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Abstract
Projections of UK greenhouse gas emissions estimate a shortfall in existing and planned climate

policiesmeetingUKclimate targets: theUK'smitigation gap.Material and product demand is driv-

ing industrial greenhouse gas emissions at a rate greater than carbon intensity improvements in

the economy. Evidence shows that products can be produced with fewer carbon intensive inputs

and demand for new products can be reduced. The economy-wide contribution of material pro-

ductivity and lifestyle changes to bridging the UK's mitigation gap is understudied. We integrate

an input-output framework with econometric analysis and case study evidence to analyse the

potential of material productivity to help the UK bridge its anticipated emissions deficits, and

the additional effort required to achieve transformative change aligned with 2 and 1.5◦C tem-

perature targets. We estimate that the emissions savings from material productivity measures

are comparable to those from theGovernment's planned climate policy package. These additional

measures could reduce the UK's anticipated emissions deficit up to 73%. The results demonstrate

that material productivity deserves greater consideration in climate policy.
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1 INTRODUCTION

Material use contributes to climate change, one of the most pressing sustainability issues humanity faces (Krausmann, Schandl,

Eisenmenger, Giljum, & Jackson, 2017; Rockstrom et al., 2009; Steffen et al., 2015). Greenhouse gases (GHGs) are emitted during the extraction

of resources, the processing of raw materials, the manufacturing of final goods, the use of products and eventually when disposed of as waste

(Steinberger, Krausmann, & Eisenmenger, 2010). On a global scale, material use is showing limited signs of decoupling from economic growth

(Wood et al., 2018a). While it is material and product demand that drives industrial emissions (Scott, Roelich, Owen, & Barrett, 2018), climate

change mitigation assessments are overwhelmingly framed around an economic and technical assessment of low carbon energy technologies

and improved energy efficiency (Detlef et al., 2016; Pauliuk, Arvesen, Stadler, & Hertwich, 2017), with limited attention to material and product

demand (Creutzig et al., 2016).

Climate mitigation assessment methods have been dominated by integrated assessment models (IAMs) and cost-optimisation models (of the

energy system) (Creutzig et al., 2016; Mercure et al., 2016) including computable general equilibrium models (CGEs). IAMs traditionally focus on

in-situ industries and technologies that use energy, for example power stations, modes of transport and home heating, with recent exceptions

where authors have integrated supply chain analysis withmore conventional models, for example seeDaly, Scott, Strachan, and Barrett (2015) and

Arvesen, Luderer, Pehl, Bodirsky, and Hertwich (2018), Pehl et al. (2017). The conventional models tend to ignore interconnecting supply chain

energy use with patterns of everyday material and product consumption for mobility, comfort, nutrition and leisure, for example (Brand-Correa

& Steinberger, 2017; Hoolohan, Mclachlan, & Mander, 2016). By not allocating emissions to goods and services they become embodied in, this
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accumulation of emissions inmaterials and products tomeet society's needs does not enter decisionmaking processes. For example, while only 9%

of emissions produced in the EUare emitted from service andmanufacturing sectors directly—and thereforewould not be highlighted as a priority

for mitigation in these models — they embody 22% and 26% of emissions respectively to satisfy EU consumption as they are significant procurers

of GHG-intensive materials and products along their respective supply chains (Scott et al., 2018). Taking a supply chain or embodied perspective

therefore identifies further intervention opportunities in the way products are designed, sold, used and disposed of (Scott et al., 2018), which we

define in this paper as material productivity measures.

