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Abstract 

 

In the absence of sensory information, we can generate meaningful images and 

sounds from representations in memory. However, it remains unclear which neural 

systems underpin this process, and whether different types of imagery recruit similar 

or different neural networks. We asked people to imagine the visual and auditory 

features of objects, either in isolation (car, dog) or in specific meaning-based 

contexts (car/dog race). Using an fMRI decoding approach, in conjunction with 

functional connectivity analysis, we examined the role of primary auditory/visual 

cortex and transmodal brain regions. Conceptual retrieval in the absence of external 

input recruited sensory and transmodal cortex. The response in transmodal regions – 

including anterior middle temporal gyrus – was of equal magnitude for visual and 

auditory features, yet nevertheless captured modality information in the pattern of 

response across voxels. In contrast, sensory regions showed greater activation for 

modality-relevant features in imagination (even when external inputs did not differ). 

These data are consistent with the view that transmodal regions support internally-

generated experiences and that they play a role in integrating perceptual features 

encoded in memory. 
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Introduction 

 

In the absence of sensory information, the mind produces experiences with 

rich sensorimotor features through the retrieval of information from memory 

(Singer, 1966; Antrobus, Singer & Greenberg, 1966; Mason et al. 2007). For instance, 

in everyday life we regularly hear voices and music in the mind’s ear when no sound 

is delivered (e.g., Alderson & Fernyhough, 2015; Halpern, 2001) and studies suggest 

more than one third of our time is spent engaged in thoughts and experiences that 

are unrelated to the ongoing environment (Kane et al. 2007; Killingsworth & Gilbert, 

2010). Although attempts have been made to understand how the brain retrieves 

memories in the absence of input (Albers et al. 2013; Daselaar, Porat, Huijbers & 

Pennartz, 2010; Vetter, Smith & Muckli, 2014), we lack an account of the component 

neurocognitive processes critical for mental imagery, whether these vary with 

respect to the modality of the memories being retrieved, and how these processes 

combine to support more complex multi-dimensional aspects of cognition. Studies of 

imagination have almost entirely focused on a constrained regions-of-interest 

analysis, which may not adequately represent the rich involvement of multiple brain 

regions distributed across the cortex. Moreover, they have seldom attempted to 

differentiate between different forms of imagery, with the majority of studies 

focusing solely on visual imagery (Albers et al. 2013; Countanche & Thompson-Schill, 

2014; Dijkstra et al. 2017; Ishai, Ungerleider & Haxby, 2000; Lee, Kravitz & Baker, 

2012; Reddy, Tsuchiya & Serre, 2010; Stokes, Thompson, Cusack & Duncan, 2009; 

Vetter et al. 2014). As such, there is limited understanding of the neural signature of 

different modalities (e.g., visual versus auditory), and whether different forms of 

imagination share similar or unique neural representations. Notably, studies that 

have compared visual and auditory imagery within the same experiment have been 

criticized for not employing comparable task conditions (see Daselaar et al. 2010; 

Halpern et al. 2004).  

We addressed these issues by applying multivoxel pattern analysis (MVPA) 

and resting-state functional magnetic resonance imaging to identify neural patterns 

that support different aspects of imagination at the whole-brain level. Using a 
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constant source of visual and auditory noise as a baseline, participants were asked to 

imagine information under three different conditions: visual (e.g. what a dog looks 

like), auditory (what a dog sounds like) and contextual (e.g. imagining a dog in a 

specific context, such as a race dog). This latter condition combines features from 

multiple modalities in a complex way (e.g., imagining a race dog may involve the 

visual properties of a greyhound and race track, as well as the auditory properties of 

dogs panting and crowds cheering). Figure 1 presents a schematic description of the 

experimental design used in our experiment. We compared the time points during 

which participants imagined a given concept whilst observing visual and auditory 

noise to those in which participants only observed visual and auditory noise 

(baseline). Our paradigm, therefore, permitted us to investigate the mechanisms 

involved in imagery whilst controlling for sensory input across our conditions.  

  

Figure 1. Experimental design. Participants were presented with written cues embedded in 

visual and auditory noise that referred to items they must detect. Cues referred to one of 

three tasks (Thinking about the sound of a concept; Thinking about the visual properties of a 

concept; Thinking about a concept in a particular complex context i.e., at the races) for one 

of two concepts (Dogs; Cars). This yielded six experimental conditions (Sound Car; Sound 

Dog; Visual Car; Visual Dog; Context Car (e.g., Race Car); Context Dog (e.g., Race Dog)). Cues 
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were followed by blocks of pure noise that lasted 6-12 s. Each block ended with either an 

image or a sound embedded in noise, that was either congruent to the cue (e.g., greyhound 

for the context cue ‘Race Dog’) or incongruent (e.g., elephant trunk for the visual cue ‘Visual 
Dog’). Participants responded with a yes/no response to whether the target trial matched 
the cue. Time points of interest are highlighted in red, these refer to pure noise trials where 

participants were thinking about the relevant cue (e.g., thinking about what a sound looked 

like). Cues, each pure-noise image and targets were shown for 3 s each.  

 

 A wealth of evidence supports the view that regions of unimodal sensory 

cortex are important for modality-specific elements of memory retrieval during 

imagination. Visual cortex is activated by mental images (Albers et al. 2013; de Borst 

& de Gelder, 2016; Ishai et al. 2000; Reddy et al. 2010; Vetter et al. 2014) and 

auditory cortex is activated by imagined sounds (Daselaar et al. 2010; de Borst & de 

Gelder, 2016; Halpern & Zatorre, 1999; Zvyagintsev et al. 2013). These findings are 

consistent with embodied cognition accounts, which propose that sensory regions 

important for perception and action also support mental processes such as 

comprehension and imagery (for discussion, see Barsalou, 1999; 2008; Patterson, 

Nestor & Rogers, 2007; Kiefer & Pulvermüller, 2012). Notably, the majority of studies 

find recruitment of sensory association cortices during visual (Amedi et al. 2005; 

Ishai et al. 2000; Knauff et al. 2000) and auditory mental imagery (Bunzeck et al. 

2005; Zatorre & Halpern, 2005). Moreover, a recent fMRI study showed that both 

secondary sensory regions and top-down mechanisms are necessary in visual 

imagery for enhancing the relevant representations in early sensory areas (Dijkstra 

et al. 2017). Some studies have also found imagery-induced activation in primary 

sensory cortex (Kosslyn et al. 1999; 2001; Slotnick, Thompson & Kosslyn, 2005), and 

the extent to which primary and/or secondary sensory regions are recruited during 

different modalities of imagery remains a source of contention (Daselaar et al. 2010; 

Kosslyn et al. 2001). By directly comparing visual and auditory imagery under 

equivalent conditions in the same experiment, the present study can elucidate the 

role of sensory cortex in mental imagery.  

Contemporary accounts of semantic cognition suggest that memory retrieval 

also relies on abstract representations that are largely invariant to the input 

modality. A prominent theory of conceptual representation, known as the hub-and-

spoke account, suggests that input-invariant concepts draw on a convergence zone 
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in the ventrolateral anterior temporal lobes (ATL), which extracts deep semantic 

similarities across multiple unimodal features (Lambon Ralph, Jefferies, Patterson & 

Rogers, 2017; Patterson et al. 2007). Support for this account comes from a recent 

fMRI study utilizing MVPA, which demonstrated that anterior inferior and middle 

temporal gyrus support modality-invariant patterns of activity corresponding to 

meaning. In contrast, superior temporal voxels held patterns of activity that 

reflected sensory input modality (Murphy et al. 2017). If ventrolateral ATL represents 

abstract conceptual representations, as expected for a transmodal brain region 

(Margulies et al. 2016; Mesulam, 2012), it may be critical for stimulus-independent 

cognition regardless of the modality that is being imagined. 

In line with this broad perspective, studies have revealed ventrolateral ATL 

activation during the retrieval of concepts across different input modalities (e.g., 

Gabrieli et al. 1997; Murphy et al. 2017; Reilly, Garcia & Binney, 2016; Rice et al. 

