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Abstract

It is known that the effective population size (Ne) and the mutation rate (u) vary across the genome. Here, we show that

ignoring this heterogeneity may lead to biased estimates of past demography. To solve the problem, we develop new
methods for jointly inferring past changes in population size and detecting variation in Ne and u between loci. These

methods rely on either polymorphism data alone or both polymorphism and divergence data. In addition to inferring

demography, we can use the methods to study a variety of questions: 1) comparing sex chromosomes with autosomes
(for finding evidence for male-driven evolution, an unequal sex ratio, or sex-biased demographic changes) and

2) analyzing multilocus data from within autosomes or sex chromosomes (for studying determinants of variability in

Ne and u). Simulations suggest that the methods can provide accurate parameter estimates and have substantial
statistical power for detecting difference in Ne and u. As an example, we use the methods to analyze a polymorphism

data set from Drosophila simulans. We find clear evidence for rapid population expansion. The results also indicate that

the autosomes have a higher mutation rate than the X chromosome and that the sex ratio is probably female-biased.
The new methods have been implemented in a user-friendly package.

Key words: inferring demography, effective population size, mutation rate, comparing sex chromosomes and auto-
somes, sex ratio evolution.

Introduction

Information on past demographic changes is essential for
understanding how major events shape the evolution of a
species (e.g., the out-of-Africa migration of humans;
Veeramah and Hammer 2014), for reliably detecting genes
underlying adaptation/speciation (Bank et al. 2014; Payseur
and Rieseberg 2016), and for formulating effective conserva-
tion strategies (Allendorf et al. 2010). As a result, many meth-
ods have been developed for making demographic inferences
by examining various aspects of sequence polymorphism
(Schraiber and Akey 2015; Payseur and Rieseberg 2016).

Due to the randomness of the process of evolution and the
rarity of polymorphic sites, the amount of information pro-
vided by data from a small genomic region is rather limited,
which in turn leads to large statistical noise in the inference.
This problem is typically dealt with by combining data from
multiple loci. However, this approach is complicated by re-
gional heterogeneity in important parameters. For instance,
the mutation rate, u, varies across the genome (Hodgkinson
and Eyre-Walker 2011). In addition, the effective population
size, Ne, is also heterogeneous (Ne is inversely related to the
rate of coalescence; Charlesworth 2009). Variation in Ne may
be caused by differences in the mode of inheritance (e.g.,
autosomes vs. sex chromosomes; Charlesworth 2009) and/or

differences in the strength of selection at linked sites (e.g.,

selective sweeps and background selection; Cutter and

Payseur 2013).

To illustrate problems with combining data from multiple

loci, imagine that there was a 10-fold increase in the popula-

tion size 1,000 generations ago and that we have data from

two loci with effective population sizes 5,000 and 100, respec-

tively. It is well known that the level of polymorphism is

determined by h ¼ 4Neu. Thus, if u is the same at the two

loci, locus 1 is expected to contribute more SNPs to the

combined data set due to its higher Ne. On the other hand,

when expressed in units of two times the locus-specific Ne,

the scaled time to the expansion event is 0.1 for locus 1 and 5

for locus 2. Thus, locus 1 is much closer to the event than

locus 2, and its local genealogy is expected to deviate more

from that expected under an equilibrium model. As locus 1

makes a larger contribution to the combined data set, making

inferences on the combined data without regard to these

between-locus differences will lead to results that are biased

toward the situation at locus 1.

Being able to detect differences in Ne and u between loci is
required for studying important questions in evolution. For
instance, comparing sex chromosomes and autosomes with
regard to their polymorphism patterns is a powerful way of
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detecting evidence for an unequal sex ratio and/or sex-

biased demographic processes (Webster and Wilson

Sayres 2016). Although existing methods developed for

this purpose do take into account variation in Ne and u

between sex chromosomes and autosomes (Pool and

Nielsen 2007, 2008; Garrigan 2009; Keinan et al. 2009;

Haddrill et al. 2011; Evans et al. 2014; Clemente et al.

2018), they are limited in several important aspects: 1)

Some rely on summary statistics such as the X-autosome

diversity ratio, and do not make full use of the data (Pool

and Nielsen 2008); 2) some cannot detect changes in the

sex ratio between different evolutionary epochs (Garrigan

2009; Haddrill et al. 2011; Evans et al. 2014); and 3) some

do not model the mutation process, and therefore cannot

detect difference in the mutation rate between sex chro-

mosomes and autosomes caused by, for example, male-

driven evolution (Clemente et al. 2018).

Demographic inferencemethods concerned with data col-

lected fromwithin autosomes (or sex chromosomes) seem to

pay less attention to regional variation in Ne and u

(Gutenkunst et al. 2009; Excoffier et al. 2013). The method

of Bhaskar et al. (2015) allows u to vary across loci but

assumes a single Ne for all loci. The method of Gossmann

et al. (2011) considers between-locus differences in both Ne

and u but assumes that the population size is constant over

time. Beaumont and colleagues (Beaumont 1999; Storz and

Beaumont 2002) developed a hierarchical Bayesian model

that accommodates changes in population size as well as

variation in bothNe and u. However, thismethod is applicable

to microsatellite data only. Finally, the method of Hey and

colleagues (Hey and Nielsen 2004; Sousa et al. 2013) considers

both demography and between-locus differences but is com-

putationally intensive and not suitable for analyzing data sets

with many loci.
To solve the issues discussed above, we describe a general

framework for simultaneously inferring past changes in pop-
ulation size and detecting variation inNe and u. Several meth-
ods are constructed, either for making comparisons between
the X (or Z) chromosome and autosomes or for analyzing
multilocus data from within autosomes (or sex chromo-
somes). The methods typically make inferences on polymor-
phism data, although some of them are able to use both
polymorphism and divergence data. Using computer sim-
ulations, we ask the following questions: 1) To what ex-
tent do regional differences in Ne and u bias results
obtained by demographic inference methods that ignore
this heterogeneity? 2) Can the new methods overcome
these biases? 3) Do the new methods have sufficient sta-
tistical power for detecting between-locus differences in
Ne and u? As an example, we use the methods to analyze a
polymorphism data set from Drosophila simulans
(Jackson et al. 2017), focusing on X-autosome compari-
sons. We examine whether the population size has
changed recently, whether u differs between the X chro-
mosome and the autosomes, and whether there is evi-
dence for sex-biased processes (e.g., an unequal sex ratio,
sex differences in reproductive success).

