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ƐՊ |ՊINTRODUC TION

Birds� eggs occur in a remarkable range of sizes and shapes, from 

almost spherical to extremely elongate and symmetrical to pointed 

at one end (pyriform). The causes and evolutionary consequences of 

interspecific differences in avian egg shape have puzzled biologists 

for over a century, yet the way different egg shapes are produced 

within the oviduct and the adaptive significance of egg shape remain 

largely unresolved. One reason for this has been the difficulty of 

quantifying egg shape, as no single index captures effectively the 

full range of avian egg shapes or, indeed, other taxa such as reptiles 

(Birkhead, Thompson, Jackson, & Biggins, 2017; Deeming & Ruta, 

2014; Stoddard et al., 2017).

It is convenient to speak of the two pointed ends of the egg as 

poles, giving a natural sense to �latitude� (distance between the 

poles along the line joining them), �equator� (the points on the sur-

face at equal distance from the two poles), and �meridian� (the pro-

file of the surface from pole to pole). In an early study of avian egg 

shape, Mallock (1925) examined the implications of the observation 

that eggs have circular latitudinal cross- sections. It is this observa-

tion that justifies capturing egg shape through a suitable formula for 

the meridian and means that from this, together with a length mea-

surement, any characteristic, such as volume or surface area, of the 

egg shape can be obtained. Thus, although the focus here is on avian 

egg shapes, the methods would apply also to eggs of other taxa that 

have circular cross- sections. Several authors (Mallock, 1925; Okabe, 

1952; Stoddard et al., 2017; Thompson, 1942) have considered the 

mechanisms by which different egg shapes might be achieved. We 

have no additional insights into that topic, which is distinct from 

seeking a simple accurate summary for the shape.

Romanoff and Romanoff (1949, p88) state �the numerous vari-

ations in the contour of individual eggs obviously cannot be ex-

pressed in mathematical terms� and, commenting on Thompson�s 

(1942) magnificent treatise �On Growth and Form�, Preston (1953, 

p160) said that Thompson �seemed to throw up his hands in the be-

lief that egg shape is indescribable, particularly if it happens to be 

a guillemot�s (=murre�s)� [i.e. Uria aalge]. Preston (1953) went on to 

propose an approach that captures the whole range of the shapes 

of eggs through four parameters. This insight underpins the subse-

quent studies by Preston (1968) and Todd and Smart (1984).

Although Preston (1953) solved the problem of capturing egg 

shape, the parameters he employed do not have a simple intuitive 

relation to the most striking aspects of shape. Thus, other, more 

direct, measurements have been proposed (see Section 2.6 below 

for further discussion). In particular, informed by his earlier insights, 

Preston (1968) identified three indices (which he calls asymmetry, 
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Abstract

Describing the range of avian egg shapes quantitatively has long been recognized as 

difficult. A variety of approaches has been adopted, some of which aim to capture 

the shape accurately and some to provide intelligible indices of shape. The objectives 

here are to show that a (four- parameter) method proposed by Preston (1953, The Auk, 

70, 160) is the best option for quantifying egg shape, to provide and document an R 

program for applying this method to suitable photographs of eggs, to illustrate that 

intelligible shape indices can be derived from the summary this method provides, to 

review shape indices that have been proposed, and to report on the errors intro-

duced using photographs of eggs at rest rather than horizontal.
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bicone and elongation) that he considered captured the variation in 

avian egg shape, including the pyriform (pointed) eggs of birds such 

as the guillemot. However, this set of indices has not been widely 

adopted, for three reasons: (a) two of his indices (asymmetry and 

bicone) depend on a measure of the curvature at the ends of an 

egg that he obtained using a specially constructed device (a spher-

ometer); (b) the two indices derived using the spherometer are, as 

Preston explains, motivated by, but are not the same as, other indi-

ces that are more directly related to the fitted shape but less practi-

cal to measure; (c) his mathematical formulations may have deterred 

some researchers from exploring his ideas (see also Mänd, Nigul, & 

Sein, 1986, p613).

Instead, researchers have often used just two simpler indi-

ces: (a) asymmetry � the extent to which the latitude with widest 

breadth deviates from the equator; (b) elongation � length relative 

to breadth. Neither of these is precisely specified by these descrip-

tions and a number of variants exist (see Section 2.6 below). Thus, 

the potential for confusion is considerable: the same shape index is 

sometimes referred to by different names by different authors, and 

in some cases, different shape indices are referred to by the same 

name. In general, indices are not methods for capturing egg shape 

accurately in all cases, but, rather, are ways of obtaining certain sum-

mary measures that are intuitively related to key aspects of shape.

An important aspect of these different measures of �asymme-

try� and �elongation� is that they all fail to deal satisfactorily with 

eggs of certain shapes, in particular pyriform eggs produced by 

some alcids and waders (shorebirds). For example, the recent wide- 

ranging comparative study by Stoddard et al. (2017) uses two indi-

ces, based on Baker�s (2002) formulations. However, this method 

did not quantify the shape of pyriform eggs sufficiently accurately 

and so they were excluded from their analysis (see figure S2 in 

Stoddard et al., 2017).

Digital photography and the automated handling of the digital im-

ages mean that the field constraints that influenced Preston�s (1968) 

choice of summary indices no longer apply. Now, instead, Preston�s 

(1953) original ideas for summarizing egg shape can be applied au-

tomatically � a possibility he anticipated (Preston, 1969; p262�3). 

The software we have developed (see the Supporting Information: 

Supplementary Material,1 Section SupM5), which works best with 

egg silhouettes, does this.