2015; Van Ackeren & Rueschemeyer, 2014; Visser et a. 2011). Coutanche and 

Thompson-Schill (2014) also found that left ATL could successfully decode the 

properties of an imagined object. In this study, classifiers in visual regions related to 

the shape (in V1) and colour (in V4) of the object predicted classification of the 

specific imagined object in ATL. This is consistent with the hypothesis that 

information from sensory cortex is integrated in ATL to form modality-invariant 

conceptual representations that are critical for perceptually-decoupled semantic 

retrieval. However, this previous study only examined visual features, while 

connectivity and task activation data suggest ATL acts as a convergence zone across 

different sensory modalities, including auditory features (Patterson et al., 2007; 

Visser et al., 2010; Lambon Ralph et al., 2017). Since the convergence of these 

different modalities is thought to be graded (Lambon Ralph et al, 2017), it is 

assumed that ventrolateral ATL retains some degree of differential connectivity to 

auditory and visual cortex. A key question, therefore, is whether transmodal portions 

of ATL play a common or distinct role in the representation of information about 

different modalities in imagination (e.g., when imagining visual and auditory features 

in the absence of input). 

Furthermore, our context condition (race + dog) permits us to investigate 

brain regions recruited during more complex multimodal imagery (e.g., imagining a 
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dog race may involve the visual properties of a greyhound and race track, as well as 

the auditory properties of the dogs thundering down the track and crowds cheering). 

Baron and Osheron (2011) found that conceptual combinations were represented in 

left ATL: decoding accuracy was related to classification accuracy for the constituents 

(boy = young + man). ATL can also show a stronger response to conceptual 

combinations, perhaps because these combinations require more specific patterns 

of semantic retrieval (Bemis & Pylkkanen, 2012). However, recent studies have 

shown that complex mental events are associated with a broader transmodal 

network including medial prefrontal cortex (Hartung et al. 2015) and attentional 

mechanisms (Berger, 2016). Taken together this literature suggests that the 

heteromodal regions recruited to support simple semantic imagery across visual and 

auditory features may not be sufficient when imagination is more complex: 

additional regions may come into play to support our capacity to flexibly maintain 

and integrate multiple features in specific and diverse ways. 

 The present study used a combination of imaging methods to understand 

patterns of common and distinct neural activity that are important for different 

forms of mental imagery (auditory features, visual features and complex conceptual 

combinations). First, we used MVPA to identify regions that code for each condition. 

Second, we performed conjunctions of these MVPA maps to identify distinct regions 

representing the presence or absence of a specific condition. Third, we interrogated 

the univariate activation of our conjunction maps to identify the BOLD response in 

each region. Fourth, we seeded these maps in an independent resting-state cohort 

to identify the intrinsic networks that these fall within. Finally, we performed a 

conjunction of these resting-state maps to identify potential common regions within 

the large-scale networks necessary for all forms of imagery. To complement these 

resting state analyses, we performed a meta-analysis of these spatial maps to 

provide a quantitative description of the types of cognitive processes that these 

patterns are linked to. 

Using this analysis pipeline, the present study examined three questions that 

emerge from a common and distinct account of semantic retrieval in the absence of 

meaningful input. First, we examined whether different types of sensory cortex play 

a specific role in memory retrieval. For example, auditory cortex should be recruited 
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more for thinking about what a dog sounds like than what it looks like; moreover the 

patterns of activity in this region should be able to decode between thinking about 

auditory features and other forms of imagery (e.g., visual or context conditions). 

Given that the majority of the literature highlights the recruitment of sensory 

association cortex, we predicted that secondary sensory regions would be recruited 

more extensively than primary sensory regions during imagery. Second, we 

investigated the contribution of transmodal regions, including ATL, to different forms 

of imagery. If these regions combine information from different modalities in a 

graded fashion, differential connectivity might allow these regions to classify 

imagined visual and auditory features. Finally, using resting-state fMRI, we 

characterized the intrinsic connectivity of regions identified in our MVPA analysis to 

understand the neural networks they are embedded in. We anticipated that these 

regions would show functional connectivity to regions of transmodal cortex 

implicated in abstract forms of cognition, as well as to relevant portions of sensory 

cortex (i.e. visual cortex during visual imagery). Together these different analytic 

approaches permit the investigation of both similarities and differences in the 

networks recruited when semantic retrieval is internally-generated.  

 

Materials and Methods 

 

Functional Experiment 

Participants. Twenty participants were recruited from the University of York. One 

participant’s data was excluded due to excessive motion artifacts, leaving nineteen 

subjects in the final analysis (11 female; mean age 23.67, range 18-37 years). 

Participants were native British speakers, right handed and had normal or corrected-

to-normal vision. Participants gave written informed consent to take part and were 

reimbursed for their time. The study was approved by the York Neuroimaging Centre 

Ethics Committee at the University of York.  
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Design. The functional experiment contained six experimental conditions, in a 2 

(concepts; dog, car) x 3 (type of imagery; auditory, visual and conceptually-complex 

context) design (see supplementary table A2 for full list of experimental conditions). 

 

Stimuli. Experimental stimuli consisted of (i) six verbal conceptual prompts that 

referred to each of our six experimental conditions (e.g., Dog Sound, which cued 

participants to imagine what a dog sounded like), (ii) visual and auditory noise which 

was presented throughout experimental conditions and rest periods. For this, 

Gaussian visual noise was generated through Psychopy (Pyschopy, 2.7), and auditory 

white noise was generated through Audacity software (Audacity Version 2.0.0), and 

(iii) target images/sounds. The targets used in this paradigm were piloted prior to 

fMRI scanning, on a separate group of participants (n=24) to determine the average 

length of time taken to detect a target (image or sound) emerging through noise (see 

supplementary material A1 for full description of pilot experiment). From this pilot, 

ten images were selected for each of our six experimental conditions (Dog Visual-

Features, Car Visual-Features, Dog Sound, Car Sound, Dog Context and Car Context) 

based on statistically similar reaction times (RTs) for detecting the item emerging 

through noise. Images were detected on average at 2861 ms and sounds at 2912 ms 

(see Table 1). The fMRI scan therefore allowed 3000 ms for participants to detect 

whether an item emerging through noise matched the content of their imagery.c;t 

 

Task Procedure. Prior to being scanned participants completed a practice session, 

identical to one scanning run. After this practice run, participants were probed to 

describe what they had been imagining during the pure noise trials to ensure the 

participants were engaged in imagining the relevant concepts. For the in-scanner 

task stimuli were presented in four independent runs. Within each scanning run 

participants were presented a cue word (e.g., Sound DOG) and instructed to imagine 

this concept in the presence of visual and auditory noise; for instance, they could 

imagine the sound of a dog barking, growling, yelping etc. Task instructions were 

presented for 3s. A variable number of images then followed, each displaying visual 

and auditory noise (see Figure 1). Within the blocks, the pure-noise images were 

each shown for 3s. Following a variable length of time (between 6 and 12s after the 
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initial cue), a target image or sound began to emerge through the noise (at the rate 

outlined in the pilot experiment described above).  Participants were instructed to 

respond with a button-press (yes/no) whether a target item emerging through visual 

and auditory noise was related to what they had being imagining based on the cue 

word. Participants were given 3000ms to respond to this item. The block 

automatically ended after this image. This design afforded us the high signal 

sensitivity found with block designs, combined with unpredictability to keep 

participants cognitively engaged.  

Each experimental condition (e.g., “Dog Sound”) occurred two times in a run 

(giving 8 blocks for each experimental condition across the experiment). Blocks were 

presented in a pseudo-randomized order so the same cue did not immediately 

repeat, and blocks were separated by 12s fixation. During the fixation period the 

visual and auditory noise were also presented, to create an active baseline. 50% of 

the items emerging through noise contained an item that did not match the 

preceding cue (i.e., 4 of 8 were foils) in order to focus participants on detecting the 

specific target. To encourage participants to pay attention from the very start of 

every block, an additional short block was included in each run, in which an item 

emerged through noise after only 3s, followed by 12s of fixation. These blocks were 

disregarded in the analysis. 

 

Acquisition. Data were acquired using a GE 3T HD Excite MRI scanner at the York 

Neuroimaging Centre, University of York. A Magnex head-dedicated gradient insert 

coil was used in conjunction with a birdcage, radio-frequency coil tuned to 

127.4MHz. A gradient-echo EPI sequence was used to collect data from 38 bottom-

up axial slices aligned with the temporal lobe (TR = 2s, TE = 18 ms, FOV = 192 × 192 

mm, matrix size = 64 × 64, slice thickness = 3 mm, slice-gap 1mm, flip-angle = 90°). 

Voxel size was 3 × 3 × 3 mm. Functional images were co-registered onto a T1-

weighted anatomical image from each participant (TR = 7.8 s, TE = 3 ms, FOV = 290 

mm x 290 mm, matrix size = 256 mm x 256 mm, voxel size = 1.13 mm x 1.13 mm x 1 

mm) using linear registration (FLIRT, FSL). This sequence was chosen as previous 

studies employing this sequence have produced an adequate signal-to-noise ratio in 
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regions prone to signal dropout, such as ATL (e.g., Coutanche & Thompson-Schill, 

2014; Murphy et al. 2017). 