New Approach

The General Model without Divergence Data
Consider a randomly mating diploid population. Going back-
ward from the present, the population size changes in a step-
wise manner with H epochs (see supplementary table S1,
Supplementary Material online, for a list of mathematical
symbols). The most recent epoch is referred to as epoch 1,
the next epoch as epoch 2, and so forth. It is assumed that
epoch H (i.e., the most distant epoch) extends indefinitely
into the past, whereas the duration of epoch h is Th gener-
ations (1 � h < H). Let us focus on a locus in the genome,
referred to as locus 1. It is assumed that the Ne at this locus in
epoch H is N1. The population size during epoch h is g1;hN1

(1 � h < H). Mutation is modeled by the infinite-sites
model. Let u1 be the mutation rate per site per generation.
We define the scaled mutation rate as h1 ¼ 4N1u1, and the
scaled time as sh ¼ Th=ð2N1Þ (1 � h < H).

Consider a second locus, referred to as locus 2. Because the
underlying demographic process is shared by all loci in the
genome, the timing of population size changes (i.e., the Ths) is
the same across loci (see supplementary fig. S1,
SupplementaryMaterial online, for a graphical representation
of the model and its parameters). To model the difference in
Ne between locus 1 and 2, we treat locus 1 as “the reference
locus” and assume that the local Ne at locus 2 in the most
distant epoch (i.e., epoch H) is N2 ¼ f2N1. To model variation
in the mutation rate, we assume that the mutation rate at
locus 2 is u2 per site per generation and define the scaled
mutation rate as h2 ¼ 4N1u2 (note that all scaled parameters
are defined with respect to the reference locus). Finally, to
accommodate the possibility that these two locimay respond
differently to the demographic changes (e.g., sex-biased de-
mographic processes can affect X-linked and autosomal loci
differently; Webster and Wilson Sayres 2016), the population
size during epoch h is assumed to be g2;hN2 ¼ g2;hf2N1

(1 � h < H).
More generally, with data from K loci, the model has the

following parameters, denoted collectively byH: 1) the time
parameters s¼ (s1, s2,. . ., sH�1), which are shared across loci;
and 2) the locus-specific parameters hk, fk, and gk ¼
(gk;1; gk;2,. . ., gk;H�1) (1 � k � K). Note that f1 is fixed at
1 for identifiability of the parameters. Under this parameter-
ization, information on variation in localNe is provided by the
fks. Because the hks are defined with respect to N1, they are
directly comparable between loci and provide information
about variability in the mutation rate. By checking whether
gi;h=gj;h differs significantly from 1, we can examine whether
locus i and j respond differently to demographic changes. It
should be noted that the parameters are identifiable if and
only if there have been recent changes in population size. In
contrast, if the population size is constant (i.e., H¼ 1), then
polymorphism patterns at the K loci are fully characterized by
the composite parameter h�k , defined as 4N1fkuk
(1 � k � K).

Without loss of generality, we assume that samples of n
alleles have been obtained from all K loci. The data from locus
k are summarized using the unfolded site-frequency
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spectrum (uSFS), denoted by dk ¼ (dk;1; dk;2,. . ., dk;n�1),
where dk;i is the observed number of segregating sites of
derived allele frequency i. Let d ¼ (d1; d2,. . ., dK) denote
all the data. As detailed in Materials and Methods, we calcu-
late the (composite) likelihood of the data using the Poisson
random fieldmodel (Sawyer andHartl 1992; Bustamante et al.
2001), assuming neutrality, free recombination between sites,
and the infinite-sites model of mutation. This allows us to
obtain maximum likelihood estimates (MLEs) of the param-
eters (see Materials and Methods).

The General Model with Divergence Data
We seek to increase the statistical power of the above model
by appealing to the fact that the level of divergence to an
outgroup species carries information about the mutation
rate. For simplicity, we consider divergence between a se-
quence from the ingroup species and a sequence from the
outgroup. Here it is important to consider the effects of an-
cestral polymorphism, which may account for a substantial
fraction of the divergence level between closely related spe-
cies (e.g., ancestral polymorphismmay account for more than
24% of divergence between humans and chimpanzees; Chen
and Li 2001).

Consider locus k. It is assumed that Ne at this locus in the
population of the ancestral species is cfkN1, where the param-
eter c is used to model the possibility that the ancestral pop-
ulation is of a different size (recall that locus 1 is used as the
reference locus and f1 ¼ 1). The expected divergence level is
kk ¼ mkð4cfkN1uk þ 2t�ukÞ, wheremk is the length of locus
k in basepairs, and t� is the divergence time in generations.
The first term in the parentheses describes differences accu-
mulated within the ancestral population, and the second
term considers changes accrued after speciation. We can re-
write kk as mkhkðcfk þ tÞ, where t ¼ t�=ð2N1Þ. Thus, the
inclusion of divergence data introduces two new parameters,
c and t, which are shared across loci. Let X ¼ (x1, x2,. . ., xK)
where xk is the observed number of substitutions at locus k.
The data set now includes both X and d, and the new model
has parametersH, c, and t. The likelihood of X can be calcu-
lated by assuming that the number of substitutions follows a
Poisson distribution with mean kk, as in previous studies
(Gossmann et al. 2011; Galtier 2016; Tataru et al. 2017).
This is then combined with the likelihood of d to obtain
the overall likelihood (see eq. 9). It should be noted that
the information on c and t comes from variation in diver-
gence level across loci. Thus, this model should not be used to
analyze data sets containing a small number of loci (see
Results for more detail).

A Simplified Model
The models described above are general in that they allow
each locus to have its private parameters (i.e., hk, fk, and gk).
They are parameter-rich and require each locus to be suffi-
ciently large so that enough information is available for esti-
mating the locus-specific parameters. Thus, the general
model is more suitable for analyzing large genomic regions
(e.g., the X chromosome vs. autosomes). Regarding data col-
lected from multiple autosomal (or sex-linked) loci, it is

reasonable to define a simplified model with gh ¼ gk;h
(1 � k � K and 1 � h < H). That is, g ¼ (g1, g2,. . .,
gH�1) is now shared across loci. This model assumes that
the loci, despite their difference in local Ne, respond to the
underlying demographic process in the same manner. The
rationale comes from the observation that the effects of se-
lection at linked sites (e.g., recurrent selective sweeps,
background selection, or the joint effects of the two) can
be roughly approximated by a function of the form NeðtÞ
¼ bðKÞNðtÞ (Kim and Stephan 2000; Charlesworth 2012a;
Coop and Ralph 2012; Nicolaisen and Desai 2013; Zeng 2013;
Corbett-Detig et al. 2015; Zeng and Corcoran 2015). Here,
N(t) is the population size at time t in the absence of selection
at linked sites. K represents parameters of the model under
consideration and typically includes the strength of selection,
the rate at which selected variants arise, and the recombina-
tion rate. The function bðKÞ has relatively weak dependence
on the population size. For instance, under background se-
lection, bðKÞ is approximately independent of the popula-
tion size and is a function of the deleterious mutation rate,
the distribution of fitness effects of new deleterious variants,
and the recombination rate (Charlesworth 2012a; Nicolaisen
and Desai 2013; Zeng 2013; Zeng and Corcoran 2015).
Although modeling the effects of selection at linked sites as
a reduction in local Ne is known to be an oversimplification,
this approach has been employed by several widely used in-
ferencemethods (Beaumont 1999; Storz and Beaumont 2002;
Hey and Nielsen 2004; Sousa et al. 2013) and should represent
a step toward solving the problems caused by ignoring selec-
tion at linked sites (Ewing and Jensen 2016; Schrider et al.
2016).

