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Operational constraints on state-dependent formulations of quantum

error-disturbance trade-off relations
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(Received 31 January 2014; published 12 May 2014)

We argue for an operational requirement that all state-dependent measures of disturbance should satisfy.

Motivated by this natural criterion, we prove that in any d-dimensional Hilbert space and for any pair of

noncommuting operators, A and B, there exists a set of at least 2d−1 zero-noise, zero-disturbance (ZNZD) states,

for which the first observable can be measured without noise and the second will not be disturbed. Moreover, we

show that it is possible to construct such ZNZD states for which the expectation value of the commutator [A,B]

does not vanish. Therefore any state-dependent error-disturbance relation, based on the expectation value of the

commutator as a lower bound, must violate the operational requirement. We also discuss Ozawa’s state-dependent

error-disturbance relation in light of our results and show that the disturbance measure used in this relation exhibits

unphysical properties. We conclude that the trade-off is inevitable only between state-independent measures of

error and disturbance.

DOI: 10.1103/PhysRevA.89.052108 PACS number(s): 03.65.Ta, 03.67.−a

I. INTRODUCTION

Despite almost a century of research on quantum theory, one

of its fundamental building blocks, the quantum measurement

process, is still actively investigated. One of the earliest

results in this field is the famous Heisenberg uncertainty

relation. Its best known modern formulation (also known as

the Heisenberg-Robertson uncertainty relation [1]) concerns

the outcome statistics of two independent measurements of

noncommuting observables performed on an ensemble of

identically prepared quantum states. It states that the product

of variances of these two outcome statistics is lower-bounded

by the mean value of the commutator of measured observables

in the given quantum state. Although this formulation says

nothing about the effect of one measurement on the outcome

statistics of the other, it is often misinterpreted in the spirit

of the original Heisenberg microscope thought experiment

[2], i.e., that the bigger the precision of the measurement of

one observable, the bigger the disturbance to a subsequent

measurement of the other one (with which it does not

commute). Indeed, the formulation of uncertainty relation in

terms of precision and disturbance of sequential measurements

was Heisenberg’s original concept and is sometimes called the

error-disturbance uncertainty relation. Interestingly, it was not

until recently that the problem of sequential measurements

[3,4] and joint measurements [5,6] has been addressed with

a mathematically rigorous approach and in recent months has

become the topic of much discussion [7–15].

Most of the controversies around the error-disturbance rela-

tion arise due to disagreement about proper definitions of error

(noise) and disturbance (a detailed review of most commonly

used notions can be found in [16]). In this paper, instead of

proposing new definitions, we try to clarify the subject of se-

quential quantum measurements in finite-dimensional Hilbert

spaces by examining the consequences of the commonly

accepted [4,16] and operationally motivated requirement that

all physically meaningful notions of disturbance should satisfy.

Specifically, we focus on operationally detectable disturbances

for which it is natural to define.

Definition 1. Operational disturbance: Consider a nonse-

lective measurement of observable A on a system in state ρ

that results in final state ρ ′. We say the measurement of A, given

ρ, is operationally disturbing to a subsequent measurement of

B iff the statistics of B differ for ρ and ρ ′.
Moreover, any measure of disturbance should assign the

value 0 to operationally nondisturbing measurements, which

is the central operational requirement (OR) of this work. This

is clearly an uncontroversial demand, however the reason we

spell it out explicitly here is precisely that there are recent

prominent examples [3,17–19] in the literature that fail to

adhere to this basic requirement. In this paper we show that

satisfying the OR, within quantum theory, rules out a broad

class of “natural” error-disturbance relations. To show this, we

shall prove that for any finite dimensional quantum system, and

any two noncommuting observables A and B there always exist

pure states {|ψi〉}, such that a perfect (projective and sharp)

measurement of A can be performed (so there is no error in the

statistics of A) and the disturbance (in the subsequent statistics

of B) vanishes. Moreover, we show that the expectation value

of the commutator [A,B] for such a state |ψi〉 generically does

not vanish.

