
This is a repository copy of Implementing Digital Twins of Smart Factories with Interval 
Algebra.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/139603/

Book Section:

Dziurzanski, Piotr orcid.org/0000-0001-9542-652X, Swan, Jerry, Soares Indrusiak, 
Leandro orcid.org/0000-0002-9938-2920 et al. (1 more author) (Accepted: 2018) 
Implementing Digital Twins of Smart Factories with Interval Algebra. In: IEEE International 
Conference on Industrial Technology. , AUS . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 
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Piotr Dziurzanski1, Jerry Swan1, Leandro Soares Indrusiak1 and J. M. Ramos2

1University of York, Deramore Lane, York, YO10 5GH, UK. {firstname.lastname}@york.ac.uk
2ONA Electroerosion S.A., Barrio de Eguzkitza 1,48200 Durango, Spain

Abstract— This paper presents an interval algebra that can
be used to create an analytic description of a smart factory. Such
a description (recently termed a ‘digital twin’ of the factory)
is used to evaluate alternative manufacturing configurations as
part of a search-based optimisation process. Several extensions
are proposed to the interval algebra for specifying smart factory
production line details. A number of real-life manufacturing
scenarios are described, related to Wire-cut Electrical Discharge
Machining. The experimental results show the applicability and
scalability of the proposed method.

I. INTRODUCTION

With myriad practical applications, the Job-shop Schedul-

ing Problem (JSP) is arguably one of the most widely studied

optimisation problems [1]. In the JSP, jobs are assigned to

resources at particular times in order to optimise certain key

objectives, such as makespan or total workload of machines.

However, the classic JSP and its popular extensions do not

scale well to the problem sizes found in industry [2]. Due

to the NP-hard nature of the problem, exact solutions are

not generally possible for real-world problems. In practice,

relatively simple dispatch heuristics are often used, where

each temporal property (arrival time, processing time etc)

is characterised with some degree of uncertainty [3]. Such

heuristics assign a priority to each manufacturing process

queued in each machine, which are then used to fetch

these processes from the queue and thus determine the

processing order [4]. Such rules are particularly applicable

to the Dynamic Job-shop Scheduling problem (DJSP), in

which manufacturing jobs are released over time, in contrast

to typical JSP, when the whole jobset is known a priori

[3]. When exact algorithms are applied to the DJSP, each

new release of a job requires re-execution of the costly

scheduling algorithm. Similarly, a new schedule needs to

be determined when any process behaves different than

expected (e.g. needs longer processing) or some unexpected

event occurred in a plant (e.g. a machine failure). Since

the scheduling process must respond to these anomalies,

this approach is named reactive scheduling [5]. A num-

ber of heuristic approaches has been proposed to find a

quasi-optimal schedule in reasonable time for DJSP [6].

Recently, a method for trading schedule optimisation time

against expected schedule quality was proposed [7]. When

the scheduling algorithm is responsive enough, it is possible

to schedule in reaction to each unexpected event, assign-

ing priorities to each manufacturing job explicitly, rather

than craft more general and thus less effective dispatching

rules [8]. By this means, a problem-specific job dispatching

(schedule) is determined using a hybrid modeling approach,

when a metaheuristic optimisation routine is coupled with a

simulation or analytical model of a plant. The metaheuristic

optimiser generates a set of candidate solutions evaluated by

the plant model. Since that model mimics the physical plant

behaviour, it is often referred to as its digital twin [9]. Since

a digital twin of a plant respects all known manufacturing

constraints, it always yields feasible solutions [8].

Regarding the two components of the hybrid modeling ap-

proach, metaheuristic optimisation routines have been widely

analysed and surveyed, for example in [1]. The creation of

adequate digital twins has attracted far less attention. Usually,

general-purpose discrete-event simulation software is used,

as surveyed in details in the ‘Related Work’ Section. How-

ever, some algebraic formalities, such as max-plus algebra

[10] or interval algebra [11], are extensible enough to satisfy

all the requirements imposed by the problem presented in

this paper. In particular, this paper reviews and extends

interval algebra. The applicability of the proposed method

is demonstrated on real-world industrial scenarios.