The studies by Barta and Székely (1997), Mónus and Barta 

(2005) and Bán et al. (2011) are already in this vein, working from 

photographs, except they did not process images automatically, 

and, presumably as a consequence, used a limited number of 

points on the meridian in the curve fitting. Mityay, Matsyura, and 

Jankowski (2015) do seem to have processed a large number of 

photographs and fitted Preston parameters, although these are, 

rather misleadingly, attributed to Frantsevich (2015) rather than 

Preston (1953). Moreover Mityay et al. (2015) give no detail of 

their fitting methods. Attard, Medina, Langmore, and Sherratt 

(2017) processed egg images automatically by drawing on sophis-

ticated Fourier techniques designed to capture even very com-

plicated closed contours, to produce a large set of coefficients 

and then reduced the coefficient set using principal components. 

However, egg profiles are really very simple closed contours, as 

the success of Preston�s approach shows, which can be summa-

rized much more directly.

Alternative methods of summarizing egg shape have been pro-

posed by Carter (1968), Carter and Morley Jones (1970), Baker 

(2002) and Troscianko (2014). When compared with Preston�s (1953) 

proposal, each of these is less effective in capturing egg shape for 

some eggs (see Sections 3.1 and 3.2 below). Several other possible 

mathematical forms have been identified, as the web pages main-

tained by Köller (2017) illustrate. In particular, Thompson (1942, 

p936) mentions the Cartesian Oval as a proposal going back to the 

middle of the nineteenth century, although he points out that this 

proposal �fails in such a case as the guillemot.�

The aims here are to: (a) enable, via the accompanying software, 

the automated use of Preston�s (1953) original proposal for capturing 

egg shape, and to extend it somewhat; (b) illustrate that that pro-

posal has sufficient flexibility to capture very accurately the shape 

of all eggs including pyriform eggs and that the methods of Carter 

(1968), Carter and Morley Jones (1970), Baker (2002) and Troscianko 

(2014) are less effective; (c) show that egg positioning for the photo-

graphs matters; (d) illustrate that once Preston�s parameter�s and the 

length of the egg are available, any characteristic of the egg shape 

and size can be obtained � in particular, three interpretable indices 

of shape: Elongation, Pointedness, and Polar Asymmetry (described 

in Section 2.5); and (e) present a review of the various measures of 

egg shape that have been used previously and their relationships 

and demonstrate the appropriateness of the indices Elongation, 

Pointedness and Polar Asymmetry for describing the shape of pyr-

iform eggs.

ƑՊ |ՊMETHODS

ƑĺƐՊ|ՊFormuѴae for egg shape

Imagine an egg with its longest axis horizontal, on the x- axis, and 

with the Ѵength scaѴe arranged so that the two poѴes are at ƴƐ and Ɛķ 
which means the egg�s length is scaled to be two. The height of the 

egg outline above the horizontal axis at x is y(x), and, because latitu-

dinal cross- sections are circular, the lower half of the egg, below the 

horizontal axis, will be a mirror image. Various mathematical forms 

have been proposed for the meridian y(x), with parameters that can 

be estimated in order to match the shape of a particular egg. A gen-

eral strategy is to express y(x) as a suitable modification of the equa-

tion for a circle: Preston (1953, Equation (4)) and Todd and Smart 

(1984, Equation (2)) proposed 

Equation (4) in Preston (1953) looks different from Equation (1), 

but this is only because in his presentation, the longest axis of the 

egg is vertical, as Todd and Smart (1984) also observe. With f(x) = 1 

(1)y(x)= f(x)
√

1−x2.
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Equation (1) gives a circle and with f(x) = T < 1 it gives an ellipse 

with its longest axis horizontal. In the latter case, T is the ratio of 

length of the minor and major axes of the ellipse. The next simplest 

function, with the two parameters T and a, is f(x) = T (1 + ax), giving 

y(x)=T(1+ax)
√

1−x2 which Preston called �Simple Ovoid�2 . Here, 

T and a are to be estimated for the particular egg. Smart (1969, 

p153) and Todd and Smart (1984, Equation (3)) both asserted that 

this form provides a good representation of the shape for birds� 

eggs of many species but Preston (1953) did not share this opinion, 

preferring his three- parameter Equation (6a) which corresponds 

to f(x) = T (1 + ax + bx2), and which he called �Standard Avian Egg- 

Shape.� Both Preston (1953) and Todd and Smart (1984) note that 

for pyriform eggs, f needs to be a cubic to give a good represen-

tation of the shape. When a cubic is needed, Preston called the 

(pyriform) shape �Alcid Ovoid.� Preston (1953) and Todd and Smart 

(1984) recognized that higher order polynomials could be used in 

place of the cubic but comment that they found no need for this ad-

ditional flexibility. Our experience is similar. Thus, the general egg 

shape, suitable for all bird species, is adequately represented by 

It is important to appreciate that, when the parameters T, a, b, 

and c are chosen to suit the particular egg, the fit is so good that for 

all practical purposes, these four parameters perfectly capture the 

shape of the egg, as the results here illustrate.

Carter (1968) proposed a two- parameter formula which can be 

cast in the form of Equation (1); details can be seen in Supporting 

Information Section SupM1. The third parameter in that paper�s title 

is simply the egg�s length and so is unrelated to shape. Baker (2002, 

Equation (2)) also proposed a two- parameter formula for egg shape, 

given by 

and this formula is the one used by Stoddard et al. (2017). It can be 

cast into the general framework provided by Equation (1) as 

Troscianko (2014, Equation (1)) offered a three- parameter egg 

shape formula that becomes 

when cast into the general framework. More details on the deriva-

tion of Equations (4) and (5) can be found in Supporting Information 

Section SupM1.

