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Abstract

We discuss some classes of local estimators for regresdien the predictor lies
on thed-dimensional sphere and a binary response. In particutsadapt the theory of
local polynomial regression and local likelihood estiroatio deal with the problem at
hand. We provide asymptotic, properties for some estimators in these classes along
with some simulations and a real-data application.
Keywords: Directional data, Local likelihood, Local polynomials, t&pgical kernels,
Tangent-normal decomposition

MSC:

1. Introduction

Data lying on the unit hypersphere embeddeRind > 2, arise in many scientific
fields. They are typically referred aérectionalor sphericaldata. Classical examples,
whend = 2, are directions of winds and marine currents, and dirastiof flight of
birds from a point of release. Also, locations on the surfaicthe ordinary sphere
(d = 3) are ubiquitous in Earth and planetary sciences. Fieldgeadnt interest for
directional data include genome sequence representgtiomanalysis and clustering,

morphometrics, and computer vision, see, for example, ltasasd Martinez (2007).
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The non-linear nature of the hypersphere sets apart diredtstatistics from stan-
dard methods, which are typically designed lioear data. However, in the last few
decadeslirectional statisticshas greatly evolved, and now directional counterparts of
many classical statistical methods exist. Classical cetmgmsive accounts of direc-
tional statistics are provided by Batschelet (1981), Fishal. (1987), and Mardia and
Jupp (2008), and more recently by Ley and Verdebout (2017820

Kernel-based methods for regression estimation when gporse is a linear vari-
able and the predictor has a directional nature have beemttgcstudied. Indeed,
the absence of boundaryon a spherical domain makes smoothing methods — which
typically suffer from boundary bias — well-suited for argihyg directional data. In
particular, the local polynomial regression for linearm@sse has been studied by Di
Marzio et al. (2009) in the case of circular predictors, apdbMarzio et al. (2014)
in the case of a generdtdimensional spherical predictor, as an intermediate istep
the spherical-spherical regression estimation. Thes ttiic has been also studied by
Garcia-Portugués et al. (2016) in the context of goodoéss tests.

Conversely, the special case of a binary response and didirakcpredictor by
means of nonparametric regression methods seems to belaregkpvhile for a para-
metric approach see Fernandes and Cardoso (2016) anchiedertberein. The binary
regression problem, apart from being of intengst se is also useful for classification
purposes. Nonparametric methods for classification ottoral data, based on kernel
estimation of spherical densities, have been studied by &zh et al. (2018b).

In the Euclidean setting, kernel-based estimators of thariregression with a
linear predictor have been studied by Fan et al. (1995) and SigreorthJones (2004),
who provided asymptotic properties of various versionshef ¢stimators. The dis-
cussed methods essentially rely on local polynomial resijpasand a local likelihood
approach. In this paper we discuss both local polynomiallaaal likelihood tech-

niques to binary regression estimation with directionaldictors. A local-likelihood-



based approach has been also investigated in Di Marzio €@l7) in the different
context of estimation of densities defined on thdimensional torus.

The paper is organized as follows. In Section 2 we recall dofdike polynomial
to approximate functions having the unit hypersphere asdognain. In Section 3 we
discuss the adaptation of the theory of local polynomiatesgion with a directional
predictor to the binary response case, while, in Section gregose the nonparametric
estimation using a locally weighted likelihood objectivenétion. Finally, Section 5

collects some simulation examples and a real-data apiplicat

2. Seriesexpansion for functionson the sphere

LetS9~1 = {xc RY:||x|| = 1} denote the unit hypersphere embeddeRdnd > 2.
Thetangent-normatlecomposition provides a possible parametrization of atpm
59-1, Specifically, for fixedk € 591, according to the tangent-normal decomposition,

any vectom € 591 can be expressed as
u(€,0) =xcog0)+&sin(0),

where0 is the angle between andx, and€ is a unit vector orthogonal ts. Now,

letting g denote the Lebesgue measuré&8fwith

orld+1)/2
=t (%) = gy 7z

and settingly = {& € 59-1: & L x}, for a real-valued functiog defined or54-1, the

integration formula corresponding to the above paramnadicn is

[, owdus 1w = ["si2(0)d0 [ g(u(€,0)du o). W
Js Jo Tx

Moreover, lettingg(x) := g(x/||X||) be the homogeneous extensiongofo RY \



{04}, with 04 being thed-dimensional zero vector, we have that

l
S0uE0) = 7qx),

6=0

where@ g( ) is thedirectional derivativeof order/ of g atx in the direction of€.
CIearIy@ )g( X) = g(x), while, letting Dé(x) be the matrix of the derivatives of total