These results have strong implications for state-dependent

formulations of the error-disturbance trade-off relation. To see

this, recall that the original Heisenberg argument suggests

that ǫ(X)η(P ) ∼ h/2, where ǫ(X) denotes the error of the

approximate position measurement and η(P ) is the disturbance

to the subsequent measurement of momentum. One might

heuristically expect a Robertson-like relation ǫ(A)η(B) �

|〈ψ |[A,B]|ψ〉|/2 to bound the error and disturbance of

sequential measurements of arbitrary operators A and B

performed in a given state |ψ〉 (as it was suggested in [3]),

although it should be emphasized this was never claimed

by Heisenberg [2]. In general, most state-dependent trade-off

relations use the expectation value of the commutator in a

given state to bound some function of error and disturbance

for that state. However, as mentioned, we prove that for every

pair of observables A and B there exist pure states for which

ǫ(A) and η(B) both vanish, while the expectation value of
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commutator 〈ψ |[A,B]|ψ〉 in that state is nonzero. Therefore,

any state-dependent error-disturbance relation for sequential

measurements of A and B that uses the expectation value

of [A,B] in a given state as a lower bound must violate

the operational requirement. In other words, the measures

of disturbance used in all such relations must take nonzero

values even in the situations when the measurement statistics

have not been changed, which is an unphysical conclusion.

We illustrate this explicitly by analyzing the state-dependent

error-disturbance relation obtained by Ozawa [3] that has

recently received considerable attention.

The paper is organized as follows. In Sec. II we clarify

some confusing aspects of error and disturbance of sequential

measurements and explain our approach in detail. Next, in

Sec. III, we describe three families of states for which

the error and disturbance can vanish for a given pair of

noncommuting observables and emphasize the consequences

of the existence of such states for error-disturbance trade-

off relations. Section IV contains the analysis of Ozawa’s

uncertainty relation, while Sec. V concludes the paper.

II. GENERAL FRAMEWORK AND THE

OPERATIONAL REQUIREMENT

We begin by clarifying some aspects of the error and

disturbance in sequential measurements, that, although already

described in the literature [16], may be a source of confusion.

Specifically, we discuss the merits of state-dependent notions

of error and disturbance over state-independent ones, and

differentiate between disturbance of a state and disturbance of

a measurement. We also present the operational requirement

that all operationally meaningful notions of state-dependent

disturbance should satisfy and give a physical justification for

it.

A. State-dependent notions

A state-dependent approach to error and disturbance is

based on the following scenario. One is given an initial

quantum state of the system, ρ, and asks how much an

approximate positive operator-valued measure (POVM) mea-

surement EA on this state fails to reproduce the perfect

measurement of observable A, and how much it disturbs

the subsequent measurement of the observable B. Hence any

state-dependent measures of error ǫ and disturbance η depend

on three aspects: the approximate measurement EA used, the

observable to be measured (A or B), and the initial state

of the system ρ. This setting is very broad, and also gives

rise to state-independent notions of error and disturbance, for

example through averaging over all possible initial states or

by finding the maximum and minimum values of ǫ and η over

the full set of states [10]. In addition, the prior knowledge of

the measured state can be utilized. For example, given a qubit

system in an unknown state, then, on average, the projective

measurement σz will disturb the subsequent measurement of

σx . However, if one knows that a qubit system is prepared in

one of the two eigenstates of the measured σz operator, then

the subsequent measurement of σx will not be disturbed, as the

first measurement clearly does not change the system state.

The goal of state-dependent trade-off relations between

error and disturbance is to put a bound on some function

of ǫ and η that holds for all approximate measurements EA

performed on a system prepared in a given state ρ. An example

of such relation is the already mentioned Robertson-like

modification of the original Heisenberg noise-disturbance

uncertainty relation, that was proposed by Ozawa [3],

ǫ(A,ρ)η(B,ρ) �
|Tr(ρ[A,B])|

2
. (1)

In what follows we will refer to this as the restricted Ozawa

relation, as it follows from Ozawa’s relation if one considers

a subset of measurement interactions that are of “independent

intervention” for the pair (A,B) [3]. It posits that any

approximate measurement on a state ρ may reproduce the

ideal projective measurement of observable A on this state

with precision limited by noise ǫ, only if it also produces a

disturbance η of the subsequent projective measurement of

B, such that the product of ǫ and η is lower-bounded by the

average value of the commutator [A,B] in the considered state

ρ. Such state-dependent formulation of the trade-off relations

between error and disturbance of sequential measurements

seems to be a commonly chosen approach and one of the

most recent results in this field is the “universally valid

error-disturbance uncertainty relation” derived by Ozawa [3],

which is addressed in Sec. IV.