Baker�s, Carter�s, and Troscianko�s formulae have two, two, and 

three parameters, respectively, compared to the four in Equation (2) 

that were found necessary to capture the full range of egg shapes 

in Preston (1953) and Todd and Smart (1984). The fit of Baker�s for-

mula to pyriform eggs in particular is markedly less satisfactory than 

Preston�s proposal with a cubic.

As formulated here, in all of these models the parameter T is the 

ratio of the diameter of the egg at the midpoint of its length (re-

ferred to as �the equatorial diameter� by Preston (1968, p457)) to 

the length of the egg � as can be deduced by putting x = 0 in the 

formulae and using that the egg�s length is two. Smaller values of T 

correspond to more elongated eggs.

In a somewhat different approach, Carter and Morley Jones 

(1970, Equation (5)) propose a formula based on polar coordinates 

with four parameters for shape and one for size, so it is comparable 

in complexity with Equation (2). They also give interpretations for 

their shape coefficients (calling them indices of aspect, skewness, 

marilynia, and platycephaly). Their suggestion does not seem to be 

expressible in the form of Equation (1), so details of the formulation 

are deferred to Supporting Information Section SupM3.

ƑĺƑՊ|ՊFitting PrestonĽs parameters ŋ underѴying theory

The egg image is arranged so that its longest axis is horizontal, 

and it is assumed here that this is the y = 0 axis and that the egg 

has been scaled so that its poles are at x Ʒ ƴƐ and x = 1. Then, the 

coordinates of the top and bottom edge of the egg are obtained. 

(More details on this and on the R program for fitting, which uses 

EBImage (Pau, Fuchs, Sklyar, Boutros, & Huber, 2010) for image 

processing, are in Supporting Information Section SupM5.) The y 

values for the bottom edge are reflected in the x- axis. Then, for 

each x value, xi, this gives two y values: yi1 from the top and y i2 

from the bottom.

Now, the obvious model for relating the data to Equation (1) is 

where �ij are the errors and N is the number of points on each merid-

ian. Then the error sum of squares is 

Minimizing the error sum of squares is the natural way to 

fit the parameters to a particular egg profile: this method is 

used here in all cases. When f is a polynomial, we have a linear 

model � more specifically, a multiple regression without a con-

stant term � and so standard fitting can be used, which is what 

Preston (1953) did.

Rather than following Preston on fitting, Todd and Smart (1984) 

shift attention to 

and therefore implicitly propose the model 

(2)y(x)=T(1+ax+bx2+cx3)
√

1−x2.

(3)y(x)=T(1+x)1∕(1+�)(1−x)�∕(1+�),

(4)y(x)=T

�

1+x

1−x

�(1−�)∕(2(1+�))
√

1−x2.

(5)y(x)=Te−αx−βx
2
√

1−x2

yij= f(xi)

√

1−x2
i
+�ij i=1,… ,N, j=1,2

N
∑

i=1

2
∑

j=1

�

yij− f(xi)

√

1−x2
i

�2

.

Yij=
yij

√

1−x2
i

Yij=
yij

√

1−x2
i

= c0+c1xi+c2x
2

i
+c3x

3

i
+…+

�ij
√

1−x2
i

.
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This can be fitted as a linear model by weighted least squares 

� although the fitting process is not addressed in Todd and Smart 

(1984). The weights are proportional to the inverse of the variance 

of the errors and so will be (1−x2
i
). This fitting process is equivalent 

to the linear model employed by Preston. Note too that c0 is just T 

in the formulation in Equation (2). We will refer to (c0, c1, c2, c3) as 

Preston parameters.

To ensure the stability of the fitting process and allow high order 

polynomials to be used, the appropriate orthogonal polynomials 

are used, instead of fitting with simple powers of xi. These are the 

Ultraspherical (Gegenbaur) polynomials for weight function (1−x2) 

(see Suetin, 2002). The details of this, which involves the introduction 

of another parametrization for the same egg formula which has some 

attractive features and which yields a simple formula for the egg vol-

ume, are described in Supporting Information Section SupM2. These 

alternative parameters will also be referred to as Preston parameters.

ƑĺƒՊ|ՊAssessing fit

Once Preston parameters have been obtained, the egg shape they 

correspond to can be plotted and we call this the Preston fit. To as-

sess the fit, the discrepancy between the Preston fit and the actual 

outline of the egg needs to be quantified. The measure of the qual-

ity of a fit proposed here is the square root of the average squared 

discrepancy between the actual egg and the fitted egg, after scal-

ing the egg to have length one: essentially the root mean square 

error. This gives an error that is a length on the scale where the egg 

length is one. Thus, in the notation developed here, the error of a 

method is 

where eij is the fitted value corresponding to yij and obtained from 

the least squares fit of the parameters, and N is the number of points 

on the egg�s meridian, or equivalently the number of xi values. For 

photographs with good resolution, N is large and then this formula 

will be an accurate representation of the discrepancy between the 

fitted egg and the actual egg shape. In order to compare the quality 

of the fit of other models with Preston�s (1953) model, we need 

to fit them by least squares too: we indicate how this was done in 

Supporting Information Section SupM3.

The methods are then compared, in Sections 3.1 and 3.2, using 

their errors defined by Equation (6).