Dealing with Polarization Errors
So far we have assumed that the uSFS is known. In reality,
obtaining the uSFS requires the inference of the ancestral
state at polymorphic sites, which can be error-prone (e.g.,
when sequence divergence to outgroup species is high). It is
also known that polarization errors can bias inferences based
on the uSFS (Hernandez et al. 2007; Barton and Zeng 2018;
Keightley and Jackson 2018).We provide two solutions to this
problem. The first is to use the folded SFS (fSFS). Let Dk;i be
the observed number of segregating sites at which the less
frequent allele (minor allele) is represented i times
(1 � i � bn=2c, where bxc is the largest integer that is
not greater than x). The fSFS for locus k is Dk ¼
(Dk;1; Dk;2,. . ., Dk;bn=2c), and the overall polymorphism data
are D ¼ (D1; D2,. . ., DK). As in the unfolded case, the like-
lihood of the data can be calculated using the Poisson ran-
dom field model (see Materials and Methods).

An alternative approach is to explicitly consider polari-
zation error in the model (Williamson et al. 2005; Gl�emin
et al. 2015; Barton and Zeng 2018). When the ancestral state
of a segregating site of derived allele frequency i is misin-
ferred, it will be incorrectly assigned as a segregating site of
derived allele frequency n – i (0 < i < n). Let �k be the
probability that the ancestral state of a polymorphic site at
locus k is misinferred. After polarization, the expected
number of segregating sites of derived allele frequency i is

Inferring Demography, Ne, and Mutation Rate . doi:10.1093/molbev/msy212 MBE
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w�
k;i ¼ ð1� �kÞwk;i þ �kwk;n�i; (1)

where wk;i is (true) expected number segregating sites of
derived allele frequency i and is a function of hk, fk, gk, and
s (see eq. 2). As an example, when the above is used with the
general model (no divergence), the free parameters includeH
and �k (1 � k � K), which can be estimated by maximum
likelihood.

Results and Discussion

Properties of the General Model
We evaluated the performance of the general model using X-
autosome comparisons as an example. To this end, we
employed a two-locus setup and treated locus 1 as the X
chromosome (the reference locus) and locus 2 as the auto-
somes. We generated data from two different models, re-
ferred to as Model 1 and Model 2 (table 1). First, let us
consider Model 1. It includes several factors that are known
to be important for human evolution: changes in the X-
autosome ratio of Ne, recent population expansion, and dif-
ference in themutation rate between the X chromosome and
autosomes. Here, the simulations were carried out using a
demographic model with H¼ 2 epochs. The Ne for the X
chromosome and the autosomes in epoch 2 (i.e., the most
distant epoch) are denoted by NX and NA, respectively. Let r2
¼ NX=NA be the X-autosome ratio of Ne in epoch 2. At time
s1 before the present, measured in units of 2NX generations,
the population sizes of the X chromosome and the auto-
somes changed instantly to gX;1NX and gA;1NA, respectively
(see supplementary fig. S1, SupplementaryMaterial online, for
a graphical representation). As a result, the X-autosome ratio
of Ne in epoch 1 (i.e., the current epoch) is given by
r1 ¼ gX;1r2=gA;1. We assumed that r1 ¼ 0:65 and
r2 ¼ 3=4, close to the values reported by Keinan et al.
(2009). The shift in the X-autosome ratio of Ne is accompa-
nied by population expansion characterized by s1 ¼ 0:1 and
gX;1 ¼ 10. Let uX and uA be the mutation rate per site per
generation on the X chromosome and the autosomes, respec-
tively. The corresponding scaledmutation rates are defined as
hX ¼ 4NXuX and hA ¼ 4NXuA (recall that scaled parameters
are defined with respect to the reference locus). We used hX
¼ 5:25� 10�4 and hA ¼ 7:5� 10�4. These values give an
average autosomal diversity level of 0.001 per site and also
reflect the fact that the X chromosome probably have a 30%
lower mutation rate than the autosomes (Hodgkinson and
Eyre-Walker 2011).

Model 2 is similar to Model 1, except for the following:
1) r1 ¼ 0:9 and r2 ¼ 3=4; 2) the shift in the X-autosome ratio
ofNe coincides with a population size reduction characterized
by s1 ¼ 0:05 and gX;1 ¼ 0:2.We usedModel 2 to assess how
the general model fared when the X-autosome ratio of Ne

increased whereas the population size reduced.
We were able to accurately recover all parameters by an-

alyzing only polymorphism data (table 1). Parameter estima-
tion is more difficult under Model 2, as indicated by the
higher standard deviation values. This is expected because
the population size contraction means that samples gener-
ated under Model 2 contain fewer polymorphic sites (see
table 1 legend).

Likelihood ratio tests can be readily constructed to ask
specific questions of interest. Here, we focus on the following:
Test 1—is the mutation rate different between the X chro-
mosome and the autosomes (a model with hX ¼ hA vs. the
full model; degree of freedom [df] ¼ 1)? Test 2—is there
evidence for the X-autosome ratio of Ne being significantly
different from 0.75 (a model with r1 ¼ r2 ¼ 3=4 vs. the full
model; df ¼ 2)? Test 3—has the X-autosome ratio of Ne

changed between epochs (a model with r1 ¼ r2 vs. the full
model; df ¼ 1)? These tests were applied to the simulated
data used in table 1, and the results are shown in table 2. Test
1 is less powerful underModel 2 than underModel 1, which is
an expected consequence of a drop in the number of poly-
morphic sites. In contrast, Test 2 has higher power under
Model 2 than under Model 1, and the power of Test 3 is
comparable between themodels. These observations indicate
that the number of polymorphic sites is not the only factor
that affects statistical power.