To ensure that our ROIs had sufficient signal to detect reliable fMRI 

activation, the temporal signal-to-noise ratio (tSNR) for each participant was 

calculated by dividing the mean signal in each voxel by the standard deviation of the 

residual error time series in that voxel (Friedman et al., 2006). tSNR values were 

averaged across the voxels in both anterior temporal lobe (ATL) and medial 

prefrontal cortex (mPFC); regions that suffer from signal loss and distortion due to 

their proximity to air-filled sinuses (Jezzard & Clare, 1999). Mean tSNR values, 

averaged across participants, were as follows: ATL, 82.85; mPFC, 97.14. The 

percentage of voxels in each ROI that had “good” tSNR values (>20; Binder et al., 

2011) was above 97% for all ROIs: ATL, 97.19%; mPFC, 99.24%. These values indicate 

that the tSNR was sufficient to detect reliable fMRI activation in all ROIs (Binder et 

al., 2011). 

 

Pre-processing. Imaging data were preprocessed using the FSL toolbox 

(http://www.fmrib.ox.ac.uk/fsl). Images were skull-stripped using a brain extraction 

tool (BET, Smith, 2002) to remove non-brain tissue from the image. The first five 

volumes (10s) of each scan were removed to minimize the effects of magnetic 

saturation, and slice-timing correction was applied. Motion correction (MCFLIRT, 

Jenkinson et al. 2002) was followed by temporal high-pass filtering (cutoff = 0.01 Hz). 

Individual participant data were first registered to their high-resolution T1-

anatomical image, and then into a standard space (Montreal Neurological Institute 

(MNI152); this process included tri-linear interpolation of voxel sizes to 2 × 2 × 2 mm. 

For univariate analyses, data were additionally smoothed (Gaussian full width half 

maximum 6 mm).  

 

Multivariate Pattern Analysis. Analysis was focused on the moments when 

participants were imagining the target cues (e.g., thinking about what a dog looked 

like, or what a car sounded like). The condition onset and duration were taken from 

the first pure noise trial in each block (after the initial cue) to the end of the last pure 

noise trial (before the item began to emerge through the noise). The response to 
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each of the 6 conditions was contrasted against the active rest baseline (periods of 

auditory and visual noise where participants were not cued to imagine concepts). 

Box-car regressors for each condition, for each run, in the general linear model were 

convolved with a double gamma hemodynamic response function (FEAT, FSL). 

Regressors of no interest were also included to account for head motion within 

scans. MVPA was conducted on spatially unsmoothed data to preserve local voxel 

information. For each voxel in the brain, we computed a linear support vector 

machine (LIBSVM; with fixed regularization hyper-parameter C = 1) and a 4-fold 

cross-validation (leave-one-run-out) classification, implemented in custom python 

scripts using the pyMVPA software package (Hanke et al. 2009). A support vector 

machine was chosen to combat over-fitting by limiting the complexity of the 

classifier (Lewis-Peacock & Norman, 2013). The classifier was trained on three runs 

and tested on the independent fourth run; the testing set was then alternated for 

each of four iterations. Classifiers were trained and tested on individual subject data 

transformed into MNI standard space. The functional data were first z-scored per 

voxel within each run. The searchlight analysis was implemented by extracting the z-

scored β-values from spheres (6mm radius) centered on each voxel in the masks. 

This sized sphere included ∼ 123 3mm voxels (when not restricted by the brain’s 

boundary; Kriegeskorte et al. 2006). Classification accuracy (proportion of correctly 

classified trials) for each sphere was assigned to the sphere’s central voxel, in order 

to produce accuracy maps. The resulting accuracy maps were then smoothed with a 

Gaussian kernel (6mm FWHM). To determine whether accuracy maps were above 

chance-levels (50%), individual accuracy maps were entered into a higher-level group 

analysis (mixed effects, FLAME; http://www.fmrib.ox.ac.uk/fsl), testing the accuracy 

values across subjects against chance for each voxel. Voxel inclusion was set at z = 

2.3 with a cluster significance threshold at FWE p < .01. 

The following classification tests were performed: (1) Car vs. Dog classifier: 

this examined whether patterns of activity conveyed information about conceptual 

identity, by training a classifier to discriminate between periods of noise where 

participants were thinking about a dog and periods of noise where participants were 

thinking about a car.  We were not able to successfully classify the semantic class 

(dog vs. car) in our dataset at the whole-brain level. This finding is broadly consistent 
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with previous decoding studies of internally generated thought, which have shown 

that specific-level concepts (e.g., lime vs. celery) can be decoded; however 

categorical-level concepts (e.g., fruit vs. vegetable) were not successfully classified 

(Coutanche & Thompson-Schill, 2014). This may reflect the dynamic nature of 

conceptually driven internally-generated thought; for instance, on one trial, subjects 

may have been thinking about the exterior look of a car and on the next trial 

imagining the interior decor. As this analysis revealed no regions across the cortex 

could successfully decode this information, the remaining classification tests 

combine car and dog trials. (2) Auditory vs. visual classifier: this examined whether 

patterns of activity conveyed information regarding the modality of imagery, by 

training a classifier to discriminate between periods of noise where participants 

were thinking about the visual properties of objects and periods of noise where 

participants were thinking about the auditory properties of objects. (3) Visual vs. 

context classifier: here a classifier was trained to discriminate between periods of 

noise where participants were thinking about the visual properties of objects and 

periods of time when participants were thinking about objects in more complex 

conceptual contexts. (4) Auditory vs. context classifier: here a classifier was trained 

to discriminate between periods of noise where participants were thinking about the 

auditory properties of objects and period of time when participants were thinking 

about objects in complex contexts. Unthresholded maps from all analyses are 

uploaded on Neurovault: http://neurovault.org/collections/2671/.  

Next, we identified regions where patterns of activity consistently informed 

the classifier for each of our three tasks (visual, auditory and context) by running a 

formal conjunction on the uncorrected searchlight maps (using the FSL easythresh 

command). For visual patterns we looked at the conjunction of the two searchlight 

maps that decoded visual properties (visual vs. auditory and visual vs. context). Since 

regions that contributed to both of these searchlight maps were able to decode 

simple visual features in imagination, relative to both auditory features and more 

complex contexts, we reasoned that their pattern of activation related to simple 

visual features. Next, we looked at the conjunction of the two searchlight maps that 

decoded the auditory condition (auditory vs. visual and auditory vs. context), to 

identify brain regions containing patterns of activation relating to simple auditory 

http://neurovault.org/collections/2671/
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properties in imagination. Finally, we looked at the conjunction of the two 

searchlight maps that decoded context properties (context vs. visual and context vs. 

auditory). This identified brain regions containing activation patterns relating to 

complex conceptual contexts, as distinct from both simple visual and auditory 

features. All analyses were cluster corrected using a z-statistic threshold of 2.3 to 

define contiguous clusters. Multiple comparisons were controlled using a Gaussian 

Random Field Theory at a threshold of p < .01.  

 

Univariate Analysis. We examined univariate activation to further characterise the 

response within our unimodal and transmodal regions defined by MVPA. The 

percent signal change was extracted for each condition from regions of interest 

(ROIs) defined by the MVPA conjunctions (see above).  

 

Resting state fMRI 

Participants. This analysis was performed on a separate cohort of 157 healthy 

participants at York Neuroimaging Centre (89 female; mean age 20.31, range 18–31 

years). Subjects completed a 9-minute functional connectivity MRI scan during which 

they were asked to rest in the scanner with their eyes open. Using these data, we 

examined the resting-state fMRI (rs-fMRI) connectivity of our conjunction regions 

that were informative to decoding visual imagery, auditory imagery and contextual 

imagery, to investigate whether these regions fell within similar or distinct networks. 

The data from this resting-state scan has been used in prior published works from 

the same lab (e.g., Murphy et al. 2017; Murphy et al. 2018; Vatansever et al. 2017; 

Wang et al. 2018).  