In fitting Equation (4), Baker (2002) and Stoddard et al. (2017) 

propose excluding eggs where the fit is poor. Both seem close to 

suggesting the square of the error defined at Equation (6) to measure 

the quality of the fit, but neither explain exactly how to accommo-

date different values of N and they propose slightly different exclu-

sion rules.

ƑĺƓՊ|ՊAdding parameters to egg formuѴae

The beauty of Preston�s proposal is that it provides an essentially 

exact representation for any egg shape using four parameters. It is 

(6)error=

√

√

√

√

√

1

8N

N
∑

i=1

2
∑

j=1

(

yij−eij
)2

F IGURE  ƐՊThe values of the three shape indices for eggs of varied shapes. All egg images are scaled to have the same length. Key: 

(1) White- breasted Kingfisher (Halcyon smyrnensis); (2) Adélie penguin (Pygoscelis adeliae); (3) Dalmatian Pelican (Pelecanus crispus); (4) 

Greater Flamingo (Phoenicopterus roseus); (5) Southern Brown Kiwi (Apteryx australis); (6) Little Grebe (Tachybaptus ruficollis); (7) Royal 

Tern (Thalasseus maximus); (8) King Penguin (Aptenodytes patagonicus); (9) Pheasant- tailed Jacana (Hydrophasianus chirurgus); (10) Common 

Guillemot (Uria aalge)

Elongation:

Pointedness:

PolarAsymmetry:

1

1.035

0.501

1.003

2

1.246

0.508

1.085

3

1.477

0.534

1.252

4

1.748

0.539

1.348

5

1.560

0.545

1.255

6

1.363

0.547

1.640

7

1.450

0.579

1.904

8

1.424

0.616

2.871

9

1.482

0.650

3.695

10

1.861

0.675

2.635

F IGURE  ƑՊGraphical explanation of the symbols occurring 

in the text: L is the length of the egg; D is the largest latitudinal 

diameter; P is the length from the latitude of maximum diameter to 

the more distant pole; d is the equatorial diameter; RB and RP are the 

radii of the largest circles within the egg and touching the blunt and 

pointed pole, respectively; and bi and bk are the latitudinal diameter 

half way between the latitude of largest diameter and the blunt and 

pointed pole � bi is the larger of the two

RP

RB

L

L/2

D
d

PL−P

P/2

bk

(L−P )/2

bi
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natural to wonder whether the fits of the alternative models are im-

proved markedly by adding parameters. It is straightforward to put 

additional parameters into the models of Carter (1968), Baker (2002) 

and Troscianko (2014). Thus, for Troscianko�s formula the natural ex-

tension is 

For Baker�s model, one way to introduce the extra parameters is 

whilst for Carter�s, an analogous possibility is given in Supporting 

Information Equation (SEq2). In each case, this increases the number 

of parameters to four, giving them similar flexibility to Equation (2), 

so that the errors for these extensions are expected to be roughly 

comparable with Preston�s.

ƑĺƔՊ|ՊThree shape indices

Preston�s four- parameter representation of egg shape is so good that 

it can replace the silhouette, allowing images to be replaced by a sim-

ple accurate summary. However, these parameters are not easily in-

terpretable as intuitive aspects of an egg�s shape. A variety of indices 

has been proposed that are more easily interpretable and intended 

to reflect aspects of shape that are considered biologically important 

or interesting. We first introduce three egg shape indices we refer to 

as Elongation, Pointedness, and Polar Asymmetry.

(7)y(x)=Te−αx−βx
2−γx3

√

1−x2.

(8)y(x)=T(1+x)1∕(1+�)(1−x)�∕(1+�)(1+ax+bx2),

Source Index name FormuѴa CircѴe

Length to breadth indices

Preston (1968, p456) elongation D/L 1

Stoddard et al. (2017, SM- p4) ellipticity (L/dő ƴ Ɛ 0

Present study Elongation L/D 1

Departure of widest latitude from equator

Belopol�skii (1957, p131) Unnamed P/(L ƴ P) 1

Harris and Birkhead (1985, p174) Shape index 1 L/(L ƴ P) 2

Mänd et al. (1986, p614) ovoidness P/(L ƴ P) 1

Deeming and Ruta (2014, p2) asymmetry ratio P/L 0.5

Present study Pointedness P/L 0.5

Model based asymmetry

Stoddard et al. (2017, SM- p4) asymmetry �−1 (from eqn (4)) 0

Comparisons of the egg poles

Preston (1968, equation (6)) asymmetry
�

√

RB−
√

RP

�

√

L∕2∕d 0

Preston (1968, equation (7)) bicone
�

(
√

RB+
√

RP)
√

L∕2∕d
�

−1 0

Preston (1968, equation (10)) Asymmetry (RB−RP)L∕D
2 0

Preston (1968, equation (11)) Bicone
(

(RB+RP)L∕D
2
)

−1 0

Mityay et al. (2015, p93) asymmetry RP∕RB 1

Mytiai and Matsyura (2017, p265) asymmetry (RB−RP)∕D 0

infundibular RB∕D 1

cloacal RP∕D 1

interpolar
(

L− (RB+RP)
)

∕D 0

complementarity (1+RB∕L)(1+RP∕L)

1−RB∕L−RP∕L

∞

Present study Polar Asymmetry RB∕RP 1

Comparisons using intermediate latitudes

Mänd et al. (1986, p614) pear- shapedness (bi−bk)∕bi 0

conidity (bi−bk)∕D 0

blunt- end convexity (2bi∕D)−1
√

3−1

sharp- end convexity (2bk/Dő ƴ Ɛ
√

3−1

Using egg volume V

Mänd et al. (1986, p614) plumpness 3V/(4πLD2) 1

TABLE  ƐՊVarious shape indices; 

symbols defined in Figure 2; �Circle� gives 

the value of the index for a circle
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Elongation is the ratio of the length to the width at the widest 

point. This is not the same as 1/T, which uses the width at the mid-

point of the egg�s length (i.e. at the equator), rather than at the wid-

est point.