B. Disturbance of a measurement: Operational requirement

As the measurement outcomes themselves cannot be

controlled, when one describes the disturbing effect of the

measurement EA on the the subsequent measurement of B,

it is reasonable to consider the average over all outcomes.

That means that one is considering the effect of a nonselective

POVM measurement EA—in this way one captures the disturb-

ing effect of the measurement itself, independently of which

outcome is recorded. Furthermore, it is important to make a

strict distinction between the disturbance of a quantum state

and the disturbance to a subsequent quantum measurement.

In general, performing a projective measurement of some

observable A on a state ρ will affect (disturb) the state and

change it into ρ ′ �= ρ (apart from the special case, when ρ

is diagonal in the basis of eigenstates of A). The same holds

true for the POVM measurement EA. The trade-off between

information gain and state disturbance is itself a very subtle

subject [20,21], especially from the viewpoint of quantum

information processing.

However, let us emphasize that we are interested in the

disturbance to a subsequent measurement of B and not of

the system state. As even a perfect (projective and sharp)

measurement of observable B gives us only insight into the

probability distribution of a state ρ over the eigenstates of B,

any state disturbance causing solely a change of the relative

phases between eigenstates of B (the off-diagonal terms)

should not be treated as disturbance to the measurement of B.

In other words, disturbance of the measurement of B occurs if

and only if diagonal elements of ρ in the basis of eigenstates of

B change. This is the essence of the OR, which is operationally

motivated by the fact that only the change in the measurement

statistics can be detected by the measurement (otherwise
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one would call a measurement disturbed even though it is

indistinguishable from the perfect one). To be more precise

let us denote the outcome probability distribution of a perfect

measurement of B in a state ρ by pB(ρ) and the outcome

probability distribution of a measurement of B on a state ρ ′,
obtained after the projective measurement of A performed on

the original state ρ, by p̃B(ρ). Then our requirement can be

written as

pB(ρ) = p̃B(ρ) ⇔ η(B|EA,ρ) = 0, (2)

which is simply the mathematical expression of the OR.

The requirement that the Born statistical formula be

satisfied for perfect (not disturbed) measurements seems to be

commonly accepted [3,4,16]. The only issue one may worry

about is that usually a perfect measurement is defined in a

state-independent manner, i.e., that the Born statistical formula

should be satisfied for all initial states. As explained before,

however, this is not a problem, as the state-independent results

can always be recovered from the state-dependent ones.

III. VANISHING ERROR AND DISTURBANCE

As stated, the definition of state-dependent disturbance

should only depend upon operational distinguishability be-

tween the outcome statistics of a disturbed measurement and

the ideal one. Of course one can define an infinite number of

different distance measures between probability distributions,

however all of them must assign zero for a pair of identical

probability distributions. In this section we will investigate

the consequences of this for definitions of disturbance, i.e.,

we will analyze the possibilities and conditions for the

perfect measurement of one observable to be performed that

causes vanishing disturbance to the measurement of the other

(noncommuting) observable on zero-noise, zero disturbance

states (ZNZD). The results presented here are thus general and

constrain any state-dependent definitions of disturbance that

fulfill the OR.

We focus on the measurements in a finite d-dimensional

Hilbert space and consider the following sequential measure-

ment scenario. We perform the perfect (projective and sharp)

measurement of an observable A,

A =
d

∑

n=1

an|an〉〈an|,

and look at the disturbance to the measurement of the

observable B,

B =
d

∑

n=1

bn|bn〉〈bn|,

that this projective measurement of A induces. The observables

A and B are assumed to have nondegenerate spectra only for

the sake of clarity, as this is not a necessary condition for the

results presented in this section, unless stated otherwise.

A. The existence of pure ZNZD states

Before presenting the main result of this section consider

two cases that one might consider trivial. First, whenever the

system state ρ is diagonal in the basis of eigenstates of the

measured observable A, the state after the measurement, ρ ′, is

clearly not disturbed,

ρ ′ =
d

∑

n=1

〈an|ρ|an〉|an〉〈an| = ρ,

so also no subsequent measurement is disturbed. That means

that in such a case ∀B : η(B) = 0. The second trivial case is

when the system is in a maximally mixed state ρ = 1/d, so that

it is diagonal in every basis. Since the maximally mixed state is

unchanged by any measurement, and every measurement has

the same uniform outcome probability distribution,1 one has

∀A,B : η(B) = 0. We also note that both cases trivially satisfy

the restricted Ozawa (and any commutator-based) relation, in

the sense that the noise, disturbance, and expectation value of

[A,B] all simultaneously vanish for these states. The existence

of these trivial ZNZD states is therefore consistent with the

commutator-based bounds.