 

Acquisition. As with the functional experiment, a Magnex head-dedicated gradient 

insert coil was used in conjunction with a birdcage, radio-frequency coil tuned to 

127.4 MHz. For the resting-state data, a gradient-echo EPI sequence was used to 

collect data from 60 axial slices with an interleaved (bottom-up) acquisition order 

with the following parameters: TR=3 s, TE=minimum full, volumes=180, flip 

angle=90°, matrix size=64×64, FOV=192×192 mm, voxel size=3x3×3 mm. A minimum 
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full TE was selected to optimise image quality (as opposed to selecting a value less 

than minimum full which, for instance, would be beneficial for obtaining more slices 

per TR). Functional images were co-registered onto a T1-weighted anatomical image 

from each participant (TR=7.8 s, TE=3 ms, FOV=290 mmx290 mm, matrix size=256 

mm x256 mm, voxel size=1 mm x 1 mm x 1 mm). 

 

Pre-processing. Data were pre-processed using the FSL toolbox 

(http://www.fmrib.ox.ac.uk/fsl). Prior to conducting the functional connectivity 

analysis, the following pre-statistics processing was applied to the resting state data; 

motion correction using MCFLIRT to safeguard against motion-related spurious 

correlations slice-timing correction using Fourier-space time-series phase-shifting; 

non-brain removal using BET; spatial smoothing using a Gaussian kernel of FWHM 6 

mm; grand-mean intensity normalisation of the entire 4D dataset by a single 

multiplicative factor; high-pass temporal filtering (Gaussian-weighted least-squares 

straight line fitting, with sigma=100s); Gaussian low-pass temporal filtering, with 

sigma=2.8s. 

 

Low-level analysis. For each conjunction site we created spherical seed ROIs, 6mm 

in diameter, centered on the peak conjunction voxel; visual conjunction site in left 

inferior lateral occipital cortex (LOC) [-48 -70 -2], auditory conjunction site in left 

superior temporal gyrus [-48 -12 -10] and context conjunction site in left LOC [-48 -

60 0] respectively (see supplementary table A2). This ensured that we assessed the 

functional connectivity of a key site when the searchlight conjunction revealed a 

large cluster or multiple clusters. The time series of these regions were extracted 

and used as explanatory variables in a separate subject level functional connectivity 

analysis for each seed. Subject specific nuisance regressors were determined using a 

component based noise correction (CompCor) approach (Behzadi et al. 2007). This 

method applies principal component analysis (PCA) to the fMRI signal from subject 

specific white matter and CSF ROIs. In total there were 11 nuisance regressors, five 

regressors from the CompCor and a further 6 nuisance regressors were identified 

using the motion correction MCFLIRT. These principle components were then 

removed from the fMRI data through linear regression. The WM and CSF covariates 
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were generated by segmenting each individual's high-resolution structural image 

(using FAST in FSL; Zhang et al. 2001). The default tissue probability maps, referred 

to as Prior Probability Maps (PPM), were registered to each individual's high-

resolution structural image (T1 space) and the overlap between these PPM and the 

corresponding CSF and WM maps was identified. These maps were then thresholded 

(40% for the SCF and 66% for the WM), binarized and combined. The six motion 

parameters were calculated in the motion-correction step during pre-processing. 

Movement in each of the three Cartesian directions (x, y, z) and rotational 

movement around three axes (pitch, yaw, roll) were included for each individual. 

 

High-level analysis. At the group-level the data were processed using FEAT version 

5.98 within FSL (www.fmrib.ox.ac.uk/fsl) and the analyses were carried out using 

FMRIB's Local Analysis of Mixed Effects (FLAME) stage 1 with automatic outlier 

detection. No global signal regression was performed. The z statistic images were 

then thresholded using clusters determined by z > 2.3 and a cluster-corrected 

significance threshold of p = 0.05. Finally, to determine whether our connectivity 

maps overlapped with one another we calculated the number of overlapping voxels 

for our three conjunction site connectivity maps. 

 

Results 

Behavioural Results 

To determine whether our experimental conditions were well matched at the 

behavioural level, accuracy and reaction times (RT) for the fMRI session were 

calculated for each participant (n=19). All participants were engaged in the correct 

task (e.g., thinking about the sound of a dog) as indicated by a mean accuracy score 

above 75% for all experimental conditions (Table 1).  A 2 (semantic category; car, 

dog) by 3 (imagery type; auditory, visual, context) repeated-measures ANOVA 

revealed no differences in accuracy across the three types of imagery (auditory, 

visual, conceptually-complex context; F(2,36) = 2.32, p = .11) and no effect of 

concept (car, dog; F(1,18) = 1.95, p = .66). RT scores were also well matched across 

our experimental conditions (Table 1). A 2 x 3 repeated measures ANOVA revealed 
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there was no difference in RT between the three experimental tasks (auditory, 

visual, conceptually-complex context; F(2,36) = 0.46, p=.64), no effect of concept 

(car, dog; F(1,18) = 2.61, p=.09) and no interaction between imagery types and 

concept (F(2,36) = 1.17, p = .37). Furthermore, the in-scan RT data were close to the 

RT in our pilot study, suggesting that participants required the same amount of time 

to detect stimuli both in and out of the scanner (mean RT for images = 2660 ms, SD = 

233 ms, mean RT for sounds = 2763 ms, SD = 616 ms). 
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Table 1. Behavioural scores across pilot and fMRI experiments 

Footnote: RT = reaction time in milliseconds, ACC = percentage accuracy. Standard deviation in 

parentheses.  

 

 

MVPA Decoding Results 

To test which brain regions held patterns of activity related to the type of internally-

generated conceptual retrieval, we examined brain regions that could classify 

imagery conditions during the presentation of auditory and visual noise. For 

example, the auditory vs. visual classifier was trained on the distinction between 

thinking about auditory and visual properties of concepts (collapsed across both cars 

and dogs) and tested on the same distinction in unseen data using a cross-validated 

approach. All results reported are above chance levels (50%, cluster-corrected, p < 

.01). 

The whole-brain searchlight analysis for the distinction between visual and 

auditory imagery revealed an extensive network of brain regions including sensory 

regions, such as bilateral inferior lateral occipital cortex (LOC), left fusiform and left 

auditory cortex (encompassing planum polare and Heschl’s gyrus extending more 

broadly into superior temporal gyrus), as well as transmodal brain regions that have 

been implicated in semantic processing, such as middle temporal gyrus, ATL (middle, 

inferior, fusiform and parahippocampal portions) and on the medial surface, anterior 

cingulate gyrus and thalamus (see Figure 2A; Table 2).  

 

Condition Pilot Experiment fMRI Experiment 

 RT Acc RT Acc 

Car Sound 2873 (635) N/A 2748 (713) 82.11 (16.53) 

Dog Sound 2951 (876) N/A 2753 (552) 76.84 (12.04) 

Car Visual 2886 (367) N/A 2704 (204) 83.68 (11.64) 

Dog Visual 2812 (402) N/A 2620 (241) 82.63 (9.91) 

Car Context 2994 (355) N/A 2754 (211) 76.76 (12.62) 

Dog Context 2752 (398) N/A 2569 (250) 79.61 (14.71) 



19 

 

Table 2. Centre Voxel Coordinates of Highest Decoding Sphere in the Searchlight Analyses. 

Condition Cluster Peak Extended Cluster 

Regions 

Cluster 

Extent 

Z-Score Acc (%)  x y z 

Auditory vs. 

Visual 

        

 L Lateral occipital 

cortex, superior 

division 

L Lateral occipital 

cortex, inferior 

division, L Occipital 

pole, L Occipital 

fusiform gyrus.  

975 4.13 75.00% -36 -86 10 

 L Thalamus R Thalamus 599 4.18 66.25% -12 -26 2 

 R Lateral occipital 

cortex, inferior 

division 

R Middle temporal 

gyrus, 

temporooccipital 

part.  

431 4.43 68.75% 54 -66 10 

 L  Planum polare  L Superior temporal 

gyrus, posterior 

division , Insular 

cortex, L Heschl’s 

gyrus, Anterior 

superior temporal 

gyrus. 

226 3.77 70.75% -40 -16 -8 

 L Supramarginal 

gyrus, posterior 

division  

L Planum 

temporale, 

Posterior superior 

temporal gyrus. 

178 3.52 75.00% -60 -42 16 

 R Frontal 

operculum cortex 

R Frontal orbital 

cortex, R Insular 

cortex. 