Pointedness is the length from the point where the egg is widest 

to the more distant end divided by the overall length.

Polar Asymmetry is the ratio of the diameter of the largest circle 

that can fit within the egg outline and touch the egg at its blunt pole 

to the diameter of the largest circle within the egg outline and touch-

ing the more pointed pole.

Larger values of these indices correspond to greater departures 

from a circular shape. The values of these indices for eggs of par-

ticularly varied shapes are shown in Figure 1. For some nearly sym-

metrical eggs, the pole with the smaller circle (the more pointed end) 

can be the one that is nearer to the latitude where the egg is widest, 

which is the opposite of what might be expected: this is the case for 

egg 2 in Figure 1.

ƑĺѵՊ|ՊOther shape indices

We now review other indices that have been proposed. Figure 2 is 

a graphical representation of the symbols used in this section and 

Table 1 is a summary of a selection of indices.

ƑĺѵĺƐՊ|ՊLength to breadth indices

The first, and most obvious, index is what is called elongation 

(by, for example, example, Preston, 1968, p456): the ratio of the 

length of the largest latitudinal diameter (D) � often simply called 

its maximum diameter or breadth � to the length (L) of the egg. In 

this study, Elongation is defined as the reciprocal of elongation, 

so that its vaѴues are aѴways ƾƐķ and Ѵarger vaѴues correspond to 
more elongation.

As an alternative to elongation, the ratio of the equatorial diame-

ter (d) to the length of the egg could be used: d/L. This is the param-

eter T in the formuѴae in Section ƑĺƐĺ It is ƽƐ and is one for a circѴeĺ 
Thus, 1/T is ƾƐķ with Ѵarger vaѴues corresponding to Ѵess and Ѵess 
spherical eggs and 1/T agrees with Elongation for eggs which have 

their maximum diameter at their equator. Stoddard et al. (2017) use 

this index, with T obtained via Equation (4), but subtract one from it 

to make zero correspond to a circle. Thus, their index, which they call 

ellipticity, is (1/Tő ƴ Ɛķ which in terms of direct egg measurements is 
(L/dő ƴ Ɛ and in Preston parameters is ŐƐņc0ő ƴ Ɛĺ

ƑĺѵĺƑՊ|ՊDeparture of widest Ѵatitude from equator

In asymmetric eggs, the latitude of the maximum diameter will 

be displaced from the equator. That leads naturally to seeking a 

second index based on this displacement. In this study, we use 

Pointedness: the length from the latitude of maximum diameter to 

the more distant pole (P) divided by the overall length (L). Similar 

indices have been used by Belopol�skii (1957), Harris and Birkhead 

(1985) and Mänd et al. (1986). Their proposals are all monotonic 

transformations of Pointedness and so are equivalent to it (in that 

they will have a perfect Spearman correlation with Pointedness). 

The same index, called the asymmetry ratio, has been proposed by 

Deeming and Ruta (2014, p2)3 where �equatorial axis� is the lati-

tude of maximum diameter (which is not the sense of �equatorial� 

here) � so their definition is indeed identical to that of Pointedness.

ƑĺѵĺƒՊ|ՊModeѴ based asymmetry

Stoddard et al. (2017) define their asymmetry index to be �−1 hav-

ing fitted the formuѴa ŐƓő to the egg profiѴeĺ The ƴƐ is to make the 
value of the index zero for a circle. (In fact, they use max{�,1∕�}−1 

to deal properly with nearly symmetrical cases, but this is a minor 

refinement.) The main difficulty with this index is that the model 

in Equation (4) (i.e. Baker, 2002) does not fit well in all cases (see 

Section 3).

ƑĺѵĺƓՊ|ՊComparisons of the eggĽs poѴes

A variety of proposals exist for indices based on the curvature of 

the poles of the egg. Preston (1968, p456) notes that even for sym-

metrical eggs, the two ends can be more or less pointed: �both ends 

may be conspicuously pointed as in the tinamous, or they may both 

be conspicuously blunt as in the hummingbirds.� Thus, he sought an 

index that could reflect this difference, which he called bicone. In 

addition, and less subtly, there can be asymmetry, with the curvature 

of the two poles being markedly different. Based on this thinking 

and his modeling Preston (1968, Equation (6), Equation (7)) proposed 

two indices, bicone and asymmetry, derived from the curvature at 

the poles. He made various approximations and simplifications to 

derive alternative indices (Preston, 1968, Equation (10), Equation 

(11)), which he calls Bicone and Asymmetry, that were easier to 

obtain through field measurements, although as mentioned above, 

these entailed the use of a spherometer. Now that photographs 

can be more easily analyzed, finding the largest circle within the 

egg and touching its pole provides a sensible alternative to using a 

spherometer.

In order to describe the indices based on the curvature at the 

poles, we follow Preston�s (1968) terminology: let RB and RP be the 

radii of the largest circle at the blunt and the pointed end, respec-

tively, as illustrated in Figure 2. It is now straightforward to obtain 

versions of Preston�s indices, either in their original form or in his 

operational substitutions. Although their approach is rather differ-

ent, Mityay et al. (2015), Mityay, Strigunov, and Matsyura (2016) and 

Mytiai and Matsyura (2017) also suggest a variety of indices based 

on the radii of circles. They are not fully consistent in naming these 

nor in the formulae. In particular, the �index of asymmetry� in Mityay 

et al. (2015) is RP/RB, the reciprocal of Polar Asymmetry, but the 

�index of asymmetry� in Mytiai and Matsyura (2017) is different: it is 

(RB ƴ RP)/D. A selection of indices from Mytiai and Matsyura (2017) 

is included in Table 1.
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ƑĺѵĺƔՊ|ՊComparisons using intermediate Ѵatitudes

Instead of using the curvature of the poles, Mänd et al. (1986) define 

indices4 based on the diameters for the latitudes midway between 

the latitude of largest diameter and the two poles. Let bi and bk be 

these two latitudinal diameters, with bi being the larger of the two. In 

Mänd et al. (1986, Figure 3) and in Figure 2, the larger diameter, bi, is 

obtained from the latitude nearer to the blunt pole, and this is typi-

cal. However, in nearly symmetrical eggs the larger diameter can be 

nearer the more pointed pole, a possibility which Mänd et al. (1986) 

may not have envisaged. The definition used in this study makes bi 

the larger of the two intermediate diameters even in these cases.

Mänd et al.�s (1986) pear- shapedness and conidity are based on 

the difference in these two distances, so will both be zero for any 

symmetrical egg. For an asymmetrical egg, bk will be less than bi, with 

larger values of these indices corresponding to greater asymmetry. 

The other two indices, blunt- end convexity and sharp- end convex-

ity, seek to measure the pointedness of each end separately and so 

are similar in spirit to Mytiai and Matsyura�s (2017) infundibular and 

cloacal.

ƑĺѵĺѵՊ|ՊUsing egg voѴume

Mänd et al. (1986) propose an index which compares the egg volume, 

V, to that of a prolate ellipsoid (i.e. one with circular cross- sections 

on the minor axis). They proposed 400V/(πLD2). In Table 1, the multi-

plier has been adjusted to give an index value of one if the egg shape 

was an ellipse with major axis L and minor axis D.

ƑĺѵĺƕՊ|ՊScaѴing and centering of indices

A shape index is, necessarily, independent of size and so has no 

length scale. By considering the value that the index will take for 

a circle, the index can be rescaled so that a circle gives a value of 

one or re- centered to make the value for a circle zero. For example, 

Stoddard et al. (2017) subtracted one from 1/T and from � to make 

the value for a circle zero and Preston (1968) subtracts one in the 

definition of Bicone for the same reason. Such maneuvers make no 

essential difference but do lead to some of the differences in nam-

ing and definitions. Here, the scaling of Mänd et al.�s (1986) pear- 

shapedness and conidity has been adjusted: the originals were 100 

times the formulae in Table 1.

ƑĺѵĺѶՊ|ՊData driven indexŊ Ѵike summaries

Once egg profiles are in a standard orientation (which here is hori-

zontal, with the x- axis along the longest axis) and size (which here 

is the maximum length standardized to be two), a collection of co-

ordinates on the profile taken at a fixed collection of x- values is a 

multivariate observation on an egg profile. As such, techniques like 

principal components can be used to explore and summarize shape. 

This is, in essence, the approach used in Deeming and Ruta (2014) 

and Deeming (2017). In particular, Deeming and Ruta (2014) perform 

a principal component analysis on a wide range of egg shapes and 

observe that the first principal component is highly correlated with 

elongation and the second with their asymmetry ratio and that the 

first two components account for 89.48% and 7.96%, respectively, 

of the total variance, confirming that these two indices account for 

much of the variation in egg shape; Deeming (2017) explores the 

relationship of various factors on these principal components over a 

large selection of bird species.

ƑĺƕՊ|ՊEgg characteristics from Preston parameters

Figure 2 is a graphical representation of the measurements that are 

used to define various indices. All of these can be obtained from the 

F IGURE  ƒՊThe actual egg shape of C126 is the black outline; 

the Preston fit is in red. The error, as defined at Equation (6), is 

0.00091. The length of the egg has been scaled to be one. The 

two circles are the largest possible that touch the end of the egg 

and are wholly within the (Preston fit to the) egg. Then, the Polar 

Asymmetry (PA) is the ratio of the diameter of the larger (blue) to 

the smaller (green) circle. Po is the pointedness. El is the Elongation. 

T is the equatorial diameter
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F IGURE  ƓՊThe actual egg shape of C126 is the black outline; the 

Baker fit is in red. The error, as defined at Equation (6), is 0.0116. 

The values of Po, 1/El, and T based on the Baker fit are indicated. 

The Polar Asymmetry (PA) is very large because of the very small 

circle at the more pointed end
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Preston parameters: the two radii, RB and RP, are the most compli-

cated to obtain, but are easily found by a suitable search procedure. 

Furthermore, assuming circular cross- sections, the formula for egg 

shape can also be used to find other egg characteristics: for exam-

ple, the surface area, volume, or �contact index� (as in Birkhead, 

Thompson, Jackson, et al., 2017), which indicates how much of an 

egg resting naturally makes contact with the substrate. In particular, 

Supporting Information Equation (SEq4) shows how to obtain the 

egg volume from the Preston parameters. It is also straightforward 

to fit the alternative models, for example that in Equation (4), to the 

Preston fit for the egg, instead of going back to the original photo-

graph. As the Preston fit is so good, this produces parameters very 

similar to those obtained from fitting to the photograph directly, as is 

illustrated in Supporting Information Section SupM4. Thus, the vari-

ous indices in Table 1 can be readily obtained from the Preston pa-

rameters. In a similar vein, the approach in Deeming and Ruta (2014) 

can be applied to the shapes obtained from the Preston parameters 

of a collection of eggs, rather than to the original photographs.

ƒՊ |ՊRESULTS

ƒĺƐՊ|ՊComparisons using a pyriform egg

The focus here is on the avian egg shape that historically has been 

the most challenging: pyriform. A guillemot egg (labeled C126, see 

Supporting Information Figure SF10) was selected, because of its 

marked pyriform shape, to use as a test case for the various formu-

lae. In Figure 3, the Preston fit is superimposed on the egg outline: 

both are plotted �thinly,� so that the close fit is clear. The egg outline 

is drawn using the (xi,yij) pairs introduced at the start of Section 2.2: 

there are N = 3,488 points on each meridian, so the egg outline 

based on them is, for practical purposes, exact. The error, as defined 

at Equation (6), is 0.00091. Various derived quantities (Elongation, 

Pointedness, Polar Asymmetry, and equatorial diameter) are also 

marked on the figure.

In Figure 4, the Baker fit is illustrated for the same egg. The fit 

is poor (the error, as defined at Equation (6), is 0.0116) and, if the 

Baker fit were used to estimate our derived quantities, several 

of them would be in error. As can be seen from Figure 4, Polar 

Asymmetry would be vastly overestimated, because of the exces-

sively pointed end in the Baker fit. Elongation would be overesti-

mated and Pointedness would be underestimated. For this egg, it 

looks as though the equatorial diameter would be accurately esti-

mated through the Baker fit. Baker (2002) proposed omitting eggs 

like this, where the fit is poor, and that recommendation is followed 

by Stoddard et al. (2017, SM-p4, Figures S2 and S8.A). This is a seri-

ous drawback when applying the method to draw conclusions about 

the full range of avian egg shapes.

Comparing the fit in Figures 3 and 4, the error (given by Equation (6)) 

for the Baker fit (i.e. fitting Equation (4)) is more than 12 times that of 

the Preston fit. For comparison, the error for the Troscianko fit (i.e. 

fitting Equation (5) � illustrated graphically in Supporting Information 

Figure SF11) is five times that of the Preston error, and the error for 

the Carter fit (i.e. fitting Supporting Information Equation (SEq1)) is 17 

times that of the Preston error. For egg C126, the four- parameter ex-

tensions in Equations (7) and (8) and Supporting Information Equation 

(SEq2) give errors that are, respectively, 1.8, 2.7, and 3.4 times the 

Preston error. These last three all correspond to good fits �by eye,� 

as is illustrated in Supporting Information Figure SF12 for the one 

with the largest error (i.e. Supporting Information Equation (SEq1)) 

but they are still slightly poorer than the Preston fit. The method pro-

posed by Carter and Morley Jones (1970) produces 10.7 times the 

Preston error and the fitted egg has visible undulations, illustrated 

in Supporting Information Figure SF13, and so does not accurately 

capture this egg�s shape.

ƒĺƑՊ|ՊComparisons of fit over a seѴection of eggs

Figure 5 gives the errors of each method over a selection of 132 

eggs from ten species. It shows that the errors from Preston�s 

method are generally smaller than those of the others. The actual 

Preston errors range from 0.00064 to 0.00466, based on values 

of N that range from 1706 to 3622. Additional comparisons are in-

cluded in Supporting Information Section SupM6. These show that 

when the proposals of Carter (1968), Baker (2002) and Troscianko 

(2014) are augmented to each have four parameters, as in Equations 

Supporting Information (SEq2), (8) and (7), respectively, they provide 

fits of comparable quality to Preston�s.

For a circular egg profile, all methods work well, so Figures 5 and 

Supporting Information Figure SF2 cannot, and are not intended to, 

show that the difference in quality of the fit is important in all cases. 

Rather, they demonstrate that Preston�s method is satisfactory for 

F IGURE  ƔՊBoxplots comparing the error defined at Equation (6) 

(multiplied by 1,000) for the methods of Carter (1968), given in 

Supporting Information Equation (SEq1), the methods of Baker 

(2002) and Troscianko (2014), given in Equations (4) and (5), the 

method of Carter and Morley Jones (1970), described in Supporting 

Information Equation (SEq6), labeled CMJ, and the method of 

Preston (1953) given in Equation (2). The results are for 132 eggs 

of various species: 18 Uria aalge, 16 Uria lomvia, 7 Alca torda, 11 

Aptenodytes patagonicus, 10 Lanius collurio, 10 Phalacrocorax carbo, 

10 Gallus gallus domesticus, 10 Spheniscus humboldti, 10 Eudyptes 

pachyrhynchus, 30 Larus fuscus. The heavy line is the median, the 

boxes extend between the upper and lower quartiles, the whiskers 

extend to the minimum and maximum
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all eggs, including those where the alternatives proposed elsewhere 

work less well. Preston�s method is the best choice for providing a 

consistently accurate summary over a range of egg shapes.