Overall, the simulations suggest that polymorphism data
can be used to obtain information about X-autosome differ-
ences in Ne and/or u. The power of these analyses depends in
a complex way on both the sample size and the demographic
history. It should also be pointed out that the divergence-
based version of the general model is not suitable for

Table 1. Mean (standard deviation; SD) of the MLEs for the Parameters of Two Different Two-Locus Models.

hX hA r1 r2 gX;1 s1

Model 1 (true) 5:25310�4 7:5310�4 0.65 0.75 10 0.1

Mean (SD) 5:259310�4 (5:8310�6) 7:53310�4 (2:6310�5) 0.653 (0.05) 0.752 (0.03) 10.0 (0.3) 0.10 (0.003)

Model 2 (true) 5:25310�4 7:5310�4 0.9 0.75 0.2 0.05

Mean (SD) 5:261310�4 (1:0310�5) 7:41310�4 (1:0310�4) 0.89 (0.08) 0.742 (0.10) 0.20 (0.01) 0.051 (0.005)

NOTE.—Definition of the symbols can be found in supplementary table S1, Supplementary Material online. The population size increases inModel 1, but reduces inModel 2. In

bothmodels, the X-autosome ratio ofNe are different before and after the population size change (asmeasured by r1 and r2). The results are based on 100 simulation replicates.

The sample size is 100. Both loci contain 5-Mb sites. Themean number of X-linked and autosomal polymorphic sites are 23,187 and 40,734 underModel 1, and 8,040 and 15,296

under Model 2.

Table 2. Power (%) of the Three Likelihood Ratio Tests.

Model Test 1 Test 2 Test 3

Model 1 100 84 83

Model 2 67 98 78

NOTE.—Model 1 and Model 2 are the same as those used in table 1; so are the

number of replicates, sample size, and locus length. Each sample was analyzed using

the likelihood ratio tests described in the main text. The values above are the

frequency at which the null model is rejected at a 5% significance level.
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4

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/m

o
lb

e
v
/m

s
y
2
1
2
/5

1
8
2
5
0
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 0

1
 F

e
b
ru

a
ry

 2
0
1
9

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data


analyzing data sets containing only two loci. This is because
the data contain very little information about the parameters
c and t. In fact, simulations suggest that, when this is the case,
including divergence data can lead to biases in parameter
estimation (supplementary table S2, Supplementary
Material online).

Properties of the Simplified Model
This model is suitable for analyzing data collected from mul-
tiple autosomal or sex-linked loci. We will start by analyzing
data sets consisting of a small number of loci, in order to
demonstrate several important properties of the model. We
will then consider data sets with many loci, which represents
a much more challenging problem.

Data Sets with a Small Number of Loci
We analyzed 100 simulated data sets. Each data set contains
the uSFS from 20 loci, and the sample size is 100. All loci are
5 kb long. The scaled parameters are defined with respect to
N1, the Ne at locus 1 in the most distant epoch (i.e., locus 1 is
the reference locus). The scaled mutation rate hk
(1 � k � 20) vary linearly across loci, with h1=h20 ¼ 5
(blue line in fig. 1A). The fk (1 � k � 20) also vary linearly
with f20=f1 ¼ 5 (blue line in fig. 1B). The demographic model
has H¼ 2 epochs. At time s1 ¼ 0:5 before the present, the
population size increased 10-fold (i.e., g1 ¼ 10). To model
divergence, we assumed that the population of the ancestral
species was larger with c¼ 2. The scaled divergence time is
t¼ 8. With these parameter values, the expected divergence
level at locus 1 is 0.1 per site.

The simulated data were first analyzed by combining the
uSFS from the 20 loci into a single uSFS (i.e., disregarding
variation in Ne and u). Estimates of g1 and s1 were obtained
by fitting the combined data to a demographic model with a
one-step change in population size. The mean and the inter-
val between the 2.5 and 97.5 percentiles are 9.20 and [8.62,
9.63] for g1, and 0.58 and [0.54, 0.61] for s1. Both estimates are
biased, and neither of the intervals overlaps the true value.
Thus, ignoring heterogeneity in Ne and u can lead to high
statistical support for biased estimates.

The simulated data were then analyzed by the simplified
model, both with and without using the divergence data.
From table 3, we can see that themodel can provide unbiased
estimates for both g1 and s1, regardless of whether divergence
data were used. The standard deviation (SD) values in table 3
suggest that estimates of s1 are somewhat less variable with
divergence data. The model is also able to provide accurate
estimates of c and t, in contrast to the two-locus case (sup-
plementary table S2, Supplementary Material online).

Regarding hk and fk, the estimates are also unbiased (fig. 1).
The addition of divergence data appears to slightly lower the
variance of the estimates. In figure 1B, we can see that the
variance of the fk estimates tends to be larger for loci with a
higher index, whereas the variance of the estimates of the
composite parameter hkfk is more uniform across loci
(fig. 1C). To see why, we first note that hkfk is the total scaled
mutation rate at locus k in the most distant epoch (i.e., scaled
by the Ne at locus k instead of the Ne at the reference locus).

The information the model uses to separate hk and fk comes
in part from the distortion of the local genealogy caused by
the recent expansion. For locus k, the rate of coalescence (in
units of 2N1 generations) between the present and the time
of expansion is 1=ðfkg1Þ. Thus, coalescence occurs at a slower
rate at loci with a larger localNe (i.e., a higher true value of fk in
fig. 1B). In the most extreme scenario when fk is so large that
1=ðfkg1Þ approaches zero, the local genealogy will be

FIG. 1. MLEs obtained by fitting the simplified model to simulated

data from 20 loci. Each locus is 5 kb long. The solid blue line in each

plot shows the true parameter values across loci. The population size

expanded recently with parameters g1 ¼ 10 and s1 ¼ 0:5. The results
are based on 100 replicates. The sample size is 100.

Table 3. Parameter Estimates Obtained by Applying the Simplified
Model to Simulated Data Sets Containing Either 20 or 500 Loci.

Data Mean (SD)

g1 s1 c t

True (20 loci) 10 0.5 2 8

With div 10.1 (0.26) 0.51 (0.06) 2.0 (0.2) 8.1 (0.9)

No div 10.1 (0.26) 0.51 (0.08) — —

True (500 loci) 10 0.5 2 6

With div 10.0 (0.04) 0.50 (0.04) 2.0 (0.04) 6.0 (0.5)

No div 10.0 (0.04) 0.50 (0.05) — —

NOTE.—The cases with 20 loci are the same as those presented in figure 1. The locus

length is 5 kb, and the results are based on 100 replicates and a sample size of 100.

For the cases with 500 loci, hk and fk were sampled from the gamma distributions

described in themain text. The locus length is 10 kb, and the results are based on 50

replicates and a sample size of 50. The demographic model is the same in all cases,

and is characterized by g1 and s1 .

