square pulses. The design of doublet maneuvers
consists in choosing how long the square waves will be
and then choosing the signal amplitude. More details about
these maneuvers are found in [20]. An example is shown in
Figure 2.

3.1 Aircraft Longitudinal Dynamics. The equations of motion
of the aircraft are a set of nonlinear equations (longitudinal
and lateral). In our case, we will consider decoupled longitu-
dinal and lateral dynamics, which are described by linearized
equations.

An illustration of the quantities involved in the longitudi-
nal motion is shown in Figure 3.

The linearized matrix equation of the longitudinal motion
is shown in the following:

dx Ul

« Al 4B (29)
= + B.

Va4 Vy 1

14 14

where V , is the horizontal-velocity deviation in m/s; y is the
flight-path angle in rad; « is the angle of attack in rad; gy is
the pitch rate in rad/s; and # is the elevator deflection in rad.
The matrices A and B are given by
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Zero Lift
o Va

Horizontal

FIGURE 3: Aircraft illustration (longitudinal motion).

[ —-1.980 -103.0000  0.0070 0.0000
A= 1.000 -2.85.0000 -0.0001 0.0000 (30)
B 0.000 -17.2070 0.0720 -9.8070
0.000  2.850 0.0001 0.0000
[ —60.2
B= -0.3393 (31)
0
L 0.3393

As we can see, the eigenvalues of the system matrix A are
-2.4148 +10.1386j and -0.0362 + 0.0989; that correspond to
fast and slow dynamics, respectively. In this example, we will
consider V 4, as output (slower variable). The next subsections
will show the identification results considering the methods
proposed in this paper.

3.2. Results considering Classic Prefilter Tuned by the Iterative
Algorithm. In this subsection, we will compare the estima-
tions using a standard LS method and the method proposed
in this paper (recursive algorithm) using prefilters. The choice
of the filter structure usually is done by the user. There is a
trade-off between the order of the filter and the sharpness
of cut-off. In our case, a second-order filter produced good
results.

In all simulations used in this paper, the system output
is contaminated with a Gaussian zero mean noise. The
considered sample time is #,=0.1s. The temporal comparison
between the methods is shown in Figure 4. In this simulation,
a doublet 3-2-1-1 signal produces the persistent excitation.

As we can see in Figure 4, the standard LS failed in the
parameter accuracy in the estimation process. The proposed
method, in time domain, estimated a model with good
precision. The frequency domain validation is also presented
in order to compare the identified fast and slow dynamics.
The Bode plot is shown in Figure5. The comparison in
domain frequency also shows that the proposed method is
more accurate mainly in high frequencies. The evolution of
the cut-off frequencies for the low- and high-pass filters is
shown in Figures 6 and 7.

The computational effort of the algorithm is not signif-
icant and its convergence, in this simulation, was fast (six
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FIGURE 4: Comparison between identified models: horizontal veloc-
ity deviation (m.s™).

steps). The same output signal obtained from the doublet
excitation signal is used in all the iterations. When the esti-
mation method is offline LS, the time consumption depends
on the regressors matrix.

3.3. Results considering Wavelet Prefilters. The previous
results from the proposed algorithm show that the cut-off
frequencies are f; = 0.0362 rad/s and f, = 9.9995 rad/s.
In this case, the maximum level of analysis, considering (27),
is p = 10 and the low-pass filter will be computed considering
level j=10 (approximations and detail) by (28). The high-pass
filter in this example will consider j, = 2, so the high-pass
filter is obtained from the levels j = 1, 2.

The results, in time and frequency domains, are shown
in Figures 8 and 9, respectively. An overall and quantitative
comparison, considering the mean squared error (MSE), is
shown in Table 2. The graphical and quantitative comparison
shows that the recursive algorithm (considering classical
filters) and the wavelet method produced similar results.
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TaBLE 2: Comparison of the mean squared error (MSE).

Method MSE

Standard LS 276.0001
Recursive Algorithm 42.8698
Wavelet 46.5788

The time consuming in this case is more significative than
the classical filter case. The product of the matrices consider-
ing P and C results in a matrix with larger dimensions. In this
case, the computational effort is greater.

The models identified with the classical LS, with the
iterative algorithm, and with the algorithm using wavelets are
shown in (32), (33), and (34), respectively, all in discrete time.
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In order to compare the fast scale and slow scale
behaviour, we will present the estimated models in their
respective scales.
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3.4. Numerical Sensibility Analysis. In order to analyze the
sensibility of the proposed method, we will present a numer-
ical simulation considering (i) how sensitive the convergence
of the iterative algorithm is in relation to its initial condition
and (ii) how sensitive the filtered method (considering both
classical and wavelet filters) is in relation to the cut-off
frequency.

The first simulation (Figures 10 and 11) shows a deviation
of +10% in relation to the initial cut-oft frequency of the
iterative algorithm versus the converged cut-off frequency.

As we can see in the simulation, the algorithm demon-
strated low sensibility in relation to the initial frequency. It
indicates that the initial condition proposed in the algorithm
was a good choice in this example.

The second numerical analysis considers a variation in
the converged cut-oft frequency in relation to the perfor-
mance index considered in Table 2 (MSE). For both filters,
a deviation of £10% in relation to the converged algorithm
is considered. A set with 50 combinations of filters into the
mentioned interval were evaluated and no significant varia-
tion in MSE was observed. The simulation was performed for
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FIGURE 10: Initial cut-off frequency of the iterative algorithm versus
the converged cut-off frequency: low-pass filter.
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FIGURE 11: Initial cut-off frequency of the iterative algorithm versus
the converged cut-off frequency: high-pass filter.

TABLE 3: Sensibility analysis considering a deviation in the cut-off
frequency.

Method Mean of MSE Standard Deviation of MSE
Recursive Algorithm ~ 43.1935 0.9911
Wavelet 47.3041 1.023

both the classic filter case and the wavelet filter case. The result
is shown in Table 3.

As we can see, a small standard deviation was observed
in the simulations. In this case, we can conclude that, in
this example, a small sensibility in relation to the MSE was
observed in the identifier.
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4. Conclusions

This paper presents an iterative method that tunes classical
prefilters in order to identify two-time scaled systems. The
tuning procedure of the prefilters may be quite time consum-
ing [17] because the user does not have enough information
about the process, a priori, to accomplish this task. The results
of the iterative algorithm showed that the estimated model
represented with accuracy the system in whole frequency
range.

The wavelet filters have a more intuitive tuning. Basically,
the user must choose the maximum number of levels and
choose the levels that correspond to low and high frequency.
The second contribution of this paper is to take the cut-off
frequencies computed by the recursive algorithm to compute
the suitable maximum number of levels and the levels that
correspond to low and high frequencies.

The simulation case study, which is commonly considered
in aerospace industry, is a good example of TTSS and the
proposed methods resulted in accurate estimated models.
The classical LS method failed in estimating an accurate
model as expected. Both iterative algorithm and wavelet
method produced a suitable model with good accuracy in
both low and high frequencies.
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