The main contribution of this paper is the extension of the

interval algebra. It extends previous applications of interval

algebra to scheduling in many-core real-time systems [11],

[12] into a formalism capable of acting as a digital twin

of smart plants, characterised with sophisticated spatial and

temporal dependences between resources and manufacturing

stages. A number of real-life scenarios are presented, de-

scribed and evaluated to highlight some possible applications

of the proposed method.

The rest of the paper is organised as follows. After the

brief survey of the related works in Section II, the problem

to be solved is described in Section III. The interval algebra

from [11] is reviewed and extended in Section IV and Section

V, respectively. Real-world use cases are presented in Section

VI, followed by conclusions in Section VII.

II. RELATED WORK

Prior to the introduction of explicit terminology for digital

twins, the underlying notion was the de-facto approach of

manufacturing optimisation via simulation models of a plant.

Law and McComas describe an early hybrid of search meth-

ods with discrete-event simulation models for manufacturing.

Even at that early phase of the hybrid modeling approach,

such meta-heuristics as evolution strategies, taboo search,

neural networks or simulated annealing have been avail-

able. However, the applied metaheuristics have not changed

greatly since then. In particular, two different optimisation



packages have been applied there to one small practical prob-

lem and the obtained results have been promising enough to

conclude that the practice of simulation-based optimisation

would grow significantly. This prophecy has fulfilled since

and especially recent years yielded in numerous related

publications [13]. For example, in [8], a simulation model

has been built using a discrete-event simulation software

named Anylogic [14], a commercial tool to simulate complex

business systems. A plant can be modeled using process

flowcharts, statecharts, action charts or stock & flow di-

agrams, integrated with 2D and 3D visualisers. Although

useful in its application domain, it is not open and operates

at too coarse scale to be applied in the flow proposed in this

paper, not mentioning its commercial license. In a similar

way, Klemmt describes a discrete event simulation system

from the Simcron company named Modeller [15]. Klemmt

stresses that the number of available simulation elements is

limited, but thanks to the scripting capabilities even complex

manufacturing systems could be modeled. The simulation

engine speed of the GUI-less version is reportedly sufficient

to perform multiple simulations as required by heuristic

optimisation algorithms. A couple of plant features found in

real plants was implemented, for example release dates, due

dates, branches or setup times. However, it does not appear

to be possible to model some plant features required by the

real-world use cases presented in this paper, such as various

machine operating modes or job preemptions.

Zho et al [16] applied the popular simulation soft-

ware ARENA c©implementing complex simulation logic and

controlling data flow via the Visual Basic for Applica-

tions (VBA) environment embedded in that tool. A Multi-

Objective Genetic Algorithm (MOGA) was employed to find

Pareto-optimal solutions in terms of economic performance

and green yield measures.

Despite being so widely applied, simulation-based hybrid

systems are characterised with lengthy response times in

comparison with analytical models [17]. Simulation models

are also often characterised with the lack of clear structure

and often cannot reach an acceptable level of performance

[18]. In contrast, an advantage of analytical techniques is

the ease of computing using explicit mathematical formulas

and numerical computation methods [19]. As observed by

Shao et al [20], simulation-based evaluations are customised

for special purposes and are difficult to apply them to

other scenarios. Although all these drawbacks are significant,

applying analytical techniques as alternative way of perfor-

mance evaluation seems to be far less popular in manufac-

turing optimisation. This is in contrast with other application

domains, e.g. performance evaluation of complex computing

systems, where analytical methods are used predominantly

[21]. Nevertheless, a number of analytical alternatives have

been proposed. For example, in [22] a rather simple 3-step

objective function evaluation algorithm has been described.

The evaluation technique proposed in that paper does not

consider such features as multi-modal resource behaviour or

multi-objective optimisation, but the authors stress that these

features could be added in future. Some techniques popular

in other domains are more expressive. One such technique is

Network calculus, a theory of deterministic queuing systems

proposed by Cruz [23]. It offers an alternative approach to

queuing theory, using upper bounds to characterize arrivals

and lower bounds to describe services. Using this approach,

bounds can be easily computed for network performance

metrics such as delay or backlog. Since this formalism is

aimed at computer networks, a considerable modification

would be needed to consider all the requirements imposed

by the problem considered in this paper.