However, we can now ask if there exist ZNZD states for

which the average value of the commutator [A,B] does not

vanish. If the answer to this question is positive, then it

means that state-dependent trade-off relations between error

and disturbance satisfying the OR cannot be based only on the

expectation value of the commutator [A,B]. In what follows

we show that the answer is in fact positive by proving that for

every pair of noncommuting observables A and B there exists

a set of pure ZNZD states, and that the expectation value of

[A,B] generically does not vanish on these states.

We start by giving a definition of a ZNZD state:

Definition 2. A state ρ is a zero-noise, zero-disturbance

(ZNZD) state with respect to observables A and B if the

perfect (projective and sharp) measurement of an observable

A does not change the probability distribution of a subsequent

projective measurement of B.

We now have the following straightforward lemma:

Lemma 1. If for any two observables A and B there exists

a pure state that is unbiased in both bases of eigenstates of A

and B, then for any two observables A and B there always

exists a ZNZD state, i.e.,
(

∀A,B∃|ψ⋆〉 : ∀n |〈an|ψ⋆〉|2 = |〈bn|ψ⋆〉|2 =
1

d

)

⇒ (∀A,B∃|ψ⋆〉 : |ψ⋆〉 is a ZNZD state).

Proof. After the projective measurement of A the system

initially in a state |ψ⋆〉 will be transformed into a maximally

mixed state. Therefore the outcome probability distribution of

the subsequent measurement of B will be uniform, which is

the same as before the measurement of A, so the disturbance

η(B) will vanish. �

Now, in order to prove that such pure ZNZD states exist,

we need to prove that the left hand side of Lemma 1 is true.

We can now establish the following result.

Theorem 1. For any two bases {|an〉} and {|bn〉} of a d-

dimensional Hilbert space there exist at least 2d−1 states |ψ⋆〉

1Note, however, that the uncertainty here is entirely classical, and

not associated with noncommutativity of A and B. See [22,23] for

subtleties in splitting uncertainty in classical and quantum parts.

052108-3



KAMIL KORZEKWA, DAVID JENNINGS, AND TERRY RUDOLPH PHYSICAL REVIEW A 89, 052108 (2014)

that are unbiased in both bases, i.e.,

∀{|an〉},{|bn〉}∃|ψ⋆〉 : ∀n|〈an|ψ⋆〉|2 = |〈bn|ψ⋆〉|2 =
1

d
.

Proof. Let U † =
∑

n |bn〉〈an| denote the unitary connecting

the {|an〉} basis to the {|bn〉} basis. It is required to show that

there exists a pure quantum state |ψ⋆〉 such that

|〈an|ψ⋆〉|2 =
1

d
, (3a)

|〈an|U |ψ⋆〉|2 =
1

d
. (3b)

The first condition implies that such a state must take the

form |ψ⋆〉 = 1√
d

∑

n eiφn |an〉, while the second implies that

U |ψ⋆〉 = 1√
d

∑

n eiγn |an〉. Now the set of such states |ψ〉
obeying the first condition define a (Lagrangian) torus in the