Economic-based analyses tend to reduce behaviour changes to a maximising utility function which assumes agents ‘carry out an exhaustive

ranking of their preferences over all possible products in all existing markets’ (Mercure, Pollitt, Bassi, Viñuales, & Edwards, 2016), without consid-

ering other intrinsic attitudes and habits or external societal and institutional factors (Jackson, 2005). Consumers (both intermediate and final)

are considered as rational actors (Levine, Chan, & Satterfield, 2015; Spence & Pidgeon, 2009; Wong-Parodi, Krishnamurti, Davis, Schwartz, &

Fischhoff, 2016). For example, firms are assumed to ‘minimise their costs by choosing an optimal combination of intermediate inputs’ (Duarte et al.,

2016), which presumes companies always make fully rational choices holding all the relevant information in front of them to exhaust all options

to maximise the efficiency/ reduce the impacts of their supply chains. Households are assumed to behave as a single homogenous agent, acting to

maximise their utility (i.e. buying as much stuff as they can at the least cost), holding full information on all goods offered on the market to make

rational choices, yet we know real world decision making deviates from the principles of rational choice (Mccollum et al., 2017; Mercure et al.,

2016; Scrieciu, 2007). Such simplified assumptions have resulted in policies falling short of achieving their technical potential because of unrealis-

tic assumptions around human behaviour (Whitmarsh et al., 2011; Wong-Parodi et al., 2016). Therefore, current dominant models are unlikely to

adequatelymodel themitigation potential of material productivitymeasures as they largely fail to understand how emissions become embodied in

material and products and they have unrealistic representations of consumer behaviour.

To overcome the methodological drawbacks of climate assessments described here some scholars apply qualitative or case study evidence to

simulate consumer behaviour based on quantitative consumption-based modelling techniques such as footprinting (Barrett & Scott, 2012; Wood

et al., 2018b). A GHG footprint is:

“the direct and indirect greenhouse gas emissions … required to satisfy a given consumption. This can be a product, an activity or a set of

products or activities” (Minx et al., 2009).

GHG footprinting is a complementary indicator to monitor and assess progress towards meeting climate targets and can appraise the mitiga-

tion potential of demand-side measures (Barrett et al., 2013; Scott & Barrett, 2015). Studies using footprinting or life-cycle based techniques (e.g.

material flow, life-cycle and input-output analysis) havedemonstrated that improvedmaterial productivity isworthpursuing, if not a necessary pre-

condition, for achieving global climatemitigation goals (Barrett&Scott, 2012;Cooper et al., 2017;Girod, VanVuuren, &Hertwich, 2014; Liu, Bangs,

&Muller, 2013; Milford, Pauliuk, Allwood, &Müller, 2013; Pauliuk andMüller, 2014). In spite of this, interventions to improve material productiv-

ity have yet to be seriously considered as an effective policy response (Scott & Barrett, 2015). Options being discussed in the literature include

infrastructures being utilised more effectively through shared assets (increased asset utilisation); using products for longer (product longevity);

designing products with fewer material inputs (product design); and reducing absolute levels of consumption (reducing consumption) and waste

(waste reduction). These require both redesign in industry and lifestyle changes.

Input-output (IO) models, which calculate GHG footprints at themacro scale, offer a framework to assess the economy-wide effects of changes

in technologies and consumption patterns (Wood et al., 2018b). IOmodels trace emissions along supply chains fromproduction to the final demand

for products by following the monetary purchases and sales of sectors (Skelton, Guan, Peters, & Crawford-Brown, 2011; Wiedmann, 2009). This

process monitors the pull and push effects of sectors on an economy (Wu& Zhang, 2005). Pull effects describe the consumption of a large amount

of intermediate sector inputs and push effects describe the demands, from both intermediate sectors and final consumers, for a sector's output.

Using IO analysis each unit of emissions from production activity is uniquely attributed to a region of final demand, through complex supply chains

and avoiding double counting (Skelton et al., 2011; Skelton, 2013). The analysis is able to reflect the actual emissions intensity of industries in

different countries and allocate production activity in one country by intersectoral and trade monetary transactions to final demand in another

country (Giljum, Bruckner, &Martinez, 2015). Whilst it would be more accurate to trace physical flows in the transformation of goods to services,

data limitations have meant that IO analysis uses aggregate monetary transactions, which are collected as part of national accounting systems

(Giljum et al., 2015), as a proxy of material and product flows between economic sectors and regions (Skelton, 2013).