From this literature survey, it may be concluded that hybrid

modeling approach coupled with analytical evaluation is

not well explored in the field of smart factories and that

applying extended formalities known from other fields can

be promising.

The formalism of interval algebra [11], previously used

for computer-system resource scheduling, is more general

and expressive enough to deal with the majority of these

requirements. As it is shown in this paper, this algebra

can be extended to express the remaining requirements in

a relatively simple way.

III. PROBLEM FORMULATION

The problem considered in this paper is an extended

version of the classic flexible Job-shop Scheduling Problem

(EFJSP), in which a set of n jobs needs to be processed in

a plant equipped with m machines so that the makespan or

financial cost is minimised. The set of jobs is denoted as Γ,

Γ = {τ1, τ2, . . . , τn}. The set of machines is denoted as Π,

Π = {π1, π2, . . . , πm}.

The problem has the following constraints:

1) There are different types of machines in a plant,

Πα1, . . . ,Παt.

2) Each job τi can only be executed by a subset of

machines in a plant Πi ⊂ Π, possibly of various types.

3) The processing of a job may require it to be allocated

to more than one machine.

4) Two jobs τi1 and τi2 can be dependent or directly

dependent on each other. The dependency relation de-

notes that τi2 cannot start before τi1 finishes, whereas

the direct dependency requires that τi2 starts exactly

when τi1 finishes.

5) Each job can be preempted at certain time points.

6) Machine πj can operate in one of a set of modes,

each mode differing in processing time and economical

costs.

7) Some machines πj1 and πj2 cannot be used at the same

time.

8) Allocation of job τi1 to a certain machine can decrease

the set of machines which can process the jobs depen-

dent on τi1.

9) Certain sequences of two jobs τi1 and τi2 scheduled

to be processed subsequently by the same machine

can require a time gap of certain length between

them (corresponding to e.g. cleaning the machine in

a physical plant).



The analytical formalism used for makespan evaluation

of EFJSP needs to be expressive enough to consider all

these assumptions. In the following section, the principles of

interval algebra [12] are presented, followed by the necessary

extensions to comply with the above constraints.

IV. INTERVAL ALGEBRA FOR REAL-TIME SCHEDULING

Interval algebra (IA) was introduced by Indrusiak et al [12]

for task scheduling in real-time computer-based systems. To

handle the constraints associated with EFJSP, some exten-

sions are required. For the sake of self-consistency of this

paper, the most important features of IA are described in this

section, followed by the required new features presented in

the subsequent section.

In EFJSP, a manufacturing process is viewed as a set of

jobs Γ = {τ1, τ2, τ3, . . .}. Jobs which appear exactly once

during the whole considered time horizon are often referred

to as singletons. Periodic or sporadic jobs can be treated as

an infinite series of singleton occurrences that are released

periodically or less often than the provided inter-release

time, respectively. Such jobs can represent e.g. a periodic

maintenance operation of a resource. The j-th occurrence of

a periodic or sporadic job τi is denoted with τi,j . Jobs are

mapped to plant resources, such as conveyors or machines,

using a selected scheduler (e.g. FIFO or priority-preemptive).

In IA, jobs are represented using tuples that include their

name, release time or task dependencies, and the interval

length. In the assumed notation, each tuple element starts

with symbol #. The simplest case, a singleton job, can be

represented by the time interval it requires from a notional

resource as follows:

#τ1#0#50, (1)

where the first element of the tuple is a unique job identifier,

the second is a non-negative real number representing the

release time of the job and the third is a positive real number

representing the actual length of the time interval. In the

example above, job τ1 is released at time 0 and requires

50 time units of a resource. Using traditional mathematical

notation, this interval can be written as left-closed right-open

bounded interval [0, 50).
Using the notation shown in formula (1), any singleton

job can be expressed. A set of such intervals can represent

independent jobs. An indirect dependency between two jobs

τ1 and τ2, i.e., the situation when τ2 can start only after τ1
has been executed, is denoted with a job identifier as the

second element of a tuple, instead of the release time of a

job:

#τ2#τ1#100. (2)

The extension of IA presented in the following section can

also express other inter-job relations found in industrial

plants.