Inferring Demography, Ne, and Mutation Rate . doi:10.1093/molbev/msy212 MBE

5

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/m

o
lb

e
v
/m

s
y
2
1
2
/5

1
8
2
5
0
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 0

1
 F

e
b
ru

a
ry

 2
0
1
9

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy212#supplementary-data


indistinguishable from that expected under the equilibrium
model. In this case, the likelihood surface will contain a ridge
on which both hk and fk vary with the product hkfk held
constant, making it impossible to separate hk and fk. As fk is
large when k is large (fig. 1B), the increase in variance reflects
the increase in difficulty in separating hk and fk. This suggests
that the ability to estimate hk and fk separately at locus k
depends on both the demographic history and properties
specific to the locus itself.

Finally, we repeated the above analyses, but used locus 20
as the reference locus instead. This has little effect on the
results. For instance, the mean (SD) of the MLEs of g1 is
10.1 (0.29) without divergence data, and 10.1 (0.29) with di-
vergence data (cf. table 3). As in figure 1, estimates of fk are
more variable for loci with a higher local Ne (supplementary
fig. S2, Supplementary Material online). Thus, the choice of
reference locus may be relatively unimportant.

Data Sets with a Large Number of Loci
We analyzed 50 simulated data sets. Each data set contains
uSFS from 500 loci, and the sample size is 50. The loci are
10 kb in length. As above, the scaled parameters are defined
with respect to N1, the Ne at locus 1 in the most distant
epoch. In each replicate, we sampled hk from a gamma dis-
tributionwith shape ah ¼ 3 and scale bh ¼ 0:005, and fk from
a gamma distribution with shape af ¼ 5 and scale bf ¼ 0:2.
For divergence, we used c¼ 2 and t¼ 6 in all replicates. The
average diversity and divergence levels under these parame-
ters are 1.5% and 12%, respectively, which are close to those
observed at putatively neutral sites in short introns on the
autosomes of D. melanogaster (using D. simulans as an out-
group; Jackson et al. 2015). The demographic model is the
same as that used in figure 1. The use of the gamma distri-
bution was inspired by a previous study (Gossmann et al.
2011), but the values of the shape and scale parameters are
somewhat arbitrary. Our treatment also does not consider
distortions in the shape of the SFS caused by selection at
linked sites. These simplificationsweremade on consideration
of the complexity of the inference problem, so that we could
assess the model’s performance in a relatively simple setting.

The data shown in table 3 suggest that g1, s1, c, and t can all
be estimated accurately. As a different set of hk and fk were
sampled from the gamma distributions in each replicate, we
assessed the accuracy of the model by calculating the slope
and intercept of the linear regression of the MLEs of hk and fk
over their true values. For hk, themean (SD) for the slopes and
intercepts are 1.00 (0.09) and 6:6� 10�5 (5:0� 10�5) with
divergence data, and 0.99 (0.10) and 1:7� 10�4 (8:7� 10�5)
without divergence data. For fk, these are 0.95 (0.08) and 0.05
(0.01) with divergence data, and 0.93 (0.10) and 0.07 (0.01)
without divergence data. Thus, as above, the inclusion of
divergence data seems to increase accuracy and lower vari-
ance. Compared with fk, the regression lines for hk have slopes
closer to 1 and intercepts closer to 0, suggesting that hk tends
to be more accurately estimated using this method.

As discussed in the previous section, when the data do not
contain enough information, hk and fk tend to form a ridge in
the likelihood surface. This can create an artificial negative

correlation between these two parameters, which may be
problematic if the MLEs of hk and fk are to be used for
detecting association with other genomic variables (e.g., GC
content, recombination rate). As the true values of hk and fk
were sampled from two independent probability distribu-
tions in the simulations, their MLEs should be uncorrelated.
However, when making inferences on polymorphism data
alone, the MLEs of hk and fk are significantly negatively cor-
related in 16% of the simulation replicates (based on Kendall’s
s and a significance level of 5%). In contrast, for estimates
based on both polymorphism and divergence, only 2% of the
replicates show a significant negative correlation, suggesting
that the addition of divergence data has increased the mod-
el’s ability to separate variation in Ne from that in u. It should
be pointed out that this requires the divergence level to be
sufficiently large. For instance, if we keep all parameters the
same as above, but reduce t, the scaled divergence time, such
that the expected divergence level drops from 12% to 6%, the
MLEs of hk and fk are significantly correlated in 8% of the
replicates. In practice, the “required” level of divergence is a
function of the demographic history of the ingroup species,
lengths of the loci, and the number of alleles in the sample.

Implications of the Results Based on the Simplified
Model
The results presented above suggest that disregarding vari-
ability in Ne and u can lead to biased demographic inferences.
The new methods can solve this problem and help to quan-
tify this heterogeneity across loci. It is, however, important to
note that the ability to separate hk and fk depends on several
factors—the demographic history, the local effective popula-
tion size, and the sample size (in terms of both the number of
alleles and locus lengths). When there is insufficient informa-
tion, the ridge along hkfk tends to create a negative correla-
tion between the MLEs of hk and fk. There is some evidence
that the inclusion of divergence data can help to counter this
tendency, and (moderately) lower variance in parameter es-
timation (fig. 1 and table 3). It should, however, be noted that
we have used a highly simplifying model of divergence. It is of
interest to incorporate complications such as nonequilibrium
substitution patterns in the future by using, for instance, the
framework of Matsumoto et al. (2015).

The above discussion is relevant to other methods that
allowNe and u to vary across loci, especially when considering
that these methods do not use divergence data to help the
inference (Beaumont 1999; Storz and Beaumont 2002; Hey
and Nielsen 2004; Sousa et al. 2013). Thus, the simulations
highlight a major challenge in population genetic data anal-
ysis—although many important questions in evolution can
be studied by detecting differences in Ne and u, the fact that
diversity patterns are determined by the composite parame-
ter Neu means that separating these two parameters is
inher�ently difficult. The same applies to the analysis of
data collected from subdivided populations. Here the com-
posite parameter Nem, where m is the migration rate, is in-
versely correlated to the level of differentiation between
populations. As a result, distinguishing between the following
two causes of locally elevated levels of differentiationmay not
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be straightforward (Cruickshank andHahn 2014): 1) Loci have
smaller m due to their involvement in selection against gene
flow (Wolf and Ellegren 2017) and 2) loci have reduced Ne,
but not m, as a result of background selection (Zeng and
Corcoran 2015). Therefore, how to further increase the sta-
tistical power and robustness of the methods cited above
warrants further investigation.

Application to the D. simulans Data
X-autosome Comparisons Based on the General Model

Our data set contains 21 alleles collected from the putative
ancestral range in Madagascar (Jackson et al. 2017; see table 1
therein for values of summary statistics such as the nucleotide
diversity [p] and Tajima’s D). To avoid complication caused
by selection on synonymous codon usage, we considered
sequence variability on putatively neutrally evolving sites in
short introns (i.e., positions 8–30 bp of introns <66 bp; see
also Parsch et al. 2010).