156 3.37 68.25% 40 22 4 

 L Anterior 

parahippocampal 

gyrus 

L Temporal fusiform 

gyrus, ,  

75 4.34 75.00% -36 -18 -18 

 L Anterior middle 

temporal gyrus 

L Anterior inferior 

temporal gyrus,  

67 4.12 66.25% -56  -6 -18 

 L Anterior cingulate 

gyrus 

 49 3.82 58.36% -4 34 -2 
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Footnote: Highest decoding accuracy clusters for each of our three classifiers analysed separately. The 

Auditory vs. Visual classifier was trained on the distinction between thinking about the sound of a 

concept versus thinking about what a concept looked like. The Visual vs. Context classifier was trained 

on the distinction between thinking about what a concept looked like versus thinking about it in a 

specific meaning-based context. The Sound vs. Context classifier was trained on the distinction 

between thinking about what a concept sounded like and thinking about it in a specific meaning-

Visual vs. 

Context 

        

 L Lateral occipital 

cortex, inferior 

division 

L Middle temporal 

gyrus, 

temporooccipital 

part, L Occipital 

Pole.  

733 4.16 68.75% -46 -72 0 

Auditory vs. 

Context 

        

 L Lateral occipital 

cortex, inferior 

division 

L Temporal occipital 

fusiform cortex, L 

inferior temporal 

gyrus, 

temporooccipital 

part.  

312 3.81 76.49% 48 -62 -6 

 R Temporal 

occipital fusiform 

gyrus 

R Lateral occipital 

cortex, inferior 

division, R Inferior 

temporal gyrus, 

temporooccipital 

part, R Middle 

temporal gyrus. 

temporooccipital 

part  

118 3.17 68.75% 34 -56 -20 

 R Posterior middle 

temporal gyrus 

R Posterior superior 

temporal gyrus, R 

Supramarginal 

gyrus, R Anterior 

superior temporal 

gyrus 

90 2.92 68.75% 56 -34 -2 

 R Posterior superior 

temporal gyrus 

R Middle temporal 

gyrus, R Planum 

polare, R Planum 

Temporale 

81 3.15 75.00% 60 -22 0 
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based context. All analyses were cluster corrected using a z-statistic threshold of 2.3 to define 

contiguous clusters. Multiple comparisons were controlled using a Gaussian Random Field Theory at a 

threshold of p < .01. L = left, R = right. As well as peak accuracy (reported under the ‘Cluster Peak’ 
column), the ‘Extended Cluster Regions’ includes all significant regions within each ROI. The 
unthresholded MVPA maps for each searchlight have been uploaded to the Neurovault database and 

can be found here http://neurovault.org/collections/2671/.  

 

 
Figure 2. Results of the group-level whole-brain searchlight analysis with above-chance 

(50%) decoding projected in red (cluster-corrected p < .01). All panels reveal results from 

binary choice searchlight analyses decoding the content of thought while participants 

viewed visual and auditory noise. (A) Location of searchlights that could decode between 

thinking about the sound and thinking about the visual properties of concepts. (B) Location 

of searchlights that could decode between thinking about the visual properties of concepts 

and thinking about the same concepts in more complex contexts. (C) Location of searchlights 

that could decode between thinking about the sound of concepts and thinking about the 

same concepts in more complex contexts.  

 

Next, we examined a visual vs. context classifier, which identified regions that 

could classify the difference between thinking about the visual properties of 

concepts and thinking about the same concepts in complex conceptual contexts. This 

whole-brain searchlight analysis revealed a large region in the left occipital lobe that 

could decode between visual and context conditions at above chance levels (50%, 

cluster-corrected p < .01) (Figure 2B; Table 2). Finally, we tested whether auditory vs. 

context conditions could be decoded. This whole-brain searchlight analysis revealed 

a set of clusters in bilateral auditory cortex extending along the superior temporal 

gyrus (STG) into ATL and posterior occipital-temporal cortex that could decode 
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between auditory and context conditions (50%, cluster-corrected p < .01) (Figure 2C; 

Table 2). 

To identify regions that could consistently decode visual, auditory and 

context conditions, conjunction analyses were performed across the searchlight 

maps outlined in Figures 2A-C. The results of these conjunctions are presented in 

Figure 3A. For visual imagery, we looked at the conjunction of the two searchlight 

maps that involved decoding simple visual features (visual vs. auditory and visual vs. 

context). This revealed a left lateralized cluster in occipital pole extending into lateral 

occipital cortex, which reliably decoded the distinction between simple visual feature 

imagery and both of the other conditions. For auditory imagery, we looked at the 

conjunction of the two searchlight maps that involved decoding auditory properties 

(auditory vs. visual and auditory vs. context). This analysis revealed left hemisphere 

regions, including primary auditory cortex, STG, pMTG and occipital fusiform, that 

reliably decoded the distinction between simple auditory feature imagery and both 

of the other conditions. For imagery driven by complex conceptual contexts, we 

looked at the conjunction of the two searchlight maps that involved decoding 

context (visual vs. context and auditory vs. context), which produced a cluster in left 

lateral occipital cortex.  

 

 

Figure 3. Panel A Represents brain regions where patterns of activity consistently informed 

the classifier for each of our three tasks (visual, context and sound). For visual patterns we 
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looked at the conjunction of the two searchlight maps that decoded visual properties (sound 

vs. visual and visual vs. context). For context patterns we looked at the conjunction of the 

two searchlight maps that decoded context properties (visual vs. context and sound vs. 

context). For sound patterns we looked at the conjunction of the two searchlight maps that 

decoded sound properties (sound vs. visual and sound vs. context). B. Shows the univariate 

percent signal change for each of our three conditions taken from a 6mm sphere centered 

on the peak conjunction point (visual [-48 -70 2], context [-48 -60 0], sound [-52 -8 -10]). (C = 

context, S = sound, V = visual). * Indicates a significant different between conditions (p < 

.05). The unthresholded maps for each condition have been uploaded to the Neurovault 

database and can be found here http://neurovault.org/collections/2671/. C. Grey panel 

illustrates the 7 core intrinsic networks identified by Yeo et al (2011); Dark purple = visual 

network, light blue = somatosensory network, dark green = dorsal network, light pink = 

ventral network, white = limbic network, yellow/orange = frontoparietal network (FPN) and 

red = default mode network (DMN). The black circles highlight where our peak conjunction 

sites fall with respect to these network. Our peak visual conjunction fell within the Visual 

network, peak context conjunction fell within the dorsal network and peak sound 

conjunction site within the somatosensory network.  

 

 

The conjunction of the MVPA searchlight maps revealed regions of sensory 

cortex that could decode different types of imagery (Figure 3A). As an additional 

complementary analysis, the percentage signal change was extracted for each 

condition from each of the three conjunction sites by placing a 6mm sphere around 

the peak (Figure 3B). A 3 (conjunction site; visual, sound, conceptually-complex 

context) by 3 (imagery type: visual, sound, conceptually-complex context) repeated-

measures ANOVA revealed no significant main effect of conjunction site (F(2,36) = 

0.48, p = .622) or imagery type (F(2,36) = 2.30, p = .114; however there was a 

significant interaction between site and imagery type (F(4,72) = 4.38, p = .003). 

Planned comparisons in the form of repeated-measures t-tests revealed that our 

visual cluster showed significantly more activity for visual imagery than auditory 

imagery (t(18) = 4.99, p < .001) and for the context condition vs. auditory imagery 

(t(18) = 4.61, p <.001), but there was no significant difference between the visual and 

context conditions (t(18) = .94, p = .36). Our auditory cluster showed significantly 

more activity for auditory imagery than visual imagery (t(18) = 4.64, p < .001) and for 

the context condition vs. visual imagery (t(18) = 5.602, p < .001), but no significant 

difference between auditory and context imagery (t(18) = -1.17, p = .25). Finally, our 

context cluster revealed significantly more activity for the context condition 

compared to both visual (t(18) = 5.56, p < .001) and auditory imagery (t(18) = 5.31, p 

http://neurovault.org/collections/2671/
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< .001), but no significant difference between visual and auditory imagery conditions 

(t(18) = -.03, p = .97).  

These univariate analyses demonstrate that regions that were able to classify 

particular aspects of internally-driven conceptual retrieval also showed a stronger 

BOLD response to these conditions – i.e., greater activation to visual or auditory 

imagery in ‘visual’ and ‘auditory’ classifier areas, and more activation to complex 

conceptual contexts in areas that could reliably classify this context condition. 