The notation shown in formula (2) is capable of denoting

single dependency jobs. Multiple dependencies are specified

as a dependency set:

#τ3#{τ1, τ2}#150. (3)

This notation assumes that the starting point of the interval

corresponding to job τ3 lies not earlier than at the highest

endpoint among all the intervals it depends on. In this

example, assuming that jobs τ1 and τ2 are defined as in

formulæ (1) and (2), this leads to: τ1 = [0, 50), τ2 =
[50, 150), τ3 = [150, 300).

The intervals described with formulæ (1) - (3) are single-

appearance and have a fixed release time. In case of a strictly

periodic job, its instances are released every fixed amount

of time, known as a period. Such a job occurrence series is

denoted with the notation exemplified below, which is exactly

the same as the notation of a singleton followed by the period

(equal to 100 in this case):

#τ4#0#20#100. (4)

Mathematically, formula (4) represents an infinite series of

intervals, such as: τ4 = [0, 20), [100, 120), [200, 220), . . ..
The release time of sporadic jobs is not deterministic but

has well defined the minimal time between two consecutive

releases. In case of aperiodic jobs, those bounds do not exist.

To model those cases, the release times can be represented

with so-called aleatory variables. Those variables are associ-

ated with probability distributions that can constrain assumed

values. More details on them can be found in Indrusiak et al

[12].

A resource can be represented by an algebraic operation

over all the jobs mapped onto it, each represented by its

respective interval, corresponding to a selected dispatching

heuristic γ. The algebraic operation determines how the

resource is shared between the jobs mapped to it, and how

the sharing affects their timings. In the used notation, the

dispatching heuristic γ acts as an operator that is applied to

the set of intervals surrounded by brackets

γ(#τ1#0#50). (5)

If more than one job is presented to a dispatching heuristic,

the corresponding intervals are separated with a comma, as

shown below

γ(#τ1#0#50,#τ2#0#100) =

γ(#τ1&50,#τ2&150) = γ([0, 150)),
(6)

where γ is realised with the FIFO dispatching heuristic. In

this example, two different ways to evaluate operator γ are

presented. The first evaluation of the operator preserves the

identities of the mapped jobs, and it indicates the comple-

tion times of each one of them after the symbol &. This

type of evaluation is referred to as information-preserving

(or simply preserving). The second way to evaluate the

operator is equivalent to the first, but it does not preserve

any information about the individual operands. It simply

determines the busy period(s) of the resource with one or

more intervals. This type of evaluation is referred to as

information-collapsing (or simply collapsing).

One of the crucial properties of each job is its affinity,

which means that the job can be processed only by the

designated resources. The job that can be executed on any

resource available in a system is referred to as an untyped



job. All the earlier examples (1) - (6) presented untyped

jobs only. If a job can be executed only on a single type

of resources, it is a single-typed job. A multi-typed job can

be executed on several (enumerated) resource types, possibly

with different processing time. To describe a single-typed

or multi-typed job, the notation supports the definition of

different types of resources and different types of resource

affinity. This can be expressed as follows, where each scalar

in pointy brackets denotes a different type and the absence

of type constraints implies untyped jobs or resources

γ(#τ10 < Πα1 > #0#15,

#τ11 < Πα2,Πα3,Πα8 > #0#20,#τ12#0#14).
(7)

By allowing the definition of resource types and resource

requirements, it is also possible to present transport jobs

between two machines (e.g. using a conveyor) by modelling

the job as two fully dependent intervals with distinct resource

requirements, e.g. a resource of type Πα1 for processing and

Πα2 for transporting. In this situation, the job can only be

connected over the resource of type Πα2 once it has finished

being processed by resource belonging to Πα1, which can

be described as

#τ13 < Πα1 > #0#14, (8)

#τ14 < Πα2 > #τ13#340. (9)

The representation of load as an interval length, denoted

by a positive real number, is already capable of representing

a fixed load. To represent a typed fixed load, the specification

of different interval lengths for different resource types uses a

similar notation as the one introduced in formula (7), namely

#τ15 < Π2,Π4,Π6 > #0# < 10, 20, 20 > . (10)

Aleatory variables can be used to represent a probabilistic

load or typed probabilistic load for both typed and untyped

jobs. The details of stochastic interval algebra can be found

in Indrusiak et al [12].