ƒĺƒՊ|ՊThe importance of egg position

The validity of the Preston summary relies on the egg being hori-

zontal (i.e. the line through the poles being horizontal) when pho-

tographed. Otherwise, for example, the assumption of circular 

cross- section will be invalid and so using the Preston summary to 

obtain an egg volume will give an incorrect answer. Most birds� eggs 

do not rest naturally in a horizontal position. A pointed egg that is 

at rest will have its pointed end lower and its blunt end higher than 

would be the case if it were horizontal. Thus, the length will be fore-

shortened and so will be shortened when compared to the breadth. 

To explore the kind of biases this will introduce, data on 185 eggs 

of various species that were photographed in both the horizontal 

and in their resting position are compared in Supporting Information 

Section SupM7. It is clear from those results that marked biases are 

introduced if eggs in a resting position are used.

ƒĺƓՊ|ՊComparison of indices

For the three indices introduced here in Section 2.5, Elongation, 

Pointedness, and Polar Asymmetry, an interactive 3d- plot 

(Supplementary- Material2.html, see Data Accessibility) of their val-

ues on a large collection of eggs illustrates that, for pyriform eggs, 

each contains information not in the other two, as the cloud has 

marked scatter, regardless of the angle it is viewed from.

Preliminary observations on the relationships between various 

indices in Table 1 are in Supporting Information Section SupM8. The 

strength and form of these relationships will depend on the the col-

lection of eggs used. As the main focus is dealing satisfactory with 

pyriform eggs, the main data used to compare the indices are on 735 

Uria aalge eggs.

The shape of the correlation matrix in Supporting Information 

Figure SF7 shows four groups of indices, indicated by the high correla-

tions near the diagonal. We identify indices that typify these groups. 

The first corresponds to Elongation, the second to Preston�s (1968) 

bicone, the third to Pointedness, and the fourth to Polar Asymmetry. 

Thus, for the complexities of pyriform shape, just as four parameters 

are needed for the Preston fit, four shape indices capture different 

aspects of their shape. Of these four, Preston�s (1968) bicone is rather 

different from the other three, in that it is an index of the average 

curvature at the two poles, and seems less directly related to the main 

features of the shape. The other three provide a satisfactory basis for 

comparisons of pointedness in a general sense.

ƓՊ |ՊDISCUSSION

The demonstrated merits of Preston�s approach to summarizing 

egg shape make it a proper starting point for all future studies that 

aim to capture egg shape closely. Using it as the basis of quanti-

fying egg shape would allow the sorts of comparative study pio-

neered by Stoddard et al. (2017) to be conducted with rather more 

confidence.

The accuracy of the shape obtained means that the Preston pa-

rameters can be used to compute any desired biologically sensible 

indices without recourse to the original egg or its photograph. As 

noted already, other methods can provide an adequate summary of 

some eggs, but four parameters (as in Preston�s method) are needed 

to be assured of a good summary of all eggs. Even if the fit of a 

method is not as good as Preston�s, it may well be satisfactory for de-

riving with reasonable accuracy some egg characteristics. There will, 

for example, be only relatively minor differences in the estimate of 

egg volume based on different methods. However, in contrast, Polar 

Asymmetry is an example of an index where the parametric shape 

needs to mimic the shape of the actual egg closely at each pole to 

obtain an accurate estimate (c.f. Figures 3 and 4 and Supporting 

Information Figure SF11).

Given the effectiveness of Preston�s approach, a database sum-

marizing, through Preston parameters, a large collection of appro-

priately taken photographs of eggs would be a valuable resource for 

future research.

Errors of asymmetry and surface imperfections are incorpo-

rated into the error in the fitting. Thus, the consistently small er-

rors found here for the four- parameter models (see Supporting 

Information Figure SF1: maximum 0.005, three- quarters below 

0.002, where the egg has length one) indicate that these aspects 

are genuinely minor. There is a case for regarding a good smooth 

fit (like Preston�s) to the egg shape as being its �real� shape, with 

biological significance, with minor imperfections being genuinely 

insignificant randomness.

The quality of the Preston fit means that the way the photo-

graphs are taken and the processing of the images are important. 

The method of taking photographs and the adjustment for lens dis-

tortion are described in Birkhead, Thompson, and Biggins (2017, 

Supplementary Material).

The three indices Elongation, Pointedness, and Polar 

Asymmetry each measure aspects of egg shape in an intuitive 

way. For pyriform eggs, the results show that each of these indi-

ces contributes information about the egg�s shape that the other 

two do not. Of the other indices that have been proposed, none 

is clearly more suitable based on their correlations and the im-

mediacy of interpretation. An extensive comparative study of the 

range of indices proposed across a full range of egg shapes would 

be needed to establish fully their relative merits, their commonal-

ities, and their effectiveness at capturing biologically interesting 

aspects of shape.

ƔՊ |ՊCONCLUSION

We demonstrate that the method proposed by Preston (1953), 

and revisited in Preston (1968) and Todd and Smart (1984), works 
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accurately for all egg shapes and is better than the existing alter-

natives. The programs supplied provide a straightforward way to 

obtain the Preston parameters for a collection of suitable photo-

graphs and illustrate how to use these parameters to derive other 

egg characteristics. To use these methods, it is important that the 

photographs are of eggs positioned horizontally, otherwise biases 

are introduced. The present study establishes the value of using all 

three of the indices Elongation, Pointedness, and Polar Asymmetry 

when pyriform eggs are being considered.
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Ovoid�: Consequently, his approach to the bio-mechanical under-

standing of egg formation is automatically constrained to produce 

egg shapes in this class.
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p9), but that one is incorrect (C. Deeming, pers com, January 2018).
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