Regions that could decode visual and auditory imagery also responded to the 

context condition, consistent with the view that there is a multi-sensory response to 

complex conceptual contexts. Moreover, the context classifier region showed a 

response across both visual and auditory conditions, suggesting this region is 

transmodal; however, it also showed an increased response to imagery involving 

contexts, supporting the view that this region responds most strongly to the unique 

demands of the construction process imposed by this condition. Finally, to 

determine which distributed networks our conjunction findings fall within, we 

compared our results with seven large-scale networks as defined by Yeo et al (2011) 

(Figure 3C). Both visual and sound conjunction clusters fell predominantly within 

unimodal sensory networks (visual and somatosensory respectively), while our 

context conjunction site was located within the dorsal attentional network. 

Given our priori predictions regarding heteromodal cortex (e.g., ATL), we 

interrogated candidate heteromodal regions within the auditory vs. visual classifier 

map. The brain regions labelled on Figure 4 are the peaks representing the highest 

decoding accuracy taken from Table 2, with the exclusion of peaks in unimodal 

cortex (determined by the conjunction results). This analysis included a distributed 

network of putative transmodal regions, including supramarginal gyrus extending 

into pMTG, ventrolateral ATL (aMTG and aITG), thalamus, anterior parahippocampal 

gyrus and anterior cingulate cortex (aCC) (Figure 4A). As before, the percent signal 

change was extracted from each of these regions by placing a 6mm sphere around 

each peak; SMG [-60 -42 16], aMTG [-56 -6 -18], aCC [-4 34-2], thalamus [-12 26 2] 

and aPG [-36 -18 -18].  A 5 (location; SMG, aMTG, aCC, thalamus, aPG) by 3 (imagery 

type: visual, sound, conceptually-complex context) repeated-measures ANOVA 

revealed no significant main effect of conjunction site (F(4,72) = 0.34, p = .71) or 
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imagery type (F(4,72) = 2.02, p = .131; nor was there a significant interaction 

between site and imagery type (F(8,144) = 2.65, p = .102). This equivalency across 

conditions is consistent with the characterization of these regions as transmodal. 

Finally, to quantify which intrinsic networks our clusters fall within we compared our 

results with seven large-scale networks as defined by Yeo et al (2011) (Figure 4B). 

The majority of clusters fell within transmodal cortices, including the default mode 

network and limbic system.  

 

      

 

Figure 4. Heteromodal brain regions taken from the auditory vs. visual classifier map (Figure 

2A). (A) Labelled regions highlight the peaks of decoding accuracy from Table 2 (excluding 

those peaks in unimodal cortex highlighted in our conjunction analysis for sound and visual 

imagination); SMG = supramarginal gyrus [-60 -42 16], aMTG = anterior middle temporal 

gyrus [-56 -6 -18], aCC = anterior cingulate cortex [-4 34-2], thalamus [-12 26 2], aPG= 

anterior parahippocampal gyrus [-36 -18 -18]. The bar graph shows the univariate percent 

signal change for each of our three conditions (C = context, S = sound, V = visual) extracted 

from a 6mm sphere centered on each labeled peak. There were no significant different 
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between conditions across any of our ROIs (p > .05). The unthresholded maps can be found 

here http://neurovault.org/collections/2671/. (B) Grey panel illustrates the 7 core intrinsic 

networks identified by Yeo et al (2011); Dark purple = visual network, light blue = 

somatosensory network, dark green = dorsal network, light pink = ventral network, white = 

limbic network, yellow/orange = frontoparietal network (FPN) and red = default mode 

network (DMN). The black circles highlight where our peak sites fall with respect to these 

network. SMG falls between ventral stream and somatomotor, aMTG, ACC fall within the 

default mode network, aPG falls within the limbic system. Subcortical regions (e.g., the 

thalamus) are not shown on the Yeo et al (2011) networks.   

 

Intrinsic Connectivity   

To provide a better understanding of the neural architecture that supported 

imagination in each condition, we explored the intrinsic connectivity of our unimodal 

conjunction sites (Figure 3) and transmodal sites (Figure 4) identified through MVPA, 

in resting-state fMRI. The results of the unimodal connectivity analysis are presented 

in Supplementary Table A2 (Figure 5A-C). For the visual and auditory conjunction 

sites, which peaked within visual and auditory cortex respectively, there was 

coupling beyond the sensory areas surrounding the seed regions, to include areas of 

transmodal cortex, including ATL, particularly the left medial surface, posterior 

middle temporal gyrus and precuneus. To quantify the interpretation of the 

functional connectivity of the visual, context and sound connectivity maps, we 

performed a decoding analysis using automated fMRI meta-analytic software 

NeuroSynth (right panel of Figure 5). Meta-analytic decoding of these spatial maps 

revealed domain specific networks and their associated function. The visual 

connectivity map correlated with terms related to visual processing (e.g., visual, 

objects), likewise our sound connectivity map correlated with terms related to 

auditory processing (e.g., speech, sound). The context connectivity map included  

both visual (e.g., objects) and higher-order terms (e.g., attention).  

  

  

http://neurovault.org/collections/2671/
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Figure 5. Resting state connectivity maps of unimodal regions projected on rendered brain, 

displaying left hemisphere and left medial view. Maps thresholded at z = 3.1, cluster 

corrected p < .01. Visual maps seeded from left inferior lateral occipital cortex [-48 70 -2]. 

Context maps seeded from left inferior lateral occipital cortex [-48 -60 0]. Sound maps 

seeded from left superior temporal gyrus [-52 -8 -10]. Word clouds represent the decoded 

function of each connectivity map using automated fMRI meta-analyses software 

(NeuroSynth, Yarkoni et al. 2011). This software computed the spatial correlation between 

each unthresholded zstat mask and every other meta-analytic map (n = 11406) for each 

term/concept stored in the database. The 10 meta-analytic maps exhibiting highest positive 

correlation for each sub-system was extracted, and the term corresponding to each of these 

meta-analyses is shown on the right. The font size reflects the size of the correlation. This 

allows us to quantify the most likely reverse inferences that would be drawn from these 

functional maps by the larger neuroimaging community.   

 

 

Finally, the results of the heteromodal connectivity analysis are presented in 

Supplementary Table A2 (Figure 6A-B). Both our thalamus and SMG seed coupled 
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extensively with sensorimotor regions and core portions of the DMN (thalamus = 

angular gyrus and posterior cingulate cortex; SMG = middle temporal gyrus and ATL). 

The three other seeds (aMTG, anterior parahippocampal gyrus and anterior 

cingulate cortex) all coupled with core transmodal networks (DMN and limbic 

system). To aid the interpretation of these connectivity maps, we performed a 

decoding analysis using automated fMRI meta-analytic software NeuroSynth (right 

panel of Figure 6). The thalamus connectivity map correlated with terms related to 

task demands and multisensory properties (e.g., anticipation, motivation, 

somatosensory), likewise our SMG connectivity map correlated with terms related to 

sensory processing (e.g., speech, sound), while in contrast aMTG, aPG and aCC 

connectivity maps all correlated with terms related to memory retrieval (e.g., 

semantic, memory, encoding, DMN). 
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Figure 6. Resting state connectivity maps of heteromodal regions projected on rendered 

brain, displaying left hemisphere and left medial view. Maps thresholded at z = 3.1, cluster 

corrected p < .01. Thalamus maps seeded from [-48 -60 0]. Supramarginal gyrus (SMG) map 

seeded from [-48 -70 -2]. Anterior middle temporal gyrus (aMTG) seeded from [-56 -6 -18]. 

Anterior parahippocampal gyrus (aPG) seeded from [-36 -18 -18]. Anterior cingulate cortex 

(aCC) seeded from [-4 34-2]. Word clouds represent the decoded function of each 

connectivity map using automated fMRI meta-analyses software (NeuroSynth, Yarkoni et al. 

2011). This software computed the spatial correlation between each unthresholded zstat 

mask and every other meta-analytic map (n = 11406) for each term/concept stored in the 

database. The 10 meta-analytic maps exhibiting highest positive correlation for each sub-

system was extracted, and the term corresponding to each of these meta-analyses is shown 

on the right. The font size reflects the size of the correlation. This allows us to quantify the 

most likely reverse inferences that would be drawn from these functional maps by the larger 

neuroimaging community.   

 

 

 

Discussion 
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Our study examined common and distinct components supporting 

conceptually-driven visual and auditory imagery. Multivariate whole-brain decoding 

identified aspects of secondary visual and auditory cortex (inferior lateral occipital 

cortex and superior temporal gyrus) in which the pattern of activation across voxels 

related to the modality of what was imagined. Using functional connectivity, we 

established that at rest these regions showed a pattern of differential connectivity 

with auditory or visual cortex, indicating that they reflected domain-specific aspects 

of imagination. We also identified several heteromodal regions (including 

ventrolateral ATL, anterior parahippocampal gyrus and anterior cingulate cortex) 

that were also able to decode the difference between thinking about what a concept 

looked like and what it sounded like. Finally, a region within the dorsal attention 

network (inferior lateral occipital cortex) was differentially recruited during 

imagination for more complex contexts and could reliably able to decode between 

all of our experimental conditions. Complementary investigation of the intrinsic 

connectivity of these regions confirmed their role in unimodal and heteromodal 

processing. These findings are consistent with the view that imagination emerges 

from a combined response within unimodal and transmodal regions. 