order/ of gatx, one has
a0 = E'05xE Y,

wherea®’ stands for the Kroneckerian power of ordeof a vectora. Then, for
example, we hav@ g(x) = &'0g(x) and 9( Jgix) = & 04(x)&, with O5(x) and
%(x) respectively being the gradient vector and the Hessianixnatg at x, while
@f)g_(x) = E’Dg(x){ ® &, with a® a being the Kroneckerian product of the vector
by itself.
Now, under suitable continuity assumptions, a Taylor-Bkpansion of a real val-
ued functiong defined or54-1 can be provided. Specifically, by assuming the conti-

nuity of Dé—(x), xe 841 forf e (1,...,p), apth-order series expansion garoundx

yields

a0+ 3 G

"’*Zlg—;f’ﬂém«f@(“f @

The above expansion has been employed for deriving the dstimproperties of ker-
nel estimators for spherical densities by Hall et al. (198%) Klemela (2000), to obtain
a component-wise local approximation of spherical-sgaéregression by Di Marzio
et al. (2014), and to approximate the entries of skew-symmetatrices and define

rotations for spherical regression by Di Marzio et al. (28118



3. Local polynomial binary regression

Let (X,Y) be a5%1 x {0,1}-valued random variable, and sefx) = P(Y = 1 |
X =x). If independent copiegX1,Y1),...,(Xn, Yn) of (X,Y) are observed, by ignor-
ing the binary nature df, a naive nonparametric estimation/’ofx) can be performed
by using the local polynomial estimators with real-valuegponse and spherical pre-
dictor, which have been studied by Di Marzio et al. (2014).

In particular, following this approach, the regressiondiion atX; is approximated
by a suitablepth degree polynomial arounde 591, and a local estimator of () is
defined as the solution (for the zero order coefficient) oftir@mization of a weighted
L, distance between thés and the approximating polynomial. Different valuegof
give different estimators. Formally, by using expansiop épth degree local poly-
nomial estimator ofA atx e 891, say;\ (x; p), can be defined as the solution {8y

of
n

2
argmin Zl{Y' - Bo—il%iszﬁeff““)} Kk (XXi), €)
where@ is the angle betweeX; andx, and the weighKy is aspherical kernel A
spherical kernel can be essentially defined as a unimodaitgieravingS?-1 as its
support, with rotational symmetry about its mean directios (0,...,0,1), and con-
centration parametet > 0 such that ax increaseXy concentrates around. In
equation (3) the weight function emphasizes the contriloudif the observationX;s
which arecloserto the estimation point. Kernels of this form have been used by Hall
et al. (1987) for density estimation on the sphere and by DizMeet al. (2014) and Di
Marzio et al. (2018a) for spherical-spherical regressgiimetion.
Now, whenp = 0, the solution foi3y leads to thdocal constanestimator

_ St YKk (XX)

A0 = S R X))

(4)

while, whenp = 1, the unique solution fg8y of the above least squares problem under



a suitable constraint (see Di Marzio et al. (2014) for dejaihn be expressed as

A1) = iWK(X’Xi)Yi,

where
n -1
Wi (X' Xi) = X { > K (X X)) (X + 6;& ) (x+ GjEj)’} (X+ 6:&)Ki (X' Xi).
=1

Now, in order to discuss the asymptotic properties of thanedbrs, we need to
recall thespherical counterpartsf the jth moment,j € N, and the roughness of a

Euclidean kernel, which, for a kernkk, respectively are
n .
bj (k) = wu,z/ Ky (cog6))8 sirf~2(6)de,
0

and

Vo(K) = ah,z/oan(cos(e))sind*Z(e)de.

Let Tr(A) denote the trace of the mati and usef to denote the common density
oftheX;s. Then, for the casgs= 0 andp = 1, by respectively using results in Theorem
1 and Theorem 2 in Di Marzio et al. (2014), we obtain the follayv

Result 1. Giveg theS9-1 x {0, 1}-valued random samplgX1,Y1), ..., (Xn,Ya), con-
sider estimaton (x; p), x € S4-1. If

i) Kk is a spherical kernel such that as n increaseéd) and vp(k)/n both go to
0, and for j> 2, bj(Kx) = o(ba(k));

ii) f(x)>0and all the entries ofl{{(x), 5 (x), and D}%(x) are continuous,
then

. 20> (x)00
EfA 0] A0 = 52 (Tr{D%(x)} + W) +o(ba(k)),

bz(K)

EA (1] - A %) = 5, Tr{T2(x)} +0(ba(K)) .




and, for both p=0and p=1,

Varfh ) = )2 <x><f1(;)A ™) ., (wﬁm) |

Remark 1. Recently, Gara-Portugies et al. (2016) proposed a different series ex-
pansion of the regression function withearresponse and directional predictor, which
generalizes the proposal of Di Marzio et al. (2009) in thecalar case when g= 1.
The optimization of the corresponding loss leads to a projected local linear estima-
tor which shares the asymptotic properties of the localdinestimator of Di Marzio et
al. (2014).