V. INTERVAL ALGEBRA EXTENSION FOR EFJSP

When applied to industrial plants, IA should be capable

of solving job scheduling problems with different manufac-

turing process topologies, including both single and multiple

stages. In the latter, commodities can be manufactured on

a range of alternative resources using different routes. This

implies that additional relations have to be defined between

certain resources, describing their affinity or anti-affinity.

Another requirement is related to changeovers which can be

sequence-dependent, requiring that the feature of sequence-

dependent setup should be introduced. Another required

feature stems from the material transfer requirements, as in

a plant it is possible that certain jobs have to be executed

immediately one after another. As a result, the general

precedence relationship natively supported by IA needs to be

extended to distinguish immediate precedence relationships.

The new features required are described below.

A. Mutual exclusiveness of resources

In plants, certain resources cannot be used at the same

time. For example, two conveyors may transport a raw

material from different silos to the same weighing scale. To

prevent resources π1 and π2 being active at the same time,

it is necessary to define a mutex (mutual exclusion) relation

between them. This relation is symmetric and transitive.

B. Different routes

In the multiproduct topology, different routes between pro-

cessing machines are possible. However, equipment connec-

tivity can be limited (partial), for example defined by existing

conveyors or pipes. It is therefore necessary to constrain

which resources can be used sequentially by jobs belonging

to a single manufacturing. Two relations are introduced:

• An affinity relation between resource π1 and resource

π2 means that for two different jobs τ1 and τ2 realising

the same manufacturing order and τ1 < τ2 with respect

to the topological order, where π1 is compatible with

job τ1 and τ2 is compatible with resource π2, if τ1 is

allocated to π1 then τ2 can be allocated to π2.

• An anti-affinity relation between resource π1 and re-

source π2. For two different jobs τ1 and τ2 associated

with the same manufacturing order such that τ1 <

τ2 with respect to the topological order, where π1

is compatible with job τ1 and π2 is compatible with

resource π2, then if τ1 is allocated to π1 then τ2 cannot

be allocated to π2.

C. Sequence-dependent setup

In real-world scheduling problems, changeovers can be

sequence dependent [24]. An example is when in the same

resource π1 (e.g. mixer) two jobs τ1 and τ2 are to be

processed one after another, each belonging to a different

manufacturing order producing a different commodity (e.g.

different colour paint). In such situations, an additional job

τ3 has to be processed by π1 between τ1 and τ2 (e.g. cleaning

of the mixer). In IA, a new function has to be introduced that

takes as parameters: a resource, the job currently processed

by that resource, the job subsequently to be processed by

that resource. This function returns the job to be processed

by π1 between τ1 and τ2. This function returns the empty job

(i.e. an untyped job with processing time 0) if the sequence-

dependent setup is not defined for given parameters.

D. Intra-job relations

In the original interval algebra formulation, only one rela-

tion between jobs was defined, namely a general precedence

relationship. In order to apply IA to EFJSP problems, more

intra-job relations have to be considered. Seven relations

between intervals were famously described by Allen [25],

as summarised in Table I. One of these relations, y meets z,

can be used to describe immediate precedence relationships

between jobs associated with to the same manufacturing

order. To increase the genericity of the fitness function

evaluation block, all relations from Allen’s interval algebra

has been added to IA. These relations can be described



similarly to single dependency in formula (2), but using an

appropriate relation symbol in from of the first operator, for

example τ1 m τ2 can be specified as

#τ2#m{τ1}#50, (11)

where the processing time of τ2 equals 50 time units.

VI. REAL-WORLD USE CASES

The considered real-world use case is based on the dis-

crete manufacturing process of Wire Electrical discharge

machining (WEDM), in which a thermo-electric sparking

process removes material using a wire to cut the desired

shape of a part. Complex profiles with tight tolerances in

hard conductive materials can be obtained. Minimising the

cost per part while maintaining the required quality is the

key objective.

The wire is unwound from a spool and it is the most

expensive consumable in the process, so to select the opti-

mum wire type is economically essential. Similarly, the cost

per part can be decreased significantly with the right choice

of the machine type and, if possible, applying ‘eco mode’

functionalities.