The current fMRI study is one of only a few (e.g., Vetter et al., 2014) to 

identify patterns of activity in both visual and auditory association cortices that can 

reliably decode between different modalities of imagination (e.g., thinking about 

what a dog sounds like and what it looks like) within the same subjects. Our study is 

the first, to our knowledge, to investigate this issue whilst equating the visual and 

auditory input across our conditions. Typically neuroimaging studies of visual 

imagery have required participants to stare at a fixation cross while imagining an 

object, ensuring a consistent and simple visual input into the system (e.g., Albers et 

al. 2013; Dijkstra et al. 2017; Ishai et al. 2000; Lee, Kravitz & Baker, 2012; Reddy et al. 

2010). In contrast, studies of auditory imagery typically require participants to 

imagine the sound of an object or piece of music in the presence of auditory input 

created by the scanner noise (e.g., Kraemer et al. 2005; Lima et al. 2015; 2016; 

Zattore & Halpern, 2005). In this study, we presented both visual and auditory 

random noise, providing more comparable visual and auditory baselines. This 
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methodological advance allows a purer test of common and distinct neural 

contributions to imagination within different modalities than has been possible in 

prior studies. 

 

Domain specific contributions to imagination 

Our study provided evidence that neural recruitment occurs in primary 

sensory regions in order to support modality-specific imagery. However, the highest 

decoding accuracy and the location of our imagination conjunctions fell within 

secondary sensory regions (superior temporal gyrus and inferior lateral occipital 

cortex respectively; Figure 3). Our functional connectivity analyses confirmed that 

although these regions fall outside of these systems as defined by Yeo and 

colleagues, at rest these regions are functionally coupled to primary visual and 

auditory cortex respectively. These findings are in line with prior decoding and fMRI 

studies that have highlighted the relationship between imagery and secondary 

sensory regions (Albers et al. 2013; de Borst & de Gelder, 2016; Coutanche & 

Thompson-Schill, 2014; Chen et al. 1998; Daselaar et al. 2010; Halpern et al. 2004; 

Ishai et al. 2000; Lee et al. 2012; Reddy et al. 2010; Stokes et al. 2009; Vetter et al. 

2014; Zvyagintsev et al. 2013). Interestingly, our results are consistent with the 

‘anterior shift’ noted by Thompson-Schill (2003). She found that areas activated by 

semantic processing are not isomorphic to those used in direct experience, but 

rather are shifted anterior to those areas (for a wider review see Chatterjee, 2010; 

Binder & Desai, 2011; McNorgan et al. 2011; Meteyard et al. 2012).  

Our whole-brain searchlight analysis revealed patterns of activity supporting 

modality-specific imagination that extended beyond sensory cortex into semantic 

regions, including ATL (MTG, ventral and medial portions) and anterior cingulate 

cortex (see Figure 4). Functional connectivity analysis indicated that the majority of 

these regions showed extensive connectivity to other temporal lobe regions, 

encompassing both medial and lateral sites. Three of these regions also showed pre-

frontal connectivity, primarily with connections to regions of the default mode 

network (anterior IFG and ventral and dorsal medial prefrontal cortex). Together this 

pattern of functional connectivity, suggests that these regions form a common 
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network in the temporal lobe, and at least some of these regions are closely allied at 

rest with regions within the default mode network.   

 

Domain general contributions to imagination 

We found a cluster in left inferior lateral occipital cortex (LOC) that showed 

stronger activation in the context condition. This region was able to classify the 

distinction between all three conditions. Left lateral occipital cortex is traditionally 

thought to support visual perception. However, this region predominantly falls 

within the dorsal attention network, as opposed to the visual network (Yeo et al. 

2011). While this “task-positive” network usually responds to demanding, externally-

presented decisions (for review see Corbetta & Shulman, 2002), in this study we see 

engagement in a task in which imagery is being generated internally from memory. 

This pattern of results demonstrates that imagery not only recruits transmodal 

regions associated with memory but also sites implicated in attention, when the 

features that are being retrieved have to be shaped to suit the context, and/or when 

complex patterns of retrieval are required. One caveat is that our current 

experimental paradigm does not allow us to establish if this response in LOC is driven 

by the need to generate rich heteromodal content (i.e., ‘dog races’ can envision the 

sound of a crowd cheering and the visual properties of a race track), or the 

requirement to steer retrieval away from dominant features to currently-relevant 

information (since the fact that dogs go for walks is not pertinent to ‘dog races’, and 

might need to be suppressed to allow contextually-relevant information to come to 

the fore). Nevertheless, the findings do suggest that this specific region plays a 

greater role in supporting imagery of complex multimodal contexts as opposed to 

single features. 

Seeding from our “heteromodal” MVPA sites highlighted extensive functional 

coupling with core transmodal networks including DMN and limbic systems (see 

Figure 6; Margulies et al. 2016; Mesulam, 1989; Yeo et al. 2011). Meta-analytic 

decomposition of these maps returned terms related to memory retrieval (e.g., 

semantic, memory, encoding, DMN). In addition, two of these sites (thalamus and 

SMG) also coupled to somatosensory and attentional networks. Thalamic influence 
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has been previously reported during multisensory interplay (Driver & Noesselt, 2008) 

and its role in multimodal processing may explain why this region could decode 

between visual and auditory forms of imagination. Moreover, it has recently been 

suggested that SMG is crucial in the construction of mental representations 

(Benedek et al. 2017). As this region is connected to both attention and sensory 

networks, our findings converge with previous evidence suggesting that SMG 

integrates memory content in new ways and supports executively demanding mental 

simulations (Benedek et al. 2014; 2017; Fink et al. 2010).  

 

6. Conclusion 

 

In this investigation of semantic retrieval in the absence of meaningful stimuli in the 

external environment, we found extensive recruitment of sensory cortex, which was 

modulated by the modality of imagination required by the task. We also observed a 

role for transmodal brain regions in supporting internally-generated conceptual 

retrieval. These findings are consistent with the view that different types of 

imaginative thought depend upon patterns of common and distinct neural 

recruitment that reflect the respective contributions of modality specific and 

modality invariant neural representations. 
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Supplementary Material  

Supplementary material A1: Description of pilot experiment.  

 

For the visual and context trials (car visual, car context, dog visual, dog context), a 

pictorial target was used (e.g., a picture of a car tyre for the car visual condition). For 

auditory trials, a sound target was used (e.g., a dog barking). On each trial of this 

behavioral pilot, participants were presented with both visual and auditory noise. 

One of two target types were then superimposed over the visual and auditory noise: 

(i) image targets and (ii) sound targets. For image targets, 150 different images were 

presented centrally to participants. There were 30 images for each of the following 

experimental conditions: Dog Visual-Features (e.g., dog paw), Cars Visual-Features 

(e.g., car tyre), Dog Contexts (e.g., race dosg) and Car Contexts (e.g., race car) and an 

additional 30 catch-trials (that did not represent any of the experimental conditions). 

Each item emerged through the noise by adjusting the opacity of the image from 0 

(transparent) to 1 (opaque) in increments of 0.025 every 150ms. For sound trials, 90 

different sounds were presented binaurally to participants. There were 30 sounds for 

each of following sound experimental conditions: Dog Sounds (e.g., barking), Car 

Sounds (e.g., breaks screeching) and an additional 30 catch-trials (that did not 

represent the other experimental conditions). All sound trials were modified to have 

the same average amplitude. Each sound emerged through noise by adjusting the 

volume from 0 to 1 in increments of 0.10. Each sound was played in full before the 

volume increased (the maximum length of any of the sound trials was 600ms).  

For this pilot test, participants were instructed to respond with a button-

press when they could identify the image or sound emerging through the noise.  