An optimal smoothing degree would minimize the asymptotegamsquared error
of A (x; p), which is the sum of the leading terms of the asymptotic sepibras and the
asymptotic variance. Notice that the dependence of asytiofitias and variance on
the concentration parameter cannot be generalized wigect$o the kernel, because
it is not a scale factor.

For the important case of a von Mises-Fisher kernel (whichtearegarded as the

spherical counterpart of the Gaussian kernel), and is dktin&91 as

Kd/2-1

297755 100 CPUXH).

Kk (X'IJ) =

with .#,(-) being the modified Bessel function of the first kind and oulevhenk is

big enough, and € N, the following approximations df; (k) andvg(k) hold

2121 ((d+j—1)/2) Kk(d-1)/2
W~ i d-nz 0 oM WO e ©

As a consequence, whé is a von Mises-Fisher kernel, the asymptotic bias and the

asymptotic variance, for both=0andp =1, are

) . (@-1)/2
E[A (x: p)]—)\(x)_0<%>, and Var[A (x; p)] _o<K )

n

Then, in the case of a von Mises-Fisher kernel, for both leoaktant and local lin-

ear estimators, the value gfwhich minimizes the asymptotic mean squared error is



0O(n?/(9+3)) and gives a convergence rate of magnit@da—*/(4+3)). This is the same
rate attained by single bandwidth local constant and lanaht estimators of a real-

valued regression function defined Bf1, when a second-order kernel is employed.

4, Local logisticregression via likelihood

The approach discussed in the previous section does notgebona-fideesti-
mates when the polynomial degree is greater than 0. Des@itiactt that a truncation
could be used for exploratory data analysis, the subsetpekf differentiability may
be a serious issue. To take into account the binary natuteeafetsponse, one should
consider the estimator as the optimiser of a more suitecttibgefunction, such as the
log-likelihood one, instead of the least square&3n

Specifically, given th&9-1 x {0, 1}-valued random sampleX1, Y1), ..., (Xn, Yn),

the log-likelihood connected with the binary regression is
n
Zl{Yi log(A(Xi)) + (1—Yi)log(1—A(Xi))} -
i=

The locally weighted version, ate 591, of the above log-likelihood can be ex-

pressed as
Z{Y o9 <%) +|og<1—A<xi>>} K (XX0).

whereK (X' X;) is a spherical kernel with mean directiXp, and evaluated & Setting

0 =log(A/(1—A)), the above expression can be re-written as

5, (480X ~og1-+ exg(3(X)))} Ky (XX

and, approximatin@(X;) aroundx in the local log-likelihood function by using ex-
pansion (2), a class of nonparametric estimatora fag) can be obtained. Specifically,

let Bo = 6(x), and letB, be the matrix of the derivatives of total ordee (1,...,p)



of & atx. Then, for fixedx € $9-1, by expressing; according to the tangent normal

decomposition, we define

p gt )
Ap(Xi; Bo; B1s---,Bp) = 50+/Zl%£m££i®<z1)'

Hence, under suitable smoothness assumptionsp-thegree expansion of the log-

likelihood can be expressed as

; {¥iap(Xi; Bo, By, -, Bp) — log(1+ exp(ap(Xi; Bo, Ba -, Bp))) } Kk(XiX).  (6)

It is interesting to note that, whem goes to 0, the kerné{y (X'X;) approaches
the uniform density and assigns the same weight to each sgmopit, for anyx. As
a consequence, far going to 0, the local log-likelihood optimization reducesthe
standard logistic regression problem with spherical ptedi
Now, Ietting[?o be the solution foi3y of the maximization of (6) with respect to
{Bo,B1;---, B}, ap-degree local polynomial estimator faKx) is
e expi(fo)

AL(X; p) = T+ exp(fo)’

Whenp = 0, the resulting estimator is thecal constanbne previously discussed,
while, whenp = 1, we obtain the spherical version of tleeal linearlogistic estimator
studied in the Euclidean setting by Fan et al. (1995) and@®ighand Jones (2004).
A closed-form expression foﬁ_(x; 1) does not exist, but, obviously, distinctly from
A (x; 1), the estimator always takes value [Or].