Comparing the X chromosome and the autosomes (A),
the diversity ratio is pX=pA ¼ 0:0195=0:0311 ¼ 0:63. This is
lower than the “null” value of 0.75 expected when there is a
1:1 sex ratio and no difference in reproduction success be-
tween sexes (Charlesworth 2009). However, the population is
not at equilibrium, as suggested by the negative Tajima’s D
value of �1.46 on the X chromosome and �1.19 on the
autosomes. It is known that changes in population size can
perturb pX=pA away from 0.75 (Pool and Nielsen 2007). Thus,
the observed pX=pA ratio can potentially be explained by a
combination of the following factors: 1) recent demography;
2) difference in Ne between X and A as a result of an unequal
sex ratio, difference in the mode of inheritance, and/or vari-
ation in reproductive success between sexes; and 3) difference
in the mutation rate between X and A.

To determine which of the three factors may have had an
effect on pX=pA, we fitted the generalmodel to the uSFS, with
the ancestral state at polymorphic sites inferred using D.
melanogaster as an outgroup and maximum parsimony. A
model with H¼ 2 epochs fits the data well, except for the
uptick toward the high-frequency end of the uSFS (table 4
and supplementary fig. S3, Supplementary Material online).
Increasing the number of epochs to H¼ 3 does not signifi-
cantly improve the fit, suggesting that the uptick is most
probably a result of polarization error (supplementary fig.
S3, Supplementary Material online). As the sample size is
relatively small, using the fSFS is likely to lead to a significant
loss of power. Thus, we adopted the alternative approach and
introduced two new parameters, �X and �A, for modeling
polarization errors in the X-linked and autosomal data set,
respectively. This model explains the observed uSFS signifi-
cantly better than the no-error model (supplementary fig. S4,
Supplementary Material online). This is further confirmed by
the fact that the 95% CIs for the two polarization error
parameters have lower bounds>0 (table 4). Adding another
epoch to the model does not significantly increase the good-
ness of fit (Pb ¼ 0:51, where the subscript b signifies that the
P-value was obtained by bootstrapping). Thus, we refer to the
model withH¼ 2 and polarization error as the best-fit model,
and use it in the subsequent analyses.

The MLEs of the parameters in the best-fit model are
presented in table 4. Consistent with the negative Tajima’s
D values, gX;1 is significantly >1, providing support for a re-
cent population expansion (Pb < 0:01). The X chromosome
mutates at a lower rate than the autosomes, and the MLE of
hX=hA is 0.59 (95% CI ¼ [0.49, 0.68]), which is significantly
smaller than 1 (Pb < 0:01). The MLE of r1, the X-autosome
ratio ofNe in the current epoch (i.e., epoch 1), is 1.91, and that
of r2, theNe ratio in epoch 2 (i.e., before the expansion), is 1.03.
Bootstrapping suggests that both r1 and r2 are significantly
higher than 0.75 (Pb < 0:01), and that the Ne ratio is prob-
ably different between the two epochs (Pb < 0:01). Thus, all
the three factors listed above may have affected the observed
pX=pA.

Implications of the Results Obtained from the

D. simulans Data

The fact that the MLE of the X-autosome mutation rate ratio
is 0.59 is interesting and lends support to the existence of
male-driven evolution in Drosophila (Bachtrog 2008).
However, our estimate is significantly smaller than the X-au-
tosome divergence rate ratio of 0.91 estimated on the same
set of short introns by Charlesworth et al. (2018). The reason
for this difference is unclear. It is possible that the mutation
rate has evolved. The fact that substitution patterns are sig-
nificantly different between the D. simulans and D. mela-
nogaster lineages is potentially consistent with this,
although other explanations have been put forward
(Jackson et al. 2017). Alternatively, the difference may be
caused by the fact that the general model does not consider
the potential existence of a GC-favoring force acting on short
introns, possibly due to GC-biased gene conversion (Jackson
et al. 2017). However, the MLE of the X-autosome mutation
rate ratio is still 0.59 when applying themodel to variants that
are unaffected by GC-biased gene conversion (i.e., a reduced
data set containing polymorphic sites between A and T, and
those between G and C). Thus, what causes the difference
requires further investigation. Nonetheless, both our analysis
and the analysis of Charlesworth et al. (2018) suggest that the
X chromosome has a lower mutation rate than the auto-
somes, which may have direct bearing on the study of the
faster-X hypothesis in Drosophila (Charlesworth et al. 2018).

The MLE of r2 (the long-term X-autosome ratio of Ne be-
fore the expansion) is 1.03. It is close to the upper limit of 9/8,
expectedwhen there is an extremely female-biased sex ratio or
substantially higher variance in reproductive success in males
(Charlesworth 2009; Webster and Wilson Sayres 2016). The
proximity to the upper limit could be a result of statistical
noise, as suggested by the wide 95% confidence interval (ta-
ble 4). Nevertheless, the fact that r2 is significantly higher than
0.75 lends support to the possibility of a female-biased sex
ratio or high variance in male reproductive success. Further
studies should investigate whether r2 may have also been
influenced by other factors such as mate pairing practices,
selection at linked sites, and sex-biased demographic changes
(Charlesworth 2001, 2012b; Keinan et al. 2009; Evans and
Charlesworth 2013; Webster and Wilson Sayres 2016).

Inferring Demography, Ne, and Mutation Rate . doi:10.1093/molbev/msy212 MBE
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The MLE of r1 (the X-autosome ratio of Ne in the most
recent epoch) is 1.91, significantly higher than the upper limit
of 9/8 (Charlesworth 2009; Webster and Wilson Sayres 2016).
However, the simulation results presented in supplementary
table S3, Supplementary Material online, suggest that the es-
timation of r1 may be liable to upward biases when there are
very recent events that are difficult for a sample of 21 alleles to
detect. The main reason is that the smaller number of poly-
morphic sites in the X-linked data set (due to its lower
mutation rate and shorter length) restricts its ability to detect
recent events. Thus, further research using a much larger
sample is needed to rule out methodological artifacts as
the reason for the high estimate of r1. Fortunately, this
potential power issue does not affect the estimation of the
hX=hA ratio and r2. Thus, the conclusions of a lower mutation
rate on the X chromosome and a potentially female-biased
sex ratio should be robust.

Conclusion

In this study, we show that it is possible to use polymorphism
data to jointly infer past changes in population size and var-
iation in Ne and u, provided that the population is not at
equilibrium. These methods are capable of handling a large
number of loci and many alleles (thousands). Including diver-
gence data can increase the statistical power in some cases.
However, because the mutation pattern itself may evolve
(Smith et al. 2018), care should be exercised when choosing
the outgroup. We have assumed that the population size
changes in a stepwise manner, but this assumption can be
readily relaxed (Polanski and Kimmel 2003; Bhaskar et al.
2015; Gao and Keinan 2016). It is important to note that
Ne and u are confounded (similarly, Ne and m, the migration
rate, are confounded; Sousa et al. 2013). This makes separat-
ing these parameters inherently difficult. This difficulty can in
part be dealt with by increasing the sample size (both the
locus length and the number of alleles), which has become
feasible, thanks to advances in sequencing technologies. Our
analyses have shown that themodeling framework developed
herein provides an effective way of analyzing the data and can
be used to study a variety of questions in different organisms.