Images were presented first (for all image-based conditions), followed by sound 

trials. The order of presentation of individual image and sound trials was randomized 

across participants. To ensure that participants were accurately identifying the 

images and sounds, on 10% of trials participants were also required to type what 

they had seen or heard. The average detection time across all participants was 

calculated for every image and sound trial. Ten images were then selected for each 

of our six experimental conditions (Dog Visual-Features, Car Visual-Features, Dog 

Sound, Car Sound, Dog Context and Car Context) based on statistically similar 
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reaction times (RTs) for detecting the item emerging through noise. Images were 

detected on average at 2861ms and sounds at 2912ms (see Table 1). These timings 

were used in the fMRI experiment to ensure that the in-scan detection task would be 

challenging enough to engage all participants. The fMRI scan therefore allowed 

3000ms for participants to detect an item emerging through noise.  
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Table A2. List of stimuli 

 Sound Visual Context 

Dog “Sound Dog” Visual Dog” “Race Dog” 

“Dangerous Dog” 

“Old Dog” 

“New Dog” 

“Muddy Dog” 

“Clean Dog” 

“Abandoned Dog” 

“Family Dog” 

Car “Sound Car” Visual Car” “Race Car” 

“Dangerous Car” 

“Old Car” 

 “New Car” 

“Muddy Car” 

“Clean Car” 

“Abandoned Car” 

“Family Car” 

Footnote: Prompt for each experimental conditions depicted in “ “.   
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Table A3. Coordinates of peak clusters in the resting-state connectivity analyses. 

Seed Region Cluster Cluster 

Extent 

Z-score x Y z 

Context seed  Increased Correlation      

 L. Lateral occipital cortex, inferior 

division 

15566 16.4 -50 -64 0 

 L. Superior frontal gyrus 566 8.18 -22 -8 54 

 R. Planum polare 256 5.45 42 -10 -8 

 Reduced Correlation      

 R. Lingual gyrus  6653 7.27 4 -88 14 

 R. Anterior cingulate gyrus 5584 7.14 6 26 30 

 R. Insular Cortex 2324 6.46 38 14 -10 

 L. Postcentral Gyrus 340 4.75 -60 -6 14 

 L. Frontal Pole 296 4.43 -36  50 12 

 R. Lateral occipital pole, superior 

division  

265 4.8 48 -64 48 

Visual seed Increased Correlation      

 L. Lateral occipital cortex, inferior 

division 

7797 15.3 -48 -68 0 

 R. Lateral occipital cortex, inferior 

division 

6793 10.9 50 -64 2 

 L. Hippocampus  346 5.29 -20 -10 -20 

 L. Superior Frontal gyrus 342 7.47 -22 -8 54 

 Reduced Correlation      

 R. Lingual gyrus 6688 7.35 4 -70 -4 

 R. Insular cortex 2463 6.31 40 12 -6 

 R. Paracingulate gyrus 2369 6.85 10 22 34 

 R. Frontal pole 2270 6.17 38 40 18 

 L. Insular cortex 856 5.42 -36 4 2 

 L. Frontal pole 388 5.25 -34 50 8 

 R. Posterior cingulate gyrus 354 4,59 2 -32 26 

Sound seed Increased Correlation      

 L. Superior temporal gyrus 17702 15.8 -46 -10 -6 
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 R. Intracalcarine cortex 614 5.45 20 -62 10 

 L. Lingual gyrus 564 5.27 -16 -51 0 

 R. Anterior cingulate gyrus 511 4.54 6 -14 42 

 Reduced Correlation      

 R. Thalamus 1961 6.28 16 -14 10 

 L. Superior frontal gyrus 1685 4.98 -20 10 62 

 R. Cerebellum 1445 5.58 36 -58 -48 

 L. Cerebellum 1187 5.6 -36 -50 -48 

 L. Lateral occipital cortex, superior 

division 

1110 5.16 -26 -72 30 

 R. Lateral occipital cortex, superior 

division 

670 5.86 26 -78 34 

 R. Superior frontal gyrus 571 5.68 26 -4 52 

 L. Lateral occipital cortex, inferior 

division 

364 4.38 -48 -78 -12 

 L. Frontal pole 291 5.07 -26 54 2 

Thalamus Increased Correlation      

 L. Thalamus  22269 17.1 -12 -26 2 

 L. Lateral occipital cortex, superior 

division  

270 5.17 -42 -72 24 

 Reduced Correlation      

 L. Cerebellum 19581 7.66 -40 -74 -32 

 L. Frontal pole 786 5.58 -26 54 20 

 L. Planum polare  258 6.29 -44 -10 -12 

SMG Increased Correlation      

 L. Supramarginal gyrus, posterior 

division  

9745 15.1 -60 -42 16 

 R. Planum temporale 7485 8.64 52 -32 18 

 L. Cingulate gyrus, anterior division  4128 7.26 -6 -12 36 

 L. Precentral gyrus 330 4.96 -46 -8 44 

 R. Cerebellum 289 5.43 26 -72 -56 

 Reduced Correlation      

 R. Lateral occipital cortex, superior 

division  

6353 7.45 26 -66 52 

 L. Lateral occipital cortex, superior 

division  

3955 6.63 -28 -60 46 
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 R. Middle frontal gyrus 1529 6.19 38 8 60 

 L. Superior frontal gyrus  552 5.95 -26 18 58 

 L. Cerebellum  245 5.23 -44 -68 -46 

aMTG Increased Correlation      

 L. Middle temporal gyrus, anterior 

division  

10430 15.3 -56 -6 -18 

 R. Middle temporal gyrus, posterior 

division 

7048 10.2 50 -12 -16 

 L. Posterior cingulate gyrus  2696 7.34 -8 -54 32 

 L. Superior frontal gyrus  1606 7.69 -8 52 32 

 L. Frontal pole 821 5.94 -6 56 -14 

 Reduced Correlation     

 R. Frontal pole 3034 6.85 46 46 12 

 L. Frontal pole  1397 6.56 -46 42 16 

 R. Angular gyrus  1178 6.25 42 -52 50 

 L. Supramarginal gyrus, posterior 

division  

1158 6.90 -50 -42 44 

 L. Cerebellum 1108 6.15 -32 -70 -34 

 R. Paracingulate gyrus  781 6.91 4 20 42 

 R. Superior frontal gyrus 734 5.47 20 16 56 

 R. Cerebellum 648 5.69 40 -56 -54 

 L. Superior frontal gyrus 490 5.38 -24 2 56 

 L. Lingual gyrus 337 4.54 -2 -82 -24 

 Thalamus  246 4.64 0 -4 2 

 L. Precuneous  210 4.87 -14 -74 42 

aPG Increased Correlation      

 L. Parahippocampal gyrus, anterior 

division/temporal fusiform cortex 

15370 15.6 -36 -16 -18 

 L. Thalamus  207 4.88 -2 -14 6 

 Reduced Correlation      

 R. Middle frontal gyrus  7768 7.09 34 16 50 

 R. Lateral occipital cortex, superior 

division  

2232 6.83 46 -62 30 

 Intracalcarine cortex  2115 4.71 12 -82 4 
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 L. Middle frontal gyrus  1893 5.90 -34 2 50 

 L. Angular gyrus  1016 5.50 -54 -58 36 

 L. Thalamus 659 5.79 -8 -14 -2 

ACC Increased Correlation      

 L. Cingulate gyrus, anterior division  28384 15.4 -4 34 -2 

 R. Lateral occipital cortex, superior 

division  

315 5.56 52 -68 20 

 L. Middle frontal gyrus  272 6.21 -24 32 34 

 Reduced Correlation      

 R. Cerebellum 7277 7.76 12 -80 -34 

 L. Inferior frontal gyrus, pars 

opercularis  

3364 6.43 -54 14 20 

 R. Inferior frontal gyrus, pars 

opercularis 

2065 5.47 52 16 18 

 L. Lateral occipital cortex, superior 

division 

1782 6.82 -30 -64 40 

 R. Lateral occipital cortex, superior 

division 

750 4.93 36 -66 46 

 L. Paracingulate gyrus  468 4.61 -4 28 44 

Footnote: The table shows peak clusters in the resting-state connectivity analysis from eight seed regions. 

Three “unimodal” regions; context seed [-48 60 0], visual seed [-48 -70 -2] and sound seed [52 -8 -10]. 

Results are thresholded at p<.01 (cluster corrected). Five “heteromodal” regions; Thalamus seed [-48 -60 0], 

supramarginal gyrus (SMG) seed [-48 -70 -2], anterior middle temporal gyrus (aMTG) seed [-56 -6 -18], 

anterior parahippocampal gyrus (aPG) seed [-36 -18 -18] and anterior cingulate cortex (aCC) seed [-4 34-2]. 

L=left, R=right. 

 