phase variables {φn}, and moreover, it can be shown [24] that

the action of the unitary group induces a Hamiltonian flow

on the complex projective space CP d−1. However it is known

[25,26] that this torus, when projected into CP d−1, is not

“Hamiltonian displaceable,” meaning that the image of the

torus resulting from the action of U must intersect the original

torus (in at least 2d−1 points). This immediately implies the

existence of at least 2d−1 pure quantum states {|ψ⋆〉} that satisfy

the required conditions. �

It is also clear that the above result cannot extend uncondi-

tionally to nonuniform distributions. Specifically, for any given

state |ψ〉 =
∑

n cn|an〉, such that not all of {|cn|2} are equal to

1/d, there will exist a basis {|bn〉} in which the probability

distribution will differ from the one given by {|cn|2}. To

see this let us consider a qubit system with the outcome

probability distribution of σz measurement (p,1 − p). States

corresponding to this statistics form a circle on the Bloch

sphere. Now it is clear that if p �= 1/2, i.e., if we are not dealing

with the great circle, one can find a rotation of the Bloch

sphere, such that its action will transform the considered circle

to the one not intersecting with the initial one. However, if we

limit to “small rotations,” so that the “distance” between two

bases {an} and {bn} is R (with respect to some appropriately

defined distance measure, e.g., ||1 − U || in the operator norm,

where U is the connecting unitary), then for any distribution

p = (p1,p2, . . . pN ) with min(p) > h(R) (for some function

h) there will indeed exist a state |ψ⋆〉 such that |ψ⋆〉 has the

same statistics with respect to {|an〉} and {|bn〉}. We leave

the precise formulation of this for arbitrary dimensions as an

interesting open question.

B. Examples of nontrivial ZNZD states and the generic

nonvanishing of 〈[A,B]〉

We are now in the position that we know for any observables

A and B for a finite-dimensional system, that a ZNZD state

|ψ⋆〉 exists, but we lack the construction of such a state. There-

fore it is not a priori obvious whether c = |〈ψ⋆|[A,B]|ψ⋆〉| is

nonzero when [A,B] �= 0.

One particularly simple example is the special case of

complementary (mutually unbiased) observables: we have that

the eigenbases are related as

∀n : |an〉 =
1

√
d

d
∑

m=1

eiφmn |bm〉. (4)

Now it is known that for every d-dimensional Hilbert space

there exist at least three mutually unbiased bases [27], which

means that apart from {|an〉} and {|bn〉} bases there also exists

a basis {|cn〉}, such that any |cn〉 can be taken as |ψ⋆〉. Since

the construction of three mutually unbiased bases is known,

e.g., by using the Heisenberg-Weyl group method [27], one

can simply check if the expectation of the commutator c is

nonzero. In the simplest case of d = 2, the mutually unbiased

observables are A = σx and B = σy , and |ψ⋆〉 can be chosen

from the third unbiased bases formed by the eigenstates of

σz. Since [σx,σy] = 2iσz, therefore the average value of the

commutator does not vanish for |ψ⋆〉 state and is equal to

c = 2. For d = 3 one can choose the following three unbiased

bases:

{|an〉} = {(1,0,0),(0,1,0),(0,0,1)},

{|bn〉} =
{

1
√

3
(1,1,1),

1
√

3

(

1,ω3,ω
2
3

)

,
1

√
3

(

1,ω2
3,ω3

)

}

,

{|cn〉} =
{

1
√

3

(

1,ω2
3,ω

2
3

)

,
1

√
3

(1,ω3,1),
1

√
3

(1,1,ω3)

}

,

where ω3 = exp(2πi/3). In this case c also does not vanish

for at least one of the |cn〉 states, unless [A,B] = 0, which

can only be the case when A or B is completely degenerate

and thus proportional to identity. As an example let us choose

eigenvalues of A and B to be a1 = b1 = −1, a2 = b2 = 0,

a3 = b3 = 1. Then c = 1/
√

3 (for |ψ⋆〉 ∈ {|c1〉,|c2〉}) or c =
2/

√
3 (for |ψ⋆〉 = |c3〉). Similarly, for d = 4 one can choose

the eigenstates of A, {|an〉}, to be the two-qubit computational

basis, and the eigenstates of B to be defined by {|bn〉 = H ⊗
H |an〉}, where H is the two-dimensional Hadamard matrix.

These two bases are mutually unbiased and, since for d = 4

there exist five mutually unbiased bases, it leaves 12 states

(four from each of the remaining three bases) that are ZNZD

states with respect to A and B. Again, unless [A,B] = 0, at

least for one of these states the expectation value c of the

commutator does not vanish.

Beyond the low-dimensional examples presented, it is clear

that 〈ψ⋆|[A,B]|ψ⋆〉 does not vanish in general unless we make

a special choice of eigenvalues, for example by making some

of them degenerate. However, being given eigenstates of two

observables and the freedom to choose their eigenvalues, one

can always make c nonvanishing for unbiased states |ψ⋆〉.
Indeed, it is clear to see that 〈ψ⋆|[A,B]|ψ⋆〉 = 0 corresponds

to a set of measure zero in the space of eigenvalues.