Some researchers have developed dynamic IO models to simulate material use and emissions to 2050 by endogenously mapping economic

structures as a response to price changes (Distelkamp & Meyer, 2019; Giljum, Behrens, Hinterberger, Lutz, & Meyer, 2008; Lutz & Meyer, 2009).

For example, a reduction in material inputs to a selected sector changes the price and profits, which are redistributed through the economy, or

a tax is applied to material extraction industries which increases their costs and reduces demand for them. In this paper we focus on non-price

simulations, which Dietz, Gardner, Gilligan, Stern, and Vandenbergh (2009) suggests introduces a behavioural realism that is lacking in technology

and economic assessments.

Wood et al. (2018b) summarise the three main options for exogenously modelling consumption-based interventions using an IO framework:

(1) changing consumption patterns including a reduction in overall consumption; (2) modifying the inputs required for production in the industry

(e.g., modifying the recipes of production); and (3) reducing direct emissions through, for example, pollution control or improved efficiency. They
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use case study evidence to identify the potential reduction of annual flows to and from EU clothing and food sectors. Lekve Bjelle, Steen-Olsen,

and Wood (2018) assess to what extent Norwegian households can lower their GHG footprint through implementing a set of behavioural

actions evidenced in the literature. Emissions and economic impacts of current behaviour are compared to a better performing alternative, then

scaled up to yearly savings per household. They include an analysis of the rebound effect whereby any monetary savings to households from

demand reduction is re-spent and therefore diminishes the emissions saving without this re-spend. Cooper et al. (2017) analyse industrial energy

demand reductions achieved across product supply chains through a range of circular economy opportunities applied to a 2007 baseline. They

investigate different strategies which either reduce the need for high impact inputs to produce products (‘putting less in’) or reduce the need for

products (‘getting more out’). All these studies analyse one point in time, and do not account for the evolving impacts of economic strategies and

decarbonisation from climate policies.

In contrast, Barrett and Scott (2012) incorporate projections of key IO variables (demand, production recipes and carbon efficiencies) into their

analysis of the contribution of resource efficiency measures to meeting UK 2050 climate targets. They model changes to the material demands of

both production systems and consumption patterns using IO,while reducing the emissions intensity of the electricity sector.DeKoning et al. (2018)

extrapolate IO variables to analyse future material demands based on technical and socio-economic considerations including economic growth,

material demands and efficiency improvements. Similarly, Wilting, Faber, and Idenburg (2008) projected the production structure of the economy

by using trend analysis combined with expert opinion to identify how the production inputs of sectors might change in the future. However, none

of these studies have included an analysis of the full suite of climate mitigation policies alongside resource efficiency options. This has prevented

an effective policy comparison.

2 RESEARCH AIMS

We use an IO framework to assess the economy-wide mitigation potential of material productivity and lifestyle measures for the UK towards

meeting its climate goals. The UK sets five yearly carbon budgets to ensure it is on track to meet an 80% reduction in GHG emissions produced

within its territory by 2050 (Commitee on Climate Change, 2008), and has a suite of climate policies focusing on energy used directly in the power

sector, industry, buildings and transport to meet these. At the time of analysis five carbon budgets had been set from 2008 to 2032. We measure

the (1) potential to help achieve the UK's fourth and fifth carbon budgets (2022-2032), which are anticipated to have a shortfall given existing and

planned climate policies (Department for Business Energy and Industrial Strategy, 2018), and (2) how much of the UK's carbon budget to achieve

transformative change alignedwith alternative 2◦Cand 1.5◦C temperature-related targetswill be exhausted by 2032. The novelty of our approach

lies inmeasuring the time dependency of emissions savings.We incorporate emission reductions from existing and planned climate policies as they

are deployed, enabling us to identify real additional emissions savings and the contribution to meeting longer term cumulative climate goals. We

compare the savings of thematerial productivity strategies to the suite of energy-focused UK climate policies.