Concerning the asymptotic properties, by reasoning as @ofidm 3 and Theorem
4 of Fan et al. (1995) witly being the logit link, and by using Result 1, we get the

following

Result 2. Given a?d*l x {0,1}-valued random sampléXi,Y1),...,(Xn,Yn), con-
sider the estimatoA (x;1), x € S92, If assumption)i and assumption jiof Result 1



hold, then

ElAL 06 )]~ A (0 = 52 Tr{ D500 } A 0L 200) + 0(be(k),

and

f(x)

Notice that;\L(x; 1) shares both the asymptotic variance and the order of thegsym
totic bias ofA (x;p), p € (0,1). Moreover, the asymptotic bias depends only\oand
the derivatives o but not onf, as it happens fok (x;1).

Clearly, by virtue of Result 2, if a von Mises-Fisher kernglemployed as the
weight, by recalling the approximations in (3), the estionatttains the convergence
rate of orden—4/(d+3),

Concerning the selection &f, a possible way is to start from a least-squares objec-

tive function, and choose the valuerofvhich minimizes

n

3 (6 Aixin)

where;\,i(xi;K) stands for the estimate df at X; with the ith sample observation
removed. A more natural way is to start from the leave-onevetsion of the local

log-likelihood, i.e. to select the value &fmaximizing

. Ai(Xi;K) . _
izl{YHOg <m> —|—|Og(1—/\i(xi,K))}, @)

Remark 2. A possible generalization of the discussed approach afises consider-
ing different weights fosuccesseandfailuresin the local log-likelihood expression,
ie.

_;Yiqp (Xi; Bo, By, - - Bp) Ky (X Xi) —log (1+exp(dp(Xi; Bo, By, - - -, Bp))) K, (X Xi),

with K, and K, being spherical kernels giving weight to the observatidithe pre-
dictor corresponding to ¥= 1 and Y = 0, respectively.

When p= 0, the solution foi3y of the maximization of the above local log-likelihood
function gives the estimator d@f(x) studied by Di Marzio et al. (2018b). This latter

10



is defined by using the kernel estimators, $aix; k1) and f2(x; k2), of the spherical
densities f and % respectively characterizing the distributions of the pegar in the
spaces of successes and failures, based on random sampéspettive sizes;rand
ny, i.e. R
;\(x; K1,K2) = —= M fa (X KlA) )
m f1(X; K1) + N2 fa(X; K2)

(8)

5. Numerical examples

5.1. Simulation

In this section we use simulation experiments to test théopaance of the pro-
posed estimator for classification tasks. In particularcamesider the problem of as-
signing label 0 or 1 to an observatizre S%1. To this end, we adopt the rule according
to whichx is assigned to the population with label 1 if the estimat@ Of) is greater
or equal to (6.

We usevMF(H, ) to denote the von Mises-Fisher distribution A with mean
directionu (polar co-ordinates expressed in degrees) and concemtiadirametey.
We consider different experiments using the following sc@s, where samples of

sizesn; = ny = 200 are respectively drawn fromMF (14, y1) andvMF (5, y2):
Scenario 1, = (270,20), g, = (270,—20) andy; = y» = 10;
Scenario 2, = (270,20), 4, = (270,—20) andy; = y» = 20;
Scenario 3y, = (270,20), 4, = (220,—20), y1 = 5 andy, = 10.

In Scenario 1 the populations, which share the longitudéhefrhean direction and
the value of the concentration parameter, generate ratleelapping groups. Scenario
2 refers to more concentrated populations generating negrarated groups. Finally,
in Scenario 3 two well-separated groups are generated bylgtigns with different
co-ordinates of the mean directions and different conedotrs.

In the first experiment we consider the estimator (8) Wih andKy, both being
von Mises-Fisher kernels. The smoothing degrees are sdlesing the von Mises-

Fisher reference rule (see, Di Marzio et al. (2018b) forititdn a second experiment

11



Figure 1: From left: Misclassified observations using KDEsslfication (marked by ‘X’) and using lo-
cal likelihood with p = 0 (marked by ‘0’) for one dataset drawn fromMF(u,,y1) (cyan points) and
VMF (U5, ) (green points) in scenarios 1, 2 and 3.

we consider estimator (4). Also in this case we use the voreddiSsher kernel as
the weight, by selecting the concentration parameter kst kguares cross-validation.
Figure 1 illustrates the misclassified observations okthiaccording to the rule for
estimators (8) and (4) by using one dataset for each of theridesl scenarios. In
Table 1, for each experiment, we report as the accuracy metse average misclas-
sification rate over 200 simulated datasets. The results et the binary regression
estimator slightly outperforms the kernel density classifKDE), especially when the
groups are well-separated. Moreover, the resultsfor n, show that, in the con-
sidered scenarios, estimator (4) performs slightly beiti@n the same estimator using
two concentration parameters (which leads to the sameifadasi®on rule as the kernel
density one).