C. Consequences for noise-disturbance relations

As already mentioned, the existence of pure ZNZD states

|ψ⋆〉 for every pair of noncommuting observables A and B,

such that the average of [A,B] does not vanish, implies that

any relation of the form

∞
∑

m,n=0

fmn(A,B)ǫm(A,ρ)ηn(B,ρ) � |Tr(ρ[A,B])|, (5)
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with f00 = 0, must violate the OR. This includes the restricted

Ozawa relation, Eq. (1), as well as the Ozawa’s “universally

valid error-disturbance uncertainty relation” given by

ǫ(A)η(B) + ǫ(A)σ (B) + σ (A)η(B) �
|Tr(ρ[A,B])|

2
, (6)

where the dependence on ρ of all of the terms on the left-hand

side was omitted to shorten the notation and σ (A) denotes the

standard deviation of the outcome statistics of A.

IV. ANALYSIS OF THE OZAWA ERROR-DISTURBANCE

RELATION

The aim of this section is to show that the well-known state-

dependent Ozawa’s trade-off relation [3], given by Eq. (6),

violates the OR, and so care should be taken in its interpreta-

tion. We decided to discuss this particular relation separately

from the general case presented in the previous section, due

to the recent experimental investigations of Ozawa’s error-

disturbance trade-off relation with the use of qubit systems

[17–19]. These works claim to experimentally verify the

Ozawa’s relation, which implies that any measurement of an

observable A in a state |ψ〉 with error ǫ(A) causes disturbance

η(B) on another observable B satisfying Eq. (6). What we

want to emphasize here is that the notion of disturbance being

used has the nonoperationally motivated properties, and so the

sense in which it can describe how a disturbed measurement

on any given state differs from the perfect one is debatable.

If one insists on using what we consider better operationally

motivated definition, then such a trade-off between error and

disturbance will not be inevitable in general (i.e., applying for

all states).

To see this more clearly let us analyze the Ozawa relation,

specifically the experimentally investigated case of d = 2.

Central to the relation are the error and disturbance terms

which can be defined respectively for two observables A and

B and a pure state |ψ〉 as [28]

ǫO(A)2 =
∑

k

||Mk(m − A)|ψ〉||2, (7a)

ηO(B)2 =
∑

k

||[Mk,B]|ψ〉||2, (7b)

where {Mk} are the POVM elements induced by the actual

measurement performed on the system, and m denote the

corresponding eigenvalues of the observable. These terms,

together with the variances σ (A) and σ (B) of A and B in the

state |ψ〉, can be shown to obey the error-disturbance relation

given by Eq. (6), which is argued to be a rigorous generalization

of Heisenberg’s microscope relation [3]. The above measures

of error and disturbance, given in Eqs. (7a) and (7b), have

been accused of being problematic, both in terms of what they

quantify [4,16] and in relation to interpretative issues [9] (see

[13] for a recent and extensive critique). Here we address the

(non)operational meaning of the disturbance term ηO as well

as its apparent state dependence.

First of all, let us note that if a perfect (projective and sharp)

measurement of observable A is performed on a state |ψ〉 then

ǫO(A) = 0 and

ηO(B)2 =
∑

k

||[|ak〉〈ak|,B]|ψ〉||2.

Focusing on the disturbance for the initial state of the system

being |al〉, i.e., the eigenstate of A, one has

ηO(B)2 =
∑

k �=l

|||ak〉〈ak|B|al〉||2 + ||(〈al|B|al〉 − B)|al〉||2.

The sum on the right-hand side of the above equation vanishes

only when |al〉 is the eigenstate of B (as B|al〉 must be

orthogonal to all |ak〉). Therefore, unless all the eigenstates

of A coincide with the eigenstates of B (which implies

[A,B] = 0), for at least one of such eigenstates the disturbance

is nonzero. We identify this as a very unphysical property of

the disturbance measure, as the measurement of A performed

on the eigenstate of A not only does not change the out-

come probability distribution of the subsequent measurement

of B, but also does not change the state of the system

at all.