In the first considered scenario, a plant includes three

WEDM machines suitable for various sizes of parts (‘small’,

‘medium’ and ‘large’). Small workpieces can be manufac-

tured on any machine size, medium parts require a medium

or large machine, and large parts can be set up only on

large machines. The cost of machine usage increases with

the machine size within a series.

The processing time for each machine can be computed by

considering the total profile length for the sequence of cuts

required by the quality specification. The process parameters

set for each cut in the sequence is selected from a data base

(WEDM ‘technology’) indexed by the type of wire and the

material of the part. The commodity cost is determined from

the wire speed together with the wire price.

All parts can be manufactured in one from four ways

named Manufacturing Ways (MWs). MW 1 denotes 0.25mm

brass wire and the standard mode of the machine, whereas

MW 2 assumes the same wire type and the eco mode of the

machine. MW 3 and MW 4 denotes technologies employ-

ing 0.25 mm brass coated and copper wires, respectively.

Considering (approximate) part processing time provided by

a business partner and assuming market wire costs and the

real wire consumption, the total wire cost for manufacturing

each part can be estimated as the cost of using a machine

of a particular size during the computed total manufacturing

time. This way, the total manufacturing cost can be computed

and used for the optimisation purposes.

To demonstrate the IA extensions proposed earlier in this

paper, four real-world-based manufacturing scenarios are

presented. The first of them demonstrates job allocation and

scheduling via a multi-objective optimisation process. To

model various modes (manufacturing ways) of the machines,

separate abstract machines are created for each mode of

a certain machine and mutual exclusiveness of resources
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Fig. 1. Pareto front for scenario with manufacturing 6 parts using three
machines of different size

is used to prevent concurrent allocation to various abstract

machines corresponding with the same physical machine.

In the second scenario, intra-job relations and sequence-

dependent setups are applied. The third scenario investi-

gates the extensions related to different routes and direct

dependency in the manufacturing process. The final scenario

demonstrates the scalability of the proposed approach.

In the first example scenario, it is assumed that there is

only one machine of each size in the plant. Two small and

four medium parts have been ordered. All parts are ready to

be processed at any time of the analysed time horizon.

The trade-off between two conflicting objectives,

makespan and cost per part, has been investigated for

this example scenario and the associated Pareto front

visualised in Fig. 1. All the solutions in the Pareto front

are not dominated by any other solution, where solution M

dominates solution N if M is at least as good as N in all

objectives, and superior to N in at least one objective.

Presented with the Pareto front, it is therefore possible

for the end-user to choose the solution that is most suitable,

based on business priorities. For example, the leftmost point

(which favors cost) allocates work to medium sized machines

75% of the time and small machines 25%. In contrast, the

rightmost point (which favors makespan) assigns equally to

all three machine sizes.

In the second scenario, four large parts have been ordered.

These parts have different priorities and thus earlier manu-

facturing of the higher-priority parts is recommended. As

some of the parts are not ready at the beginning of the

schedule, a manufacturing of a lower-priority part can be

performed when a job of a higher-priority part manufacturing

is released. In this situation, the currently performed job

can be preempted at certain moments, when a certain cut

of the WEDM process is finished. Such manufacturing

segmentation can be modeled with a sequence of IA jobs,

with each (except the initial one) dependent on the previous.

A job preemption, which involves removing of the currently

manufactured part from a machine and installing a new

one takes some time. This is modeled with an appropriate

sequence-dependent setup, one of the IA extensions de-



TABLE I

BINARY RELATIONS IN ALLEN’S INTERVAL ALGEBRA

Relation Symbol Equivalent relation on endpoints Illustration

τ2 earlier than τ1 τ2 < τ1 τ2+ < τ1

τ1

τ2

τ2 since τ1 τ2 s τ1 (τ2− = τ1−) ∧ (τ1+ < τ2+)
τ1

τ2

τ2 finish τ1 τ2 f τ1 (τ2+ = τ1+) ∧ (τ2− < τ1−)
τ1

τ2

τ2 equals τ1 τ2 = τ1 (τ2− = τ1−) ∧ (τ2+ = τ1+)
τ1

τ2

τ2 overlaps τ1 τ2 o τ1 (τ2− < τ1−) ∧ (τ2+ > τ1−) ∧ (τ2+ < τ1+)
τ1

τ2

τ2 meets τ1 τ2 m τ1 τ1+ = τ2−

τ1

τ2

τ2 during τ1 τ2 d τ1
((τ2− > τ1−) ∧ (τ2+ = (τ1+)) ∨ ((τ2− >= τ1−) ∧
(τ2+ < τ1+))