3 METHOD

We develop a time series of emissions flows associated with the production and consumption of material and product demand in the UK using

an IO framework. We incorporate changes in the carbon intensity of UK production sectors; disposable household incomes; government and cap-

ital spend; and export demand using UK Government economic and emissions forecasts that are constructed using macro-econometric models

combined with policy interventions. In addition to this we then model changes in the way products are designed (production recipe) and the con-

sumption patterns of final consumers using case study evidence.We vary the ambition ofmaterial productivity strategies and the level of adoption

to explore uncertainty in potential emissions savings.

3.1 Analysis boundaries

Temporal - we analyse the potential formaterial productivity strategies to deliver UKGHGemission reductions in addition to existing and planned

climate policies, concentrating on the 4th (2023-2027) and 5th (2028-2032) carbon budget periods, which need further policies to bridge the

anticipatedmitigation gap.We include emissions from2013, the start of the second carbon budgetwhich is yet to be concluded, projected to 2032.

At the time of analysis only five carbon budgets had been set in legislation.We also calculate the remaining carbon budget the UK has to emit from

2032 to 2050 in linewith international climate objectives, and how soon these could be exhaustedwithout further policy intervention.Our analysis

takes into account changes in carbon intensities according to planned timings of technological and policy implementation; however, we assume the

material productivitymeasures are linearly implemented from2013 to theirmaximum in 2032 as there is limited information on howquickly these

strategies can be deployed. Hence, we have explored different rates of ambition in material reductions and adoption informed by our case studies.

The case studies demonstrate the feasibility ofmaterial productivitymeasureswithin a specific (often very local) context and are not only hindered

by technology availability, but also institutional and societal barriers including a lack of policy incentives and public acceptance.
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Geographic – to measure the contribution of material productivity strategies to meeting UK carbon budgets we are only interested in emis-

sions savings within the UK. This is not to say we don't think the UK is responsible for reducing emissions in other countries to satisfy its con-

sumption demands — the UK could take on greater responsibility to reflect its global economic status (Meinshausen et al., 2015; Scott & Barrett,

2015; Steininger et al., 2014). However, we want to reflect the current political reality that UK carbon budgets will be met by reducing domestic

emissions. While by definition GHG footprints include emissions embodied in imports and exclude those embodied in exports destined for final

consumption elsewhere, we only include emissions produced in the UK embodied in products consumed domestically, and emissions embodied in

products for export. In other words, we model changes to the way UK products are made and the demand for UK products. In our model we set

imported emissions to zero and therefore only emissions within the scope of domestic targets are considered, albeit emissions would be reduced

along product supply chains outside the UK. These further emission reductions in supply chains outside the UK would substantially increase the

calculated domestic emission reductions.

Products/ sectors – in terms ofmaterial productivity strategies we focus on the design and demand formaterials and goodswith a high embod-

ied GHG content: textiles, food and drink, vehicles, construction, electronics and packaging. According to our analysis, these sectors contribute

14% of the industrial emissions released within the UK territory in 2013, yet embodied nearly a quarter of UK emissions (23%) (see the support-

ing information available on the Journal's website, sheet A). Underlying material productivity strategies are improvements in the carbon intensity

of production from existing and planned UK climate policies, which includes residential demand for heating and travel. We do not target service

sectors directly, however, we domodel the use of products in the provision of services (i.e. along their supply chains).

3.2 Emissions embodied in the final consumption of UK products

Insteadof allocating emissions to the sector inwhich they are physically produced (‘emissions by source’), weuse theUKmultiregional input-output

model (MRIO) (Owen et al., 2017) to allocate UK emissions for the year 2013 to the final product they become embodied in. These final products

are consumed both in the UK and abroad by households and governments or represent large capital spend.