Materials and Methods

Further Details of the Models
Assuming neutrality and an infinite-sites model of mutation,
the expected number of segregating sites of derived allele

frequency i in a sample of n alleles taken from locus k is
given by

wk;i ¼ wk;iðhk; f k; gk; sÞ ¼ mkhk/k;iðf k; gk; sÞ; (2)

where 1 � i < n,mk is the length (in basepairs) of locus k,
2/k;i is the expected total length of branches in the coales-
cent genealogy that have i descendants in the sample
(Wakeley 2009, Section 4.1.3). Marth et al. (2004) derived
an explicit expression of /k;i, which we have rearranged in
the following form:

/k;i ¼ /k;iðf k; gk; sÞ ¼ f k
gk;1

i
þ Ak;iðf k; gk; sÞ�;

h

(3)

where

Ak;iðfk; gk; sÞ (4)

¼
X

H�1

h¼1

ðgk;hþ1 � gk;hÞ
X

n

j¼2

e
�ð j

2
Þ
P

h

l¼1

sl
fkgk;l

BiðjÞ;

BiðjÞ ¼
1

i

n� 1

i

 !�1
X

j

b¼2

n� b

i� 1

 !

Cðb; jÞ; (5)

Cðb; jÞ ¼
Y

l:l6¼j;b� l� n

lðl� 1Þ

lðl� 1Þ � jðj� 1Þ
; (6)

and gk;H ¼ 1.
We use the Poisson random field model, which

assumes that the sites are unlinked, to calculate the
(composite) likelihood of the uSFS (Sawyer and Hartl
1992; Bustamante et al. 2001). Specifically, the probabil-
ity that we observe dk;i segregating sites of derived allele
frequency i at locus k is given by e�wk;iðwk;iÞ

dk;i=ðdk;i!Þ. The
log likelihood of the data is

LðHjdÞ ¼ ln½
Y

K

k¼1

Y

n�1

i¼1

e�wk;i
ðwk;iÞ

dk;i

dk;i!
�

¼
X

K

k¼1

X

n�1

i¼1

½�wk;i þ dk;ilnwk;i� þ C; (7)

where C is a constant that depends only on the data, and is
therefore omitted from the calculation.

Table 4. Parameter Estimates Obtained by Fitting Two Models to the uSFS from Drosophila simulans.

Model MLE and 95% CI of Parameters

H5 2 hX hA r1 r2 gX;1 s1

No pol err 0.015 0.024 1.99 1.00 11.88 0.40

[0.013, 0.016] [0.019, 0.028] [1.26, 2.80] [0.78, 1.18] [9.35, 14.93] [0.33, 0.49]

H5 2 hX hA r1 r2 gX;1 s1 eX eA

With pol err 0.011 0.019 1.91 1.03 12.60 0.67 0.06 0.05

[0.010, 0.013] [0.014, 0.025] [1.24, 2.63] [0.77, 1.33] [9.99, 15.43] [0.51, 0.86] [0.05, 0.07] [0.05, 0.06]

NOTE.—Both models have H¼ 2 epochs. The second model contains two extra parameters, eX and eA, for modeling polarization errors in the X-linked and autosomal data set,

respectively. The 95% CIs were obtained by analyzing 100 bootstrap samples. The bootstrap samples were generated by sampling the short introns with replacement, while

keeping the numbers of X-linked and autosomal introns the same as in the real data set.
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An alternative way of calculating the likelihood of the uSFS
is to condition on the segregating sites (Williamson et al.
2005). To this end, we note that the probability that a par-
ticular SNP is of derived allele frequency i is given by

fk;i ¼ wk;i=wk ¼ /k;i=/k, where wk ¼
Pn�1

j¼1 wk;j and

/k ¼
Pn�1

j¼1 /k;j. Importantly, fk;i is independent of the mu-

tation rate. Therefore, assuming that the sites are unlinked,
the log likelihood is

LðH�jdÞ¼ ln
Y

K

k¼1

Y

n�1

i¼1

ðfk;iÞ
dk;i

" #

¼
X

K

k¼1

X

n�1

i¼1

dk;i ln/k;i � ln/k

� �

;

(8)

where H
� represents all the parameters in H less hk

(1 � k � K). This equation is equivalent to the profile like-
lihood function described by Bhaskar et al. (2015) and is
computationally more efficient than equation (7) by reducing
the dimensionality of the problem. Once MLEs of fk, gk, and s
have been found, we can use them to calculate /k and esti-
mate hk as Sk=ðmk/kÞ, where Sk ¼

Pn�1
i¼1 dk;i is the total

number of segregating sites from locus k (Bustamante et al.
2001; Bhaskar et al. 2015).

To include divergence data, we assume that the number of
substitutions follows a Poisson distributionwithmean kk. The
augmented version of equation (7) can be written as

LðH; c; tjd; XÞ ¼
X

K

k¼1

½�kk þ xklnkk

þ
X

n�1

i¼1

ð�wk;i þ dk;ilnwk;iÞ�;

(9)

where constants dependent on the data are omitted, and X

¼ (x1, x2,. . ., xK) are the observed number of substitutions. It
should be noted that the information about c and t comes
from the variation in divergence level between loci. Thus,
although the composite parameter cfk þ t should be esti-
mated accurately, the model may have difficulty teasing c
and t apart when there is only a small number of loci and/
or when cfk � t (for 1 � k � K).

To calculate likelihood of the fSFS, we define
Wk;i ¼ wk;i þ dði < n� iÞwk;n�i, where dðyÞ ¼ 1 if the
condition y is true and 0 otherwise. Likelihood functions
corresponding to equations (7–9) can be obtained by chang-
ing the upper limit of the second summation from n� 1 to
bn=2c and replacing dk;i by Dk;i, and wk;i by Wk;i.

Finally, to explicitly consider polarization errors, we intro-
duce parameters �k into the model (1 � k � K). The like-
lihood functions are analogous to equations (7–9), but with
w�
k;i (see eq. 1) in place of wk;i. Note that the uSFS must be

used in this case, as the fSFS contains no information about
polarization error rates.