Now let us turn to the qubit scenario. It is easy to compute

[17] that ηO for the sequential projective measurements of

A = a · σ and B = b · σ (with σ denoting the vector of Pauli

matrices) on a qubit system in state |ψ〉 is given by

ηO(B,|ψ〉) =
√

2| sin β|, (8)

where β is the angle between the Bloch vectors a and b. For

this primitive scenario, we find that although the definition of

ηO appears to be state dependent, the resultant expression for

a qubit system turns out to have no dependence on the system

state |ψ〉. Further insight can be obtained by the following

observation. Let us introduce the state-dependent measure of

disturbance ηK defined by the Kolmogorov distance between

outcome probability distributions of a perfect and disturbed

measurement, i.e.,

ηK(B,|ψ〉) := K(pB,p̃B) =
1

2

∑

n

∣

∣p
(n)
B − p̃

(n)
B

∣

∣, (9)

where the dependence of pB and p̃B on |ψ〉 was omitted

to shorten the notation. The operational meaning of the

introduced measure of disturbance is as follows: the optimal

success probability with maximum likelihood estimation for

distinguishing between the perfect and disturbed probability

distributions is given by [1 + K(pn,p̃n)]/2. Now it can be

shown that the expression for Ozawa’s disturbance ηO can be

recovered by averaging the disturbance ηK , over all possible

states of the system,

〈ηK (B,|ψ〉)〉Bloch =
1

4
| sin β| =

1

4
√

2
ηO(B,|ψ〉).

Thus for d = 2 the definition of disturbance proposed by

Ozawa coincides with the average over the state-dependent

notion defined here. It follows that ηO(B,|ψ〉) does not satisfy

the operational requirement.

Finally, let us note that in a qubit case the set of nontrivial

ZNZD states is not only limited to states |ψ⋆〉, i.e., the states

unbiased in the bases of eigenstates of A and B. Without

the loss of generality one may choose the Bloch vectors

representing considered observables to be a = (0,0,1) and
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b = (sin β,0, cos β). Then one can easily show that a projective

measurement of A on any of the states represented by the Bloch

vector c = (0, sin θ, cos θ ) does not change the statistics of the

subsequent measurement of B. Therefore the disturbance η(B)

caused by the projective measurement of A for all such states

should vanish.

V. OUTLOOK

In this paper we have tried to highlight some subtleties of

sequential measurements in finite-dimensional Hilbert spaces

by examining state-dependent notions of disturbance. A core

element of our reasoning relies on the insistence on basic op-

erational principles, in particular the operational requirement

(OR), which states that a measurement cannot be treated as dis-

turbed if its outcome statistics is identical to the one for the per-

fect measurement. By defining zero-noise, zero-disturbance

(ZNZD) states and proving the existence of such pure states

with nonvanishing expectation value of the commutator of

measured observables, we have shown that no traditional

commutator-based bound for the state-dependent trade-off

between error and disturbance can hold for all states, while also

satisfying the OR. We have also addressed one of the recent for-

mulations of the error-disturbance uncertainty relation derived

by Ozawa, pointed out the unphysical properties of disturbance

used in this approach and shown that in the single qubit case

Ozawa’s disturbance can be obtained via uniform averagings

of state-dependent disturbance over the Bloch sphere.

One may be tempted to introduce an operationally moti-

vated requirement also for the error of measurement, similarly

to the OR. Let us however note that, due to the state-dependent

nature of considered relations, this leads to problematic

issues. To see this, consider the following requirement: a

measurement EA that perfectly reproduces the measurement

statistics of observable A in a given state ρ should not be

called noisy. If there are no restrictions on the measurements

and given a state ρ one can always choose a “simulating

measurement” with POVM elements Mn = √
pn1 for n =

1 . . . d and pn = Tr(ρ|an〉〈an|). Such a measurement does not

affect the system state, so it does not disturb subsequent

statistics of any measurement, and it also perfectly reproduces

the measurement of A for the state ρ. The existence of

such measurement clearly shows that it is not only error and

disturbance, but also the information-gain about the system,

that must be considered in a state-dependent trade-off relation

(in the above example both error and disturbance vanish, but

there is also no information-gain).

The origin of complementarity and the error-disturbance

trade-off lies in the noncommutativity of the measured ob-

servables. Our main result, however, states that there cannot

exist a simple state-dependent relation connecting the trade-off

between error and disturbance with the expectation value of

the commutator in the considered state. A more tractable line

to follow is to relate error, disturbance and noncommutativity

of the measured observables in a Heisenberg-Robertson-like

inequality, in which both the error and disturbance measures

are state-independent quantities. A recent example of such

an approach to sequential measurements in finite-dimensional

Hilbert spaces, specifically for single qubit observables, was

recently presented in Ref. [10].
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