Table 1. Estimate of the misclassification rates for kermelsity classification and local binary regression
with p= 0, using 200 samples of sizag= n; = 200 respectively drawn frorfy = vMF(;,¥)), ] € (1,2),
given in scenarios 1-3. For both classification rules we usmaVlises-Fisher kernel: for KDE; andkz

are selected according to the von Mises-Fisher refereriegand for the local binary regression estimator
is selected by least squares cross validation.

Misclassification rate
Scenario 1 Scenario2  Scenario 3
KDE estimator 0.178 0.090 0.112
p = 0 estimator 0.147 0.065 0.086

Classification rule

12



5.2. Handwritten digit recognition

We apply our methods to the digits dataset used in the Staplrogct (Michie
et al.,, 1994). The dataset consists of 18,000 examples dithies 0 to 9 (i.e.q=
10 classes) extracted from hand-written postcodes in Ggrniehese numbers were
initially digitised onto 16x 16 images with 256 grey levels; examples are shown in
Figure 2. To enable meaningful comparisons with previoablained results, we have
used the same train-test split of the data which has 900 dearapeach number (0-9)
in the training set and the test set, and an averaging oxet fpixels resulting in 16
real-valued variables. These data were then transformtgbtanit sphere by simply

normalizing each observation replacXgby X; /|| Xi]|.

F1234567E3

Figure 2: Examples of 10 handwritten, digitised digits witlolution 16< 16 and 256 grey scales, extracted
from postcodes in Germany (Michie et al., 1994).

Our implementation, which corresponds to a 1-degree loghigmial estimator,
used logistic regression with weights obtained from a sphkkernel. The smoothing
parameter was selected — for each pair of claggdg € {0,1,...,9} x {0,1,...,9}
—using cross-validation (i.e. Equation (7)), which yieddmlutions for the smoothing
parameter ranging from 0.9 to 38.8. Then, for each elemehiedkst set, we compute
the probability of membership of clagsgiven an alternative of cladgs sayPj with
P = 1— R (also settind®; = 1), using the correspondingy (= Ki;) found by cross-
validation. Finally, we allocate this observation to thessl argmaxmin; Pj,. The error
rate for 9000 observations in the test set, was 0.043, wisichuich better than the
unweighted multinomial logistic regression (error 0.Q&63imple linear discriminant
(0.114) and just better than the top rank classifier (k-retareighbour, with an error
rate of 0.047) of those given in (Michie et al., 1994, p. 138he confusion matrix

for this classifier is shown in Figure 3, in which it can be s#&t the most common

13



classification mistakes were to recognize an "8” as a “0”,"a®a “3”, and a"7” as a

"9,

true digit

0 1 2 3 4 5 6 7 8 9
0| 853 4 2 0 5 2 2 2 8 2
1 4 886 3 3 1 1 0 6 0 8
2 0 0 858 22 1 3 3 1 16 1
3 0 0 11 839 0 5 0 2 7 14
4 4 1 2 0 876 1 4 4 0 4
5 0 0 7 18 1 868 5 0 11 4
6 8 0 0 0 3 8 880 0 5 0
7 2 5 0 2 3 0 0 870 1 22
8| 21 2 12 9 1 5 6 4 845 11
9 8 2 5 7 9 7 0o 11 7 834

Figure 3: Confusion matrix for local multinomial logistitassifier applied to German handwritten postcode
digits. Columns represent true label, and rows the prediicteel.

Although the error rate is very good, we note that this apghagas computation-
ally intensive, with the multinomial logistic model entad the estimation ofj(q—
1)/2 = 45 smoothing parameters in the training phase, and a fuiitieg of nq(q —
1)/2 = 405,000 models in the testing phase. Whilst it would be stramgtérd to
considerp = 2 (including interaction terms, if desired) this would tede excessive
amount of time without a common choicewofacross all class pairs.

Using a classification rule based on a kernel density estimatsingle smooth-
ing parameter (for all classes) was selected by leave-aheross-validation on the
training data. This value of (= 1406) was then used to classify the test data. For
this classifer, the error rate of 0.039 was unexpectedlyesdmat better than the result
given in Michie et al. (1994) (0.068) for data which have neéb transformed to the

sphere.
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