Computational Details
Calculation of wk;i (see eq. 2) is complicated by the presence
of the alternating terms C(b, j) (see eq. 6), which can result in
catastrophic cancellation during standard double-precision
floating-point computations. Marth et al. (2004) dealt with

this problem by using numerical libraries that performed ar-
bitrary precision arithmetic. However, these libraries tend to
be slow, especially when the sample size is large. For instance,
a sample of 1,000 requires a numerical precision of �500
decimal places, which is orders of magnitude slower than
the standard double-precision arithmetic (16-digit precision).
Here, we observe that, in our new representation of the result
of Marth et al. (2004) (see eq. 3–6), BiðjÞ ¼

1
jðj�1ÞW

n
i;j, where

Wn
i;j is given by equation (10) in Polanski and Kimmel (2003).

Thus, we can obtain Wn
i;j (and then BiðjÞ) using the

recursion equations derived by Polanski and Kimmel (2003,
see eqs. 13–15 therein). These equations can be evaluated
using the standard double-precision arithmetic and are
known to be numerically stable and very fast.

Due to the introduction of locus-specific parameters, eval-
uating the likelihood function requires the calculation of K
locus-specific expected SFSs. As the order in which the
expected SFSs are obtained is unimportant, the computation
can be sped up by distributing the work across multiple CPU
cores. This is achieved here via OpenMP (http://www.
openmp.org/).

Analysis of the Simulated Data
We performed parameter estimation using our program,
varne, on random samples simulated using Mathematica
(http://www.wolfram.com/). The computations in
Mathematica were carried out using a very high precision
level with 315 digits. Because the generation of simulated
data was separate from the numerical routines we used in
varne, this setup can verify the numerical robustness of varne.
Unless stated otherwise, 100 data sets were generated for
each parameter combination and only uSFSs were used.

To obtainMLEs of the parameters, we used gradient-based
optimization algorithms implemented in the NLopt library
(http://ab-initio.mit.edu/nlopt). Partial derivatives were
obtained by analytically differentiating equation (2) with re-
spect to the parameters of the model. This is numerically
much more stable than the finite difference method.
Wherever possible, the profile likelihood (eq. 8) was used in
favor of its higher computational efficiency. To ensure that
the global maximum was found, the optimization algorithm
was runmultiple times, each starting from a randomly chosen
point in the parameter space. The most complex case has
H¼ 2 epochs and contains both polymorphism and diver-
gence data from 500 loci. The corresponding model has 1,003
parameters. The optimization algorithms seem to cope well
with the high dimensionality of the problem—the MLE was
typically found by running the algorithm for <50 times.

Analysis of the D. simulans Data
We downloaded raw read data in fastq format for 21 isofe-
male lines ofD. simulans collected fromMadagascar from the
European Nucleotide Archive (study accession numbers:
PRJEB7673; PRJNA215932). These samples were previously
described by Jackson et al. (2017). We mapped the reads to
version 2.02 of the D. simulans genome (FlyBase release
2017_04) using BWA MEM (Li 2013), then sorted, merged
andmarked duplicates on the resulting BAM files using Picard
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Tools version 2.8.3 (https://broadinstitute.github.io/picard/).
We called variants separately for each individual line using
the HaplotypeCaller tool from GATK version 3.7 (McKenna
et al. 2010), with the options –emitRefConfidence,
BP_RESOLUTION and –max-alternate-alleles 2, then made
per-chromosome VCF files for the whole population using
the GATK v3.7 tools combineGVCFs and genotypeGVCFs.
The sequencing depth per sample ranged from 54� to
100�. All the scripts necessary for downloading the fastq files
and calling variants are available at https://github.com/benja-
mincjackson/dsim_variant_pipeline_ref_v2.02.git.

Multispecies alignment was performed between the refer-
ence genomes of D. simulans (v2.02), D. melanogaster (v5.57),
and D. yakuba (v1.3) using the same MULTI-Z pipeline as
described by Barton and Zeng (2018). We used the informa-
tion in the header lines of the FlyBase fasta file of introns for
version 2.02 of the D. simulans reference (available from ftp://
ftp.flybase.net/genomes/Drosophila_simulans/dsim_r2.02_FB2017_
04/fasta/dsim-all-intron-r2.02.fasta.gz) to extract coordinates of the
8–30 bp region of introns that were�65bp in length, after check-
ing that this region did not overlap with an exon, an intron of
length more than 65bp, or the non-8–30 bp portion of an intron
of length�65bp, using information from the gff format annota-
tion of the D. simulans genome v2.02 (available from ftp://ftp.
flybase.net/genomes/Drosophila_simulans/dsim_r2.02_FB2017_04/
gff/dsim-all-r2.02.gff.gz).

Using these coordinates we made fasta files containing
sequences from the 21 D. simulans lines as well as from the
D. melanogaster and D. yakuba reference sequences, keeping
only sites that met the following criteria: no more than two
alleles in the polymorphism data set; phred-scaled quality
score (QUAL) > 30; no missing data in any of the polymor-
phism or outgroup samples; not soft-masked as being repet-
itive in the multiple alignment step; no overlap with indels in
the variant callset. For positions that still contained residual
heterozygosity after the inbreeding process we chose one
allele with probability proportional to the read depth for
each allele at that site, following Jackson et al. (2017).

We extracted all autosomal (excluding the fourth chromo-
some) and X-linked polymorphic sites. To unfold the SFS, we
used the D. melanogaster reference genome as an outgroup
and the maximum parsimony principle. When analyzing
these data using the general model, we did not require that
the X-autosome ratio ofNe varied between 9/16 and 9/8, with
the lower bound corresponding to the case where there is
only one breeding female (or much higher variance in repro-
ductive success in females than males), and the upper bound
corresponding to the case where there is only one breeding
male (or much higher variance in reproductive success in
males than females). This choice is different from some pre-
vious studies (Clemente et al. 2018) and means that our
models do not regard deviation from a 1:1 sex ratio as the
only reason why the X-autosome ratio of Ne departs from the
“null” value of 0.75. For example, it is possible for selection at
linked sites to reduce diversity more substantially on the
autosomes than on the X chromosome (Charlesworth
2012b). If this is combined with a female-biased sex ratio,
the X-autosome ratio of Ne may go above 9/8.

We used bootstrapping to access uncertainties in the pa-
rameter estimation. We assumed that all sites within a short
intron were completely linked, and different short introns
were unlinked. These assumptions should be reasonable be-
cause each short intron region is only 23 bp long, and we
expect linkage disequilibrium to decay very rapidly in D. sim-
ulans (True et al. 1996). The results were obtained by analyz-
ing 100 bootstrap samples. The bootstrap samples were
generated by sampling the short introns with replacement,
while keeping the numbers of X-linked and autosomal introns
the same as in the real data set.

Software Availability
The models presented here have been implemented in a
computer package varne, which can be downloaded from
http://zeng-lab.group.shef.ac.uk/.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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