Goods and services are classified by 106 sectors (also referred to as product groups) according to the UK Standard Industrial Classification

system (Office for National Statistics, 2009) and we aggregate the global economy into a two region model of the UK and the Rest of the World

(RoW) reflecting how theUK trades in goods and services. By retaining a two-region structurewe are able to capture emissions thatwere exported

and then reimported to the UK across international supply chains. Embodied emissions are calculated using the standard Leontief demand-pull

model. GHGs emitted directly by UK sectors are reallocated to final consumers (including exports) by following products through multiple trade

and transformation steps using Equation (1):

q = e(I − A)−1Ŷ (1)

Where q is a vector of embodied emissions by sector, e the GHG intensity of UK production sectors (RoW intensities are set to zero), I represents

an identity matrix,A is the technical coefficients matrix and Ŷ is a diagonalised vector of the total household, government and capital final demand

in the UK and RoW, including UK goods exported to RoW. The technical coefficients matrix (A) accounts for the proportion of intermediate inputs,

both domestic and foreign, that a sector within a country requires to produce one unit of output, also known as a production recipe. The term

(I − A)−1 is known as the Leontief inverse (L), which calculates the extent to which output rises in each sector derived from a unit increase in final

demand.

3.3 Projections

We project the (1) carbon intensity of UK production; (2) level of UK household demand; (3) government and capital expenditure; and (4) demand

for UK exports, usingmacroeconometricmodelling; and (5) changing production recipes and demand patterns using case study evidence, similar to

Wilting et al. (2008) and (Wood et al., 2018b). See Table 1 for a summary of data sources.

3.3.1 UK energy, economy and emissions projections

Since the late 1970s, theUKGovernment has published projections of energy demand and supply, and in the 1990s thesewere extended to include

projected carbon dioxide (CO2) and other GHG emissions (Department for Business, Energy and Industrial Strategy, 2017). The Department for

Business, Energy & Industrial Strategy (BEIS) is responsible for publishing these projections annually. Within their model, demand for energy is

projected using a series of econometric equations that relate energy demand to its key drivers such as economic growth, international fossil fuel

prices, carbonprices, population, disposable incomeand thenumberof households. Electricity producersmeet demand throughaiming tomaximise

their returns on investment. Emissions factors convert energy demand by energy source into emissions. Demand is adjusted to take account of the

policy impacts where energy demand is reduced. The energy and emissions projections estimate cumulative emissions savings from an appraisal of

climate policies and are used tomonitor progress towards achieving carbon budgets. Policies are categorised as expired, implemented, adopted or

planned.
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TABLE 1 Summary of data sources used for emissions projections

IO VARIABLE DESCRIPTION DATA SOURCE

ENERGY, ECONOMY
ANDEMISSIONS

UK carbon intensities (e) Based on estimated emissions savings from
existing and planned climate policies,
alongside energy supply analysis

BEIS energy and emissions projections
(Department for Business Energy and Industrial
Strategy, 2018)

Aggregate level of
household expenditure
(a component of y)

Central estimate from econometric trends of
real disposable household income

UKOffice for Budget Responsibility's (OBR)
economic and fiscal outlook used in BEIS energy
and emissions projections (Department for
Business Energy and Industrial Strategy, 2018)

Government and capital
spend (a component
of y)

Central projections of real UK economic
growth

UKOffice for Budget Responsibility's (OBR)
economic and fiscal outlook used in BEIS energy
and emissions projections (Department for
Business Energy and Industrial Strategy, 2018)

Foreign expenditure on UK
exports (a component
of y)

Central projections of real world GDP International monetary Fund'sWorld Economic
Outlook until 2022 thereafter following UK
GDP growth projections used in BEIS energy
and emissions projections (Department for
Business Energy and Industrial Strategy, 2018)

MATERIAL
PRODUCTIVITY

Production recipes (A) Reducematerial inputs through redesigning
differently

Case study evidence (supporting information on
theWeb, sheet B)

Final consumption
patterns (a component
of y)

Reduce demand for final products Case study evidence (supporting information on
theWeb, sheet B)

Using BEIS energy and emissions projections we model two climate policy scenarios to determine UK emissions from 2013 to 2032 given (1)

existing climate policies are implemented and (2) known and planned climate policies are implemented (the emissions scenarios are shown in the

supporting information on theWeb, sheet C). UK CO2 emissions are projected by 109 source sectors specified by IPCC (Intergovernmental Panel

on Climate Change)1 reporting requirements, and non