τ1

τ2

scribed earlier in this paper. In this scenario, the jobs are

ready to be manufactured in the decreasing order of priori-

ties. It means that at the beginning only the lowest-priority

part is ready to be processed and thus the manufacturing

process is initiated. After some time a higher-priority part is

ready to be produced. At this moment, two manufacturing

decisions are possible. Either the manufacturing of the lower-

priority part manufacturing is preempted and the higher-

priority part begins to be manufactured, or the higher-priority

part manufacturing is suspended until the lower-priority part

is finished. The first strategy decreases the makespan, as there

is no time-consuming preemption modeled with a sequence-

dependent setup, but the part finishing order violates the

order as determined by the parts’ priorities. There are hence

two conflicting objectives: the makespan and the number

of the given order priority violations. As shown in Fig. 2,

during the optimisation process three alternative solutions

have been found for this scenario. The makespan is inversely

proportional to the number of priority order violations, since

each preemption inserted some time gap to change the part in

the machine. The leftmost Pareto-optimal point corresponds

to the solution in which the parts are finished in the preferred

order, but imposing that order requires two preemptions. The

middle Pareto-optimal point corresponds to a solution with
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Fig. 2. Pareto front for scenario with preemption

one preemption, but using this schedule one part with a

lower-priority is finished earlier than a higher-priority part.

Finally, the rightmost Pareto-optimal point corresponds to

a solution resulting with the fastest manufacturing without

preemptions, but two lower-priority parts are finished before

other parts with higher priorities.

In the third scenario, the manufacturing of each each

part requires two stages. The first of them is performed
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Fig. 3. An example plant architecture
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Fig. 4. Pareto front for scenario with two manufacturing stages

on machines M1-M3, whereas the second one requires M4

or M5. Each part can be manufactured on any machine.

However, due to the plant architecture shown if Fig. 3, M4

can be used only when the first manufacturing stage has

been performed on M1 or M2, whereas M5 can be used only

after M3. These dependencies have been modelled with the

affinity relations described earlier in this paper. As the part

needs to be manufactured immediately at the second stage

after stage 1 (there is no possibility of storing unfinished

parts), the direct dependency (modelled by the intra-job

‘meet’ relational constraint) is used rather than the general

dependency used in the previous scenario. The optimisation

has been performed for two objectives, makespan and total

cost. The Pareto-front for manufacturing 10 parts is presented

in Fig 4.

The final scenario consists of a much larger plant and order

and aims to show the scalability of the proposed optimisation

method. Fig. 5 shows the optimisation time for tasksets

ranging from 20 to 200 jobs. Despite the fact that above-

linear complexity can be observed, the optimisation time

even for the largest considered cases is close to 10 minutes,

which is at least 3 orders of magnitude lower than the

corresponding makespans and acceptable for the industrial

partner. In case of shorter deadlines, value-based optimisa-

tion stopping criteria presented in [7] may be applied.

VII. CONCLUDING REMARK

In this paper, a previous formulation of an interval algebra

is extended to create a novel analytic description (or ‘digital
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Fig. 5. Optimisation time for assorted job number in an example plant

twin’) of a smart factory. The extended interval algebra is

used to model a real-life manufacturing application Wire-cut

Electrical Discharge Machining. In contrast to previous work,

the extended interval algebra models described constraints

such as mutual exclusion and (anti-)affinity of resources,

together with sequence-dependent resource allocation and

temporal ordering relations. These constraints are used to

model 4 real-world manufacturing scenarios. The schedules

obtained via (multi-objective) metaheuristic optimisation are

demonstrated to scale process 200 jobs in about 10 minutes

— well beyond the current requirements of the industrial

partner.
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