
This is a repository copy of Are 20% of files responsible for 80% of defects?.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/139558/

Version: Accepted Version

Proceedings Paper:
Walkinshaw, N. and Minku, L. (2018) Are 20% of files responsible for 80% of defects? In: 
Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software 
Engineering and Measurement. 12th ACM/IEEE International Symposium on Empirical 
Software Engineering and Measurement, 11-12 Oct 2018, Oulu, Finland. ACM . ISBN 
978-1-4503-5823-1 

https://doi.org/10.1145/3239235.3239244

© 2018 Association for Computing Machinery. This is an author-produced version of a 
paper subsequently published in Proceedings of the 12th ACM/IEEE International 
Symposium on Empirical Software Engineering and Measurement. Uploaded in 
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Are 20% of Files Responsible for 80% of Defects?
Neil Walkinshaw

य़e University of Leicester
Leicester, UK

ndwalkinshaw@gmail.com

Leandro Minku
य़e University of Birmingham

Birmingham, UK
L.L.Minku@cs.bham.ac.uk

ABSTRACT
Background: Over the past two decades amixture of anecdote from
the industry and empirical studies from academia have suggested
that the 80:20 rule (otherwise known as the Pareto Principle) ap-
plies to the relationship between source code ੗les and the number
of defects in the system: a small minority of ੗les (roughly 20%) are
responsible for a majority of defects (roughly 80%).

Aims:य़is paper aims to establish howwidespread the phenom-
enon is by analysing 100 systems (previous studies have focussed
on between one and three systems), with the goal of whether and
underwhat circumstances this relationship does hold, andwhether
the key ੗les can be readily identi੗ed from basic metrics.

Method: We devised a search criterion to identify defect ੗xes
from commit messages and used this to analyse 100 active Github
repositories, spanning a variety of languages and domains.We then
studied the relationship between ੗les, basic metrics (churn and
LOC), and defect ੗xes.

Results: We found that the Pareto principle does hold, but only
if defects that incur ੗xes to multiple ੗les count as multiple defects.
When we investigated multi-੗le ੗xes, we found that key ੗les (be-
longing to the top 20%) are commonly ੗xed alongside other much
less frequently-੗xed ੗les. We found LOC to be poorly correlated
with defect proneness, Code Churn was a more reliable indicator,
but only for extremely high values of Churn.

Conclusions: It is diਖ਼cult to reliably identify the ۠most ੗xedۡ
20% of ੗les from basic metrics. However, even if they could be re-
liably predicted, focussing on them would probably be misguided.
Although ੗xes will naturally involve ੗les that are oॏen involved
in other ੗xes too, they also tend to include other less frequently-
੗xed ੗les.

KEYWORDS
Defect distribution, Pareto principle, Survey

1 INTRODUCTION
य़edistribution of faults within soॏware systems has been the sub-
ject of a considerable amount of research. Previous empirical stud-
ies indicate that soॏware defects obey the Pareto Principle ۗ that
a minority of modules or ੗les (the top 20%) are responsible for a
majority of defects (around 80%) [3, 8, 11, 16, 23]. If such a ۜgolden۝
ratio exists, it raises the prospect of the more focussed application
of veri੗cation and validation techniques that might not scale to a
system-level, and could support the extraction of improved train-
ing sets for defect prediction models.

य़ere are however some limitations to the aforementioned stud-
ies that place a question-mark over this ratio. य़ey are based upon
small numbers (between one and three) of industrial closed source
systems, all of which revolve around the telecoms domain. य़ey

are also based on the premise that every defect is ੗xed by editing
a single ੗le; ੗xes that span multiple ੗les (as is typically the case)
are in fact counted as multiple separate defects. य़is gives rise to
the question of the extent to which multi-੗le ੗xes are in fact con-
centrated on the most defect-prone ੗les, or whether they are more
di੖use. Finally, if the Pareto relationship does exist, it is not clear
how to identify the critical 20% of defect-prone ੗les.

य़is paper describes an empirical study that seeks to address
these weaknesses. To scale the experiment up to larger numbers of
systems we use an automated approach to estimate defect-੗xing
changes by identifying the presence (and ensuring the absence) of
certain key-words in commit messages. We use this to automati-
cally analyse 100 GitHub repositories, selected to focus on popu-
lar, active soॏware projects with the help of a database curated by
Munaiah et al.[19]. य़e goal is to answer the following high-level
research questions:
RQ1 If we replicate previous studies (assuming one ੗x per de-

fect), does the Pareto Principle apply?
RQ2 If so, can the most defect-prone ੗les be easily identi੗ed by

established metrics?
RQ3 If we accept that a single defect can require ੗xes to multiple

੗les, are all of these ੗xes concentrated on the most defect-
prone ੗les?

य़e rest of this paper is structured as follows. Section 2 moti-
vates this work, and introduces related work in defect prediction
and the analysis of Power Laws in soॏware engineering. Section 3
presents the methodology used for this study. य़is is followed by
the results in Section 4, further discussion and analysis in Section
5, and threats to validity in Section 6. Finally, in Section 7 we o੖er
some conclusions, along with our plans for future work.

2 BACKGROUND AND RELATED WORK
We start with a brief introduction to power laws and the Pareto
principle. य़is is followed by an overview of where these phenom-
ena have been observed within Soॏware Engineering, and what
their implications are.

2.1 Power Laws and the Pareto Principle
In complex systems it is frequently observed that certain small
minorities of elements within a system are orders-of-magnitude
bigger or more in੘uential than other elements. य़is relationship
between the number of elements and their size or in੘uence can of-
ten be neatly characterisedmathematically as a Pareto distribution,
Zip৐۝s law, or a power law [9, 22].

In mathematical terms, a quantity obeys a power law if it is
drawn from the distribution y = x−α [9]. Smaller values of x have
a very high value of y, which rapidly decreases as x increases. In
intuitive terms, a power law can be explained with the help of a
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Figure 1: Histograms of U.S. city populations (for popula-
tions > 10, 000) from 2010 census (n=2998) - data obtained
from Spatial History Project [26].

popular example: the populations of cities in the US [12]. If plot-
ted in order of magnitude, the sizes follow a curve, as shown in
the leॏ-hand plot in Figure 1; the vast majority of cities have rela-
tively small populations (and so any ۠averageۡ of city size would
be unrepresentative).

One indicator that data is sampled from a power-law is to plot
the data-points on a log-log scale. If one takes the logs of both
sides of the power-law (loд(y) = loд(x−α ) = αloд(x)), then on
a log-scale this amounts to Y = αX - a straight line. य़is is what
happens in the right hand plot in Figure 1 with the log-log plot of
city populations.

One particularly popular characterisation of the power law is
the Pareto principle ۗ otherwise known as the 80:20 principle (the
Pareto principle can be analytically derived from the power law [2,
18]). For example the biggest 20% of US cities house approximately
80% of the population (79.5% according to the 2010 census). य़is
ratio was ੗rst suggested with respect to Italian land ownership by
Vilfredo Pareto [24], who observed that 80% of the land was owned
by 20% of the population.

2.2 Previous Results from Soࢄware
Engineering

य़e power law (and Pareto principle) have predominantly cropped
up in Soॏware Engineering in two guises: in the dependencies that
link soॏware units together, and the relationship between ੗les and
defects. य़is subsection elaborates upon these two areas, and their
respective implications for change impact analysis and defect pre-
diction.

2.2.1 Dependencies between so࢓ware units, and implications for
change impact analysis. य़e power law, and in particular the 80:20
expression thereof, occurs frequentlywithin Soॏware Engineering.
A raॏ of research [6, 18, 29] has shown that soॏware systems tend
to form ۠scale-free networksۡ [5]. If represented as a graph (where
edges represent calls between functions or dependencies between
classes or modules), the relationship between nodes and their in-
or out-degree tends to obey a power law.

One notable property that is oॏen associated with such scale-
free networks is the fact that they obey ۜsmall-world۝ character-
istics [28]. In such graphs, the distance (number of edges on the
shortest path) between any pair of nodes is remarkably small. य़is
has been observed empirically for soॏware dependencies [27].

य़is interconnectedness is intuitive.य़e various interdependen-
cies that arise in soॏware systems mean that the slightest change
to source code can have wide-ranging rami੗cations. A seemingly
innocuous change to a data-type or an interface can require adjust-
ments to any ੗les in the system that use or interact with it, and
changes to these classes can propagate to other ੗les in a similar
fashion.

य़e task of predicting how a change might propagate through
the code-base is known as Change Impact Analysis [17]. य़e prob-
lems posed by interdependencies (as mentioned above) is high-
lighted by size of the ۠change setsۡ computed by change impact
analysis tools. An intuition of the problem can be found in the
work by Acharya et al., whose work on slice-based change impact
analysis indicated that impact sets for an industrial system could
routinely range from hundreds to hundreds of thousands of LOC
[1].

2.2.2 Fault distributions and implications for defect prediction. य़e
Pareto principle has also repeatedly been invoked by sources in in-
dustry and academia to characterise the e੖ects and distribution of
defects in soॏware. In 2002 the Microsoॏ CEO at the time high-
lighted the fact that aboutڦ 20 percent of the bugs cause 80 percent
of the errors andڝ this is stunning to me ڝ 1 percent of bugs caused
half of all errors.ڧ [4]. Boehm and Basili [8] suggested that aboutڦ
90 percent of the downtime comes from, at most, 10 percent of the
defects.ڧ. य़ey also suggested that aboutڦ 80 percent of the defects
come from 20 percent of the modulesڧ.

य़is la॒er suggestion that 20% of modules are responsible for
80% of defects has been corroborated by several studies. य़e distri-
bution of defects was studied in 2000 by Fenton and Ohlsson [11],
and was replicated in 2007 by Andersson and Runeson [3]. Both
found that there appeared to be a power law relation between ੗les
and defects. य़is was further corrobrorated by Ostrand et al. [23],
Kuo et al. [16] and Concas et al. [10].

य़ere are however limitations to the aforementioned studies
that could undermine this statistic. य़ey have been restricted to
a small number of systems (between one [11, 23] and three [3]),
all of which are industrial systems that stem from the telecoms
domain. One reason for this relatively restricted set of subjects is
the e੖ort required to manually collate the fault data from change
reports and to map them to relevant code ੗les.

य़ere has been a large body of closely related work on the de-
velopment of techniques to predict the ۠defect-pronenessۡ of a ੗le
from extrinsic properties of that ੗le [13]. य़ese involve the devel-
opment of models (oॏen with the help of Machine Learners) that
combine ੗le properties (e.g. metrics such as LOC [23, 30] and code
churn [20, 21]) to arrive at a prediction. One important factor, high-
lighted by Hall et al. in their systematic literature review [13], is
training set balance. Machine Learning techniques used oॏen fare
poorly when the training set over-represents either faulty ੗les or
non-faulty ੗les, and can produce a biased model as a result.

2.3 Motivation
य़e suggestion that 20% of modules are responsible for 80% of de-
fects (or at least that there is a Pareto relationship of some sort
between ੗les and defects) has potentially signi੗can rami੗cations.
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If it is possible to reliably identify those speci੗c ੗les that are re-
sponsible for 80% of defects in a system, defect-detection e੖orts
could be much more focussed. Expensive veri੗cation and valida-
tion techniques that might not typically be considered could be-
come feasible if they merely had to consider a fraction of the ੗les.

However, the empirical results that support this ੗nding sit un-
easily beside the results discussed in Section 2.2.1. य़ese results
suggest that soॏware systems tend to be strongly interconnected,
a ੗nding that is underpinned by studies that have repeatedly illus-
trated how innocuous code changes can have wide-ranging, un-
intended consequences. य़e suggestion that bug ੗xes remain re-
stricted to a very speci੗c subset of the order of 20% of the ੗les in
a system appears to be incongruous.

3 EMPIRICAL STUDY
य़e overarching goal of this study is to shed some light on the
apparent contradictions discussed in Section 2.3 ۗ whether the
vast majority of defect-੗xes can be localised within a small frac-
tion of ੗les despite the fact that individual changes can so eas-
ily have far-reaching side-e੖ects. We obtain our data via an au-
tomated repository-analysis of a large set of active open-source
projects. We start by investigating whether we are able to repli-
cate existing fault distribution results:
RQ1 If we replicate previous studies (assuming one ੗x per de-

fect), does the Pareto Principle apply?
H1 Given the consensus of previous studies [3, 11, 23] we hy-

pothesise that the Pareto Principle does apply.
RQ2 If so, can the most defect-prone ੗les be easily identi੗ed by

established metrics?
H2 Based on ੗ndings from the defect prediction literature we

hypothesise that there exists a correlation between ੗x-
frequency and LOC [23, 30] and between ੗x-frequency
and code-churn [20, 21].

We continue by examining themake-up of a bug ੗x. Speci੗cally,
we seek to examine the spread of ੗les to establish the extent to
which bug ੗xes really are localised to a speci੗c group of ੗les:
RQ3 If we accept that a single defect can require ੗xes to multiple

੗les, are all of these ੗xes concentrated on the most defect-
prone ੗les?

H3 Following on from H1 (that the buggiest ੗les are respon-
sible for most of the defects), we hypothesise that multi-
੗le bug ੗xes tend to be concentrated on the most defect-
prone ੗les.

3.1 Subject Systems
Our goal is to base our analysis upon substantive, active projects
that span a range of languages. Github does not have a reliable met-
ric for this; Gitstars tend to include many non-soॏware projects,
or projects which happen to be popular but are not particularly
substantive. As a result we start from Munaiah et al.۝s database
of GitHub projects [19], which a॒ributes several metrics to each
project, such as its maturity, the number of active developers, the
use of continuous integration, as well as Gitstars etc.

We used this database to select our list of 100 projects, with the
goal of focussing on those projects that were genuine, substantial,
active soॏware projects. To do this, we ੗rst of all restricted the

database to those that satis੗ed all of the following criteria (see Mu-
naiah et al. [19] for more details about the various metrics):

• Munaiah et al.۝s Random Forest classi੗er (which predicts
whether a project is or is not a genuine soॏware project)
should evaluate to ۜ1۝ (it is predicted to be a soॏware project.)

• य़e project should have at least one git star.
• य़e project should be classi੗ed as ۠TRUEۡ by Munaiah et

al.۝s ۠organisationۡ and ۠utilityۡ classi੗ers (which respec-
tively estimate whether the project is (1) similar to other
projects developed within popular soॏware engineering or-
ganisations and (2) of value to a wide range of developers).

• य़e soॏware should have a license.
• य़e unit test coeਖ਼cient (a value between 0 and 1 indicating

the ratio of test lines of code to source lines of code) calcu-
lated in the database should be > 0.1.

• य़e ۠issuesۡ and ۠communityۡ metrics, indicating the level
of project management in the system and the extent of the
developer community should be > 10.

Having restricted our list to what ought to be genuine, substan-
tive, active soॏware projects, we then ranked the projects in order
of (1) their git-star rating (as given in the database), (2) their com-
munity size and (3) their age, and selected the top 100.

Since the database was constructed in 2016, some of the projects
in that list have since migrated or have become inactive (e.g. be-
cause they were usurped by more successful projects). Whenever
we encountered a project that was migrated to a di੖erent (Git)
repository, we used the new repository. If a project was abandoned,
or was a ۜmetapackage۝ (a small project with instructions to aggre-
gate external components) we skipped it (there were three such
projects). य़e resulting set of projects is shown in Table 1.

3.2 Methodology
We split our presentation of methodology into data collection and
data analysis. य़e data analysis split according to the three re-
search questions.

3.2.1 Data Collection. य़edata that was used, including the list of
Git URLs, commit and LOC data, has been made openly available1.

Project properties. For each project we determined the primary
programming language. य़is was determined by examining the
most prevalent ੗le suਖ਼xes and skimming over the source code.
य़e languages were largely restricted to those considered by Mu-
naiah et al. [19]: Java, Python, C, C++, C#, PHP, and Ruby. In the
case where these languages had been used to implement a new lan-
guage (Kotlin and Chapel), the developed programming language
was counted as the dominant one. We also calculated the number
of ੗les and the total LOC for each project.

File selection. For each of the projects in Table 1 the GitHub
repository was cloned (the hash for that version has been stored
to support replication). For each project, all non-binary ੗les were
considered apart from those that would trivially change with each
build (such as ۜCHANGELOG۝ or ۜNEWS۝). य़is included source
code, documentation, make-੗les and other build-script con੗gura-
tions (e.g. for Maven). य़is enabled us to accommodate ੗xes to
1 https://doi.org/10.5281/zenodo.1253262
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Table 1: Subject systems.

Name LOC Files Language Commits
active_merchant 200,951 701 Ruby 14,414
activeadmin 53,040 589 Ruby 19,890
apex-malhar 354,502 2,362 Java 105,289
azure-powershell 21,810,922 16,221 C# 1,631,205
beaker 31,666 320 Ruby 17,261
bosh 517,859 3,682 Ruby 140,199
boto3 47,915 190 Python 3,416
bourbon 4,787 154 Ruby 3,691
buck 1,156,554 11,009 Java 144,670
buildbot 275,229 1,413 Python 80,852
bundler 76,029 812 Ruby 28,679
cakephp 314,920 1,284 PHP 224,095
capybara 24,466 215 Ruby 8,756
catapult 2,841,262 8,389 Python 104,062
ceph 1,540,868 5,845 C++ 311,566
chapel 5,134,878 31,447 Chapel 882,499
chef-logstash 2,700 65 Ruby 2,533
cloud_controller_ng 337,752 2,597 Ruby 51,863
cocos2d-x 1,583,122 4,552 C++ 424,599
Codeception 105,038 892 PHP 38,392
coi-services 270,427 744 Python 51,184
corefx 4,090,629 18,499 C# 611,489
darktable 948,928 1,144 C 90,485
data-access 127,985 471 Java 10,879
django-allauth 54,294 518 Python 7,459
django-rest-framework 92,059 365 Python 28,281
django-tastypie 30,362 209 Python 3,834
doorkeeper 13,295 242 Ruby 6,718
draper 5,980 145 Ruby 3,422
dropwizard 88,777 1,154 Java 22,957
edx-platform 1,756,395 6,601 Python 504,692
errbit 18,142 340 Ruby 26,436
exercism.io 59,945 571 Ruby 27,414
੘oodlight 144,666 710 Java 22,471
fog 71,348 1,666 Ruby 178,237
fpm 28,305 126 Ruby 3,695
framework 177,552 1,263 PHP 9,242
FrameworkBenchmarks 222,580 3,748 Shell 387,197
gazebo_ros_pkgs 33,970 259 C++ 4,093
geoserver 1,520,184 11,335 Java 128,502
geotools 3,666,311 15,243 Java 85,119
grape 27,242 240 Ruby 7,592
in੗nispan 916,583 8,087 Java 101,775
jboss-eap-quickstarts 454,127 2,353 Java 43,691
jcabi-github 67,441 479 Java 23,742
jclouds 712,032 7,357 Java 217,635
jedis 40,847 181 Java 7,283
joomla-cms 1,136,698 5,945 PHP 485,818
jruby 1,167,419 10,183 Ruby 462,961
kc 2,841,966 16,775 Java 730,182

Name LOC Files Language Commits
kotlin 2,459,598 63,849 Kotlin 503,344
linguist 571,457 2,424 Ruby 43,616
logstash 131,068 1,605 Ruby 25,773
luigi 63,957 287 Python 10,141
mackup 5,442 426 Python 4,227
mail 88,534 329 Ruby 9,586
manageiq 456,865 2,546 Ruby 317,124
mantid 3,271,526 13,458 C++ 2,814,986
matplotlib 871,923 2,101 Python 133,395
monolog 22,563 193 PHP 4,181
mule 556,014 4,534 Java 358,989
Mvc 424,021 2,786 C# 53,399
Nancy 123,067 1,304 C# 33,625
neo4j 1,456,046 10,019 Java 753,798
octokit.net 170,951 1,091 C# 44,605
omniauth 2,832 27 Ruby 4,913
openproject 537,705 4,340 Ruby 279,837
opsworks-cookbooks 21,672 637 Ruby 3,275
pandas 501,678 968 Python 66,033
paperclip 17,026 166 Ruby 5,069
parquet-mr 133,878 808 Java 17,456
pelican 36,406 348 Python 11,967
phinx 36,188 187 PHP 5,560
phpbb 415,902 2,383 PHP 149,367
PHPoAuthLib 29,632 228 PHP 3,523
PiplMesh 19,242 120 Python 6,297
platform 1,638,444 15,743 PHP 1,954,608
Propel2 147,603 724 PHP 25,885
puppetlabs-apache 26,555 365 Ruby 10,048
puppetlabs-੗rewall 15,112 106 Ruby 3,868
rails_admin 51,961 544 Ruby 26,293
react-rails 75,580 452 Ruby 5,889
repose 270,218 3,138 Groovy 189,762
resque 9,570 88 Ruby 2,893
RestSharp 23,572 168 C# 7,764
retire 18,191 143 Ruby 2,112
rubinius 1,675,723 6,633 Ruby 301,510
salt 1,570,758 4,754 Python 531,987
scribejava 15,886 250 Java 5,423
shogun 509,899 2,846 C++ 118,117
sidekiq 19,278 203 Ruby 8,194
silverstripe-framework 224,678 1,670 PHP 143,831
simple_form 10,782 106 Ruby 5,218
Spout 151,722 1,186 Java 48,738
spree 128,004 2,002 Ruby 127,205
stringer 40,293 227 Ruby 3,287
swot 15,959 7,445 Ruby 46,824
य़eano 328,964 673 Python 66,018
toxcore 58,045 176 C 12,020
ZfcUser 12,862 137 PHP 2,464

build con੗guration errors and documentation etc., whichwould be
missed by restricting to source code alone. Accordingly, the LOC
values in Table 1 can appear high (c.f. azure-powershell) because
the repository can include very large text ੗les that are used for
testing purposes, etc.

File aࡇributes. For each ੗le the following a॒ributes were com-
puted:

• Lines of code
• Code churn, measured as the number of changes made to

the ੗le (speci੗cally referred to as ۜchurn count۝ [20]).
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Identifying ڧdefect-टxingڦ commits. Commitmessageswere anal-
ysed to determine whether a commit was ۠defect-੗xingۡ or not.
For this we searched for messages containing the terms ۜbug۝ and
ۜ੗x۝. We excluded any commits that contained the terms ۜmerge۝,
ۜcon੘ict۝ and ۜlicense۝ or ۜlicenceۜ (to avoid large numbers of com-
mits that were ੗xing merge con੘icts or changes to licence headers,
which would routinely encompass large numbers of ੗les).

To mitigate the risk that the expression would include commits
that were not genuine bug ੗xes, we took a random sample of ੗ve
commits for each of the projects (i.e. we manually inspected 500 of
the commit messages identi੗ed by the approach). य़is indicated
that all of the extracted commits appear to correspond to genuine
bug ੗xes.

Nevertheless, relying on commit messages alone to identify de-
fect ੗xes does come with some signi੗cant limitations that are im-
portant to bear in mind [14]. Developers can fail to explicitly men-
tion ੗xes in commit messages, and single commits are not neces-
sarily atomised (a single commit might not just ੗x a single bug,
but might include sundry other changes). य़ese will be discussed
in more detail when we discuss threats to validity in Section 6.

3.2.2 Data Analysis. We restrict our description of the data analy-
ses used speci੗cally to answer the research questions. य़ese have
been subsequently explored with more targe॒ed, exploratory anal-
yses, which will be described in Section 4.

RQ1: Does the Pareto Principle apply to soࡄware defects? For this
question we carried out two analyses. य़e goal of the ੗rst analysis
was to determine whether or not the relationships between ੗les
and defects followed a power law. Even if the power law does not
apply, it is still possible for the Pareto principle to apply - for a
small proportion of ੗les to account for a majority of the defect
੗xes. य़us, the second analysis aims to examine the distributions
of defect ੗xes for each quintile of ੗les.

For the test we adopt a procedure suggested by Clauset et al.
[9]. We start by using a Monte Carlo simulation to estimate the
parameters (xmin and α ) of a hypothetical power-law distribution
that should ੗t the given fault data2. For the test, the resulting dis-
tribution is then used to synthesise a large number of data points.
य़ese are then compared against the empirical data points using
a Kolmogrov-Smirno੖ test. We follow Clauset et al. in choosing a
relatively conservative p-value threshold of of < 0.1 to indicate
that the distribution does not follow a power-law. In other words,
to identify the proportion of projects for which the distribution of
੗x-frequencies constitute a power-law, we count the number for
which p ≥ 0.1.

To explore the extent to which the Pareto principle applies, we
calculated, for each project, the proportion of ੗les that belong to
the ੗ve quintiles (the top 20%, second 20%, etc.). य़ese results were
then summarised as a box plot with ੗ve boxes, where each box rep-
resents one of the quintiles. Each box represents the distribution
of ੗le-proportions for a given quintile. If the Pareto principle ap-
plies, we would expect the distribution of proportions in the top
quintile (the top 20%) to be particularly high (around 80%), with
other quintiles to be substantially lower.

2य़is was carried out using the PoweRlaw package in R: https://cran.r-project.org/
web/packages/poweRlaw/index.html

RQ2: Can the most टxed टles be easily identiटed by established
metrics? य़e answer to this question has two parts. Firstly, we es-
tablishwhether there is in principle a correlation between the num-
ber of ੗xes and LOC or churn. We then investigate whether the
correlation is strong enough, by establishing to what extent the
top 20% of ੗les with the highest LOC or Churn overlap with the
top 20% of the most ੗xed ੗les.

For this question we examine, for each project, the relationship
between the number of defect-੗xing commits and the LOC (for RQ
2(a)), and the correlation between the number of defect-੗xing com-
mits and the code churn (for RQ 2(b)). To accommodate the skew
in the distribution of defects we use the Spearman-Rank method
to compute the correlation, and do so on a project-by-project basis.
To summarise the correlations across all projects we apply Fisher۝s
Z-transformation.

Having calculated the correlations on a ੗le-by-੗le basis, we also
establish how successful Churn and LOC are speci੗cally for iden-
tifying the top 20% of most ੗xed ੗les. For this we look at the pro-
portion of ੗les that belong to the top 20% of most ੗xed ੗les that
also belong to the top 20% of ੗les in terms of LOC and Churn re-
spectively. We compute this for each project and present the result
as a box-plot.

Given the inconclusiveness of prior research linking LOC to
number of ੗xes, we do not posit a hypothesis for the correlation
with LOC. We do however expect a reasonably strong correlation
(> 0.7) for code churn.

RQ3: Are multi-टle टxes concentrated on the most defect-prone
टles? For each project we identi੗ed every bug-੗xing commit (iden-
ti੗ed as described above). To determine the ۜspread۝ of a commit
we identi੗ed two measures: (1) the sizes (in terms of the numbers
of ੗les) of defect-੗xing commits, and (2) the extent to which multi-
੗le commits that involved ੗les in the most defect-prone quintile
also involved ੗les in other quintiles (i.e. less defect-prone ੗les).

य़e ੗x-sizes were summarised as a box plot with one box for
each quintile. For each quintile, this will show the distribution of
the number of other ੗les that comprise ੗xes, which include ੗les
in that quintile.

य़e ۜspread۝ of ੗xes involving ੗les in the top quintile was also
summarised as a box-plot, where each box represented the extent
to which ੗les within a given quintile were co-edited with ੗les in
the top quintile.

Given that ੗xes might involve multiple ੗les that do not belong
to the top quintile, we compute the ۜtrue۝ spread of defect ੗xes that
involve ੗les in the top quintile. For each project, and every bug ੗x
involving at least one ੗le in the top quintile, we recorded all of
the ੗les involved in those ੗xes. य़is would then give us the true
proportion of ੗les that were involved in the 80% of defect ੗xes.

If the answer to RQ1 is yes (approximately 20% of the ੗les are
responsible for 80% of the bugs), then we would expect the ੗xes to
be distributed in a similar manner - for bug ੗xes to be concentrated
overwhelmingly on the to 20%.We would expect the ۜtrue۝ number
of ੗les involved to be close to 20%.

4 RESULTS
In this section we present the results. य़ese will be discussed more
fully in Section 5.
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Figure 2: Proportion of ॑xes involving ॑les in each quintile
(where quintile 1 represents the top 20% of the ॑les etc.).
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Figure 3: Churn and LOC correlations for each project.

RQ1: Does the Pareto Principle apply to soࢄware
defects?
Clausetet al.۝s power law tests produce a result of p ≥ 0.1 for
66% of the projects. For the law to have not applied in over 34%
of projects suggests that the law is far from universal.

To investigate the Pareto-principle, the box-plots for each quin-
tile of ੗les are shown in Figure 2. य़ese indicate that the Pareto
Principle does apply, in the sense that the top 20% of ੗les tend to
be involved in approximately 80% of ੗xes of bugs (mean is 80.53 %,
median is 78.49%).

RQ1: eࡋ relationship between टles and bug-टxes does tend to
obey a Power Law (although this is far from universal). eࡋ Pareto
Principle does however apply strongly; on average the top 20% of

the most defect-prone टles involved in 80% of defect टxes.

RQ2: Can the most frequently-॑xed ॑les be
easily identi॑ed by established metrics?
Figure 3 plots the Churn and LOC correlations across all of the
projects.य़e aggregate correlations computed through the Fisher۝s
Z-transformation indicate that there is a weak correlation between
defect-proneness and LOC (0.4), and a moderate correlation with
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Figure 4: Proportion of ॑xes belonging to top quintiles that
also belong to top quintile of defect-prone ॑les.
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Figure 5: Fix-sizes for each quintile. A size is counted for a
quintile if one of the ॑les involved belongs to that quintile.

code churn (0.6). As can be seen from the plot, however, there is a
signi੗cant variance between projects.

Figure 4 shows the proportion of the top 20% of Churn and LOC
੗les that also belong to the top 20% of ੗les for defects. य़ese in-
dicate that between 50% and 75% of the top 20% of ੗les for Churn
and less than 50% of ੗les for LOC tend to also belong to the top
20% of defect-prone ੗les.
RQ2: eࡋ reliability of LOC or Churn to suggest defect-proneness
can vary substantially from one project to the next. In general,

Churn tends to be a more reliable indicator than LOC.

RQ3: Are multi-॑le ॑xes concentrated on the
most defect-prone ॑les?
य़e sizes of the ੗xes for each quintile are shown in Figure 5. Typ-
ically, ੗xes tend to be relatively small (fewer than 10 ੗les). Fixes
that involve ੗les in the top quintile tend to be signi੗cant smaller
than other ੗xes (with a median of 3.25).

Figure 6 shows the spread of ੗les over the quintiles for all multi-
੗le ੗xes where at least one ੗le belongs to the top (most ੗xed) 20%.
य़is shows that, typically, under half of the ੗les involved belong

6
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Figure 6: Spread of ॑les co-edited with ॑les in the top quin-
tile of defect-prone ॑les.

to the top 20%, and the others tend to belong to other quintiles. In
other words, ੗les that are frequently ੗xed tend not to be edited
alongside other ੗les that are as frequently ੗xed.

य़e complete set of ੗les involved in ੗xes that involve ੗les in
the top quintile varies widely from one project to the next. Across
all projects, the median proportion of ੗les involved in 80% of bug
੗xes was 32%, with a lower quartile of 20% and an upper quartile
of 47%.

RQ3: Most defect-टxing commits involve multiple टles. For टxes
involving टles in the top 20%, fewer than 50% of the other टles

tend be in the top 20%.

5 DISCUSSION
In this section we discuss our ੗ndings and, where relevant, present
additional analyses. For all of the additional analyses carried out in
this section it is important to bear in mind that they are merely for
the sake of exploration and corroboration, and will in most cases
require more data to be conclusive.

5.1 eࢊ Role of Language and Paradigm
Our selection of projects includes soॏware that has been wri॒en
in a multitude of languages. य़ere were 11 di੖erent principal lan-
guages in total. Given that di੖erent languages tend to imply dif-
ferent design paradigms and conventions, it is plausible that this
could lead to di੖erent types of defects and correspondingly di੖er-
ent types of ੗xes. To investigate this, we re-ran our analyses to
separate out results on a per-language basis.

Although there was some variance between languages, the re-
sults did not suggest that language was a signi੗cant factor with
respect to our ੗ndings for RQ1 and RQ2. य़e Pareto principle ap-
plied to ੗les and defects regardless or language. Churn and LOC
performed in a similar vein to all languages (it is perhaps worth
noting that both metrics performed particularly well on the two
systems wri॒en in C).

For RQ3 the results merit some discussion. Figure 7 shows how
multi-੗le defect ੗xes are spread across the quintiles; it is equiva-
lent to Figure 6, split up by language. Two languages to focus on
are C (leॏ-most) and C++ (third from the leॏ). For the C projects,

the co-edited ੗les tended to be much more contained within the
top 20%. For C++, there was a remarkable spread, where approx-
imately the same proportion of ੗les would be spread throughout
all ੗ve quintiles (there was virtually no increase in the proportion
of ੗les contained in the top quintile).

Given that only two of the 100 projects were in C, and ੗ve were
in C++, these di੖erences could come down to project-speci੗c con-
ventions rather than language or paradigm-speci੗c reasons. Never-
theless, this is something that we will investigate more thoroughly
in future work (see Section 7).

5.2 A Link to Connectedness?
Previous studies on power laws in soॏware systems have focussed
on the interconnectivity of soॏware elements (e.g. the dependen-
cies that arise between soॏware modules [18]). य़ese have repeat-
edly demonstrated that a power law does appear to exist ۗ that
a small minority of the most connected modules are responsible
for a majority of dependencies. In other words, there tend to be a
small proportion of heavily connected ۠hubۡ modules, and a large
proportion of relatively disconnected ۠satelliteۡ modules.

When carrying out a code-change (such as in our case a bug ੗x),
it is oॏen necessary to adapt the surrounding soॏware artefacts to
accommodate the change. For example, if a change is made to the
structure of a class in an Object-Oriented system, then any other
classes in the system that use that class may need to be adapted to
accommodate the new structure. य़e task of assessing this impact
(as carried out by Change Impact Analysis techniques [17]) oॏen
involves tracing dependencies between ੗les.

Change Impact Analysis suggests an intuitive relationship be-
tween the extent to which a ੗le is ۜlinked to۝ by the rest of the sys-
tem and the extent to which it needs to be updated when elements
within the system are changed. य़is is corroborated by research
that suggests that the ۜfan-in۝ metric, which measures the central-
ity of ੗les within a system, is governed by a power-law [18].

In our work we do not distinguish between ੗le-changes that
produce the essential ੗x to a defect and these adaptive changes to
the surrounding system. We did also not collect metrics for ੗les
that could indicate their incoming dependencies from the rest of
the system (in part because we did not have access to the necessary
analysis infrastructure for all eleven programming languages used
here). Nevertheless, we do posit a conjecture (which we shall ex-
plore in our future work): eࡋ majority of टles in the top 20% mostڦ
टxedڧ टles are not especially defective, but are highly connected with
the rest of the system and need to be updated frequently to accommo-
date टxes to genuine defects made elsewhere.

5.3 Potential Implications for Defect
Prediction

य़e question of how faults are spread throughout a system is re-
lated to defect prediction. We identify three areas in particular: (1)
य़e implications for selecting data throughwhich to train and eval-
uate models, (2) the question of capturing defective ੗les that are
not frequently ੗xed, and (3) the role of LOC and Churn.

5.3.1 Training and evaluation. Defect prediction models [13] are
oॏen trained to predict whether a ੗le is ۠defect proneۡ by exam-
ining its dependencies (either syntactic [25] or dependencies that

7



●
●

●

●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●

●
●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●●
●●
●
●
●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●

●●

●

●●

●

●

●

●●

●

●
●●
●
●●
●

●

●

●

●

●●

●
●

●
●

●

●●●

●●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●●

●

●●●●●●●●●●●●●●
●

●●

●
●●
●
●
●
●●
●●
●
●●●●
●
●

●●●
●

●●●●●
●●●●●●●●●

●

●●●

●

●

●

●

●●●●
●●●

●

●
●●

●

●●●
●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●●●●●●●●

●
●
●
●●●●

●●

●

●

●
●●
●
●
●

●

●●●
●●●
●
●

●
●

●
●

●

●

●
●

●

●

●●

●
●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●●●●
●

●

●●
●●●

●●●●●●●●
●●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●
●
●●

●

●●

●●

●●●●●●●●●●●●●●

●
●●

●

●●●●

●
●
●

●

●

●

●

●●

●●

●●●●●●●●
●

●
●●

●●●

●

●

●●●●●

●

●
●
●

●

●●●●●●

●

●

●
●

●

●
●
●

●

●●●●●

●

●

●
●
●

●
●●
●
●

●
●

●

●

●

●●●

●

●

●
●

●

●

●●
●

●

●

●●

●

●
●●
●

●

●
●
●
●

●●
●●●●●
●
●●●
●●●●
●
●
●●●●●●●●●●
●●●●●●●●●

●
●●

●

●
●
●●
●●

●
●

●
●

●

●
●
●●●

●

●
●●
●●
●●

●●
●

●

●

●

●

●●
●●●●●●

●
●

● ●

●●

●●

●
●
●
●
●●
●●
●

●●

●
●

●

●●●

●
●●●

●

●

●

●

●●●●●●●●●●
●

●

●

●

●●
●●
●
●
●●●●●

●

●

●

●

●

●●
●●

●●
●

●

●●●●●
●●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●●
●
●

●●

●
●

●

●
●

●●
●

●

●●

●
●

●

●

●
●
●●

●

●
●

●

●●●

●

●●

●

●

●

●

●●

●

●
●●

●●●●●●●●●●●●●●●●
●

●

●

●

●●
●
●
●
●

●

●●●
●
●
●
●

●
●
●●
●
●●

●●

●●
●

●
●

●

●●●●●●

●
●

●

●●

●●

●●

●●●●●

●
●

●

●●
●●
●●●●
●
●●

●●

●

●●●●●●
●
●

●

●●
●

●●

●●●

●●

●
●

●
●●
●●

●●

●

●

●

●●●

●
●

●

●●
●●
●
●●●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●
●●
●
●●

●●

●
●

●
●●

●

●●●●

●●

●

●

●

●
●
●

● ●●

●

●●

●

●

●

●
●●●

●●

●

●
●●●●●

●

●
●

●●

●●●

●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●

●

●
●

●

●●

●

●●
●
●
●
●●●
●●●●●●
●

●

●

●
●●●●●●
●

●

●●●●●●●●●●●●
●
●●

●●

●

●

●

●

●

●
●

●●●●
●
●
●●
●
●●●●
●
●
●●
●●●●●
●●
●

●●
●

●●●●●
●●●●●●●●●●●●●●
●

●●

●●●●
●●
●●●

●

●●●●●
●
●●●●

●

●

●

●

●

●●●
●
●
●
●
●●

●

●●●●
●
●●●

●
●●●●
●
●●●●●
●
●●

●

●●●

●●

●
●
●●

●
●
●
●●
●●

●
●●●
●●●
●
●
●
●●
●●●

●
●●●●
●
●●●●●●●●●●●●●

●

●

●
●
●

●
●●●●●●
●
●

●●●●

●
●

●●
●●●
●
●
●
●
●●
●
●
●
●
●●●●●●

●

●
●●
●
●
●●
●●●●
●●

●

●

●

●

●

●●

●●●●

●

●●●●●●●●●●●
●

●●●●

●

●
●

●●●●●
●●●
●
●●●●●●●
●●●
●
●

●●●●●●●●●●●●●●●●

●

●●

●●
●●
●

●●
●
●

●

●
●

●

●

●●

●●

●

●

●
●●●●●

●
●

●

●
●

●
●●●●●●●●
● ●●●●

●

●

●
●●●

●
●
●●●

●●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●

●●

●
●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●●●
●●

●

●

●

●●●●
●
●

●

●
●

●

●●
●●
●
●

●

●

●

●
●●●
●●
●

●
●

●

●●

●

●

●

●

●

●●●
●

●
●

●

●

●●●
●

●

●
●●
●●●●●●●●●●●●
●●●●●
●●●●●●●
●●

●

●●●●

●●

●

●

●●●

●●

●●●●
●●●

●

●

●
●
●
●
●●

●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●

●●●

●●
●

●●

●
●
●●
●

●●●●●●●●●

●

●●
●●

●●

●

●●

●●●●

●●●●●●
●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●●●●

●

●

●

●
●●●●

●
●

●

●

●●●●●

●●●●●

●

●
●●●
●●

●
●
●●

●
●

●●

●

●●

●

●

●

●
●●
●●●
●
●●
●

●●●●
●

●

●
●

●●●
●
●
●
●●
●●
●
●

●
●●

●

●●

●●
●●

●

●
●
●

●

●●

●●●

●●
●

●

●

●

●

●

●

●
●●
●

●

●

●●●

●●

●

●●●●●●●

●●

●
●

●

●

●

●
●●

●

●●
●
●●●●●●

●

●

●
●●●
●

●

●
●●●

●

●
●●
●
●●

●
●
●

●

●●

●

●●
●●
●

●
●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●●

●

●●●
●

●

●●
●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●●
●

●●●

●

●

●
●

●
●●●

●●●
●●

●

●
●●●
●●●
●●●●
●●●●●●●●●●
●●●●●
●

●●

●●●●●●●●●
●
●

●●
●●

●

●●●●

●●●●●●●
●
●

●●●
●

●●●

●

●
●

●

●●
●
●
●

●
●
●
●

●

●

●
●

●

●
●
●●

●

●
●

●●●●●●
●●●●●●●●●●●

●

●●
●

●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●
●
●●

●●

●●●

●

●●●
●
●

●

●●●●

●●●●
●

●●

●

●

●●

●●

●
●
●

●●●

●

●

●●

●
●● ●

●

●●●

●

●●

●●

●●●

●

●

●

●

●●●●●

●

●●

●

●
●

●
●●●●
●

●●●

●●

●

●
●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●
●

●●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●●
●●

●●

●●

●●

●●●
●

●●

●●●
●●
●

●

●●

●

●

●

●●
●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Quintile (top 20% ... bottom 20%)

S
pr

ea
d 

of
 c

o−
ed

ite
d 

fil
es

C

C#

C++

Chapel

Java

Kotlin

PHP

Python

Ruby

Shell

Figure 7: Spread of ॑xes across quintiles. eࢊ box order from leࢄ-to-right is the same as the top-to-bottom order in the legend.

involve relations between developers and code units [7]), and link-
ing these with historical fault data. Our research (speci੗cally the
answer to RQ3) suggests, however, that defect-੗xes are not partic-
ularly focussed on those ੗les that are frequently subject to defect
੗xes. Instead, it suggests that many of the ੗les involved in a ੗x are
actually only rarely involved in ੗xes. We have conjectured above
that those ੗les that are frequently involved in ੗xes are involved be-
cause of their connectivity with the rest of the system, not because
they are especially buggy.

If our conjecture from Section 5.2 is true (and this is what our
future work will be aiming to establish), it would imply that there
is a strong need to re੗ne the data used to train and evaluate de-
fect predictors, otherwise the accuracy of the predictor (and the
reported accuracy of the technique) could be badly skewed. य़is is
however in itself problematic because it requires extensive human
intervention [15].

5.3.2 Capturing the defect. य़e question of whether the Pareto
principle holds also has some more general potential implications
for the usefulness of defect-prediction models. If only a small mi-
nority of ੗les are genuinely responsible for a large majority of de-
fects, then an e੖ective defect prediction model could be a vital tool.
However, our results indicate that this is not necessarily the case.
Fixes tend to incorporate multiple ੗les and tend not to be restricted
to the top 20% of frequently ੗xed ੗les (as shown in the results for
RQ3).

य़is mixture of ੗les within a ੗x (some are frequently ੗xed,
others are not), is potentially problematic. We can expect defect-
prediction models to be reasonably good at predicting the ੗les in
this 20%; for ੗les that are frequently ੗xed there should be an abun-
dance of training data. However, if our conjecture holds ۗ that ੗xes
to such ੗les tend to be adaptations and that the genuine bugs hap-
pen elsewhere ۗ then the ability to highlight faults in ੗les that are
infrequently ੗xed becomes particularly critical.

5.3.3 The role of Churn and LOC. In RQ2 we examined the rela-
tionship between LOC, Churn, and the ੗x-frequency of a ੗le. Sev-
eral studies have suggested that defect prediction models based

upon LOC alone tend to fare relatively well [23, 30]. Convention-
ally, prediction models tend to be produced by some form of re-
gression including other metrics such as Churn [13].

Our ੗ndings indicate that Churn is a be॒er feature than LOC
when it comes to predicting which ੗les belong to the top 20% of de-
fective ੗les. Our task (of identifying the top 20% of most defective
੗les) is di੖erent from the ੗le-by-੗le defect prediction task. Never-
theless, our ੗nding that Churn is more useful than LOC would
appear to contradict ੗ndings from defect-prediction studies (as
summarised by Hall et al. [13]), where models based on LOC have
tended to outperform Churn (or ۜProcess-based metrics۝).

6 THREATS TO VALIDITY
य़is section describes the internal, external, and construct threats
of the study.

6.1 Internal reatsࢊ
As far as instrumentation is concerned, there is a risk that the iden-
ti੗cation of defect ੗xes from commit messages is inaccurate. Gen-
uine bug ੗xes may be missed out if their commit message does not
satisfy our pa॒ern, and non-੗xing commits might be erroneously
included if their message happens to satisfy our pa॒ern.

We sought to a॒enuate the second risk (of including irrelevant
commits) by checking a random sample of ੗vemessages per project
(500 in total) to ensure that there were no obviously incorrect ੗xes
included. य़is came aॏer several iterations of scrutinising the re-
turned ੗x commit messages to re੗ne our search criteria to skip
non-੗xing commits.

It is much harder to guard against the risk of missing out rele-
vant ੗xes. A degree of underreporting of ੗xes can be tolerated as
long as the ੗xes that are missed follow a similar distribution to the
੗xes that were found. We have not observed any ੗xes that were
missed, and thus have not observed any indicators that this should
be the case.

6.2 External reatsࢊ
य़ere is a risk that our process of selecting relevant projects from
Munaiah et al.۝s database of GitHub projects [19] biased us towards

8



Table 2: Proportion of text, XML, and JSON ॑les involved in
॑xes, per quintile.

intileࢉ 1 2 3 4 5
Proportion .txt,.xml,.json 11% 12% 4% 10% 6%

a particular family of projects. Using git-stars as a primary rank-
ing factor favours highly popular projects, which appear to favour
web-development frameworks (probably because these have espe-
cially large communities of developers who rely upon them). As a
result frameworks wri॒en in Ruby and and PHP are particularly
prevalent. Nevertheless, the sample is suਖ਼ciently large to include
a broad range of other projects, and our language-speci੗c analy-
sis in Section 5.1 did not indicate that language was a signi੗cant
factor.

य़e selected projects are also all open source. It is possible that
closed-source projects developedwithin an industrial se॒ing could
have di੖erent properties. However, there is no obvious indicator
that this is the case, given that our results do not contradict the
results produced by previous studies [3, 11, 23] which focussed on
closed-source industrial C projects. Furthermore, several of the sys-
temswe include in our sample are developed by industry (c.f. azure
powershell by Microsoॏ and buck by Facebook).

6.3 Construct reatsࢊ
In this study we took the decision not to focus our a॒ention ex-
clusively on source code ੗les. य़e goal was to encompass defects
that might include non-code defects as well such as con੗guration
errors (requiring ੗xes to build scripts), documentation errors, or
defective test data, etc. Accordingly we included every non-binary
੗le in our analysis.

Doing so does introduce the risk that, in projects with large
numbers of static non-source ੗les, our analysis might be skewed.
Table 2 shows the proportion of ੗le extensions that were .txt, .xml
and .json (the most prevalent non-source ੗le extensions), they are
even slightly more prevalent in the quintiles 1 and 2, indicating
that they feature prominently in defect ੗xes.

य़ere is also the possibility that, by including non source-code
੗les, we are obscuring potentially signi੗cant relationships that
might arise if we focussed entirely upon the (executable) source
code. Relationships that are onlyweak in our analysis (e.g. between
defects and LOC) could be much stronger in a more restricted sce-
nario. य़is is a possibility that we intend to investigate in our fu-
ture work.

Finally, there is also the risk that, by using the version history as
a basis for identifying defects and their ੗xes, we only include those
defects that have been detected (and ੗xed). य़ere is a probability
that there aremany undetected and un੗xed defects within the ੗les.
य़is would only skew our results if the undetected faults were dis-
tributed di੖erently (amongst the quintiles) from the detected ones.
We have tried to a॒enuate this risk by selecting projects that are
well-established projects that are (it is hoped) less prone to exten-
sive, potentially defect-inducing restructurings.

7 CONCLUSIONS AND FUTURE WORK
य़e question of whether the Pareto Principle applies to soॏware
defects ultimately depends on the de੗nition of a ۠defect .ۡ If we
count a ੗x that spans multiple ੗les as multiple separate defects,
then the principle holds; 20% of ੗les are responsible for (almost
exactly) 80% of defects.

However, our paper also shows that this de੗nition is too sim-
plistic. Focussing on 20% of the ੗les only makes practical sense
if all of the ੗les required for a given ੗x reside within that set of
੗les. In this paper we have shown that, for every multi-੗le ੗x that
involves a ੗le that is frequently ੗xed, it invariably also involves
a multitude of ੗les that are only ੗xed very infrequently (and are
thus not part of this supposedly critical 20%).

य़ere is an apparent contradiction between the ੗ndings from
change impact analysis (that a small change can havewide-ranging
impacts across the system), and fault distribution analysis which
suggests that the majority of bug ੗xes are restricted to a small
cohort of ੗les. We conjecture that these can be reconciled by the
fact that a relatively small cohort of ੗les does in fact need to be
changed frequently as part of bug ੗xes. However, this is not be-
cause they are especially buggy, but because they are especially
well connected within the system, and need to be updated to ac-
commodate changes to, for example, data structures or interface
adaptations that are routinely carried out as part of bug ੗xes.

Our most pressing goal in our future work is to establish exper-
imentally whether this conjecture is indeed true. य़is will require
a more focussed selection of subject systems, along with a hand-
curated database of defects (such as the Defects4J bug database
[15]) that separate out the ۜcore۝ ੗xes from the adaptations within
the system to accomodate these ੗xes. Once we have this data, we
would investigate the following speci੗c hypotheses: (1) ੗les that
belong to a ੗x but do not contain the ۜcoreۜ are more likely to be-
long to the top quintile of ੗xed ੗les, and (2) are more likely to be
highly connected than ੗les that contain the genuine defects.

य़ere is also the question of how important the choice of lan-
guage of design paradigm and the choice of ੗le types is. Our sub-
sequent analysis has shown that there are potentially signi੗cant
di੖erences between languages, and we have not investigated the
relationships that arise if we focus entirely on source code. In our
future work, we will replicate this experiment, but will focus on a
larger selection of C and C++ projects (since these are particularly
distinctive according to Figure 7), with the additional aim of ex-
ploring the change in relationship if we choose to focus on source
code ੗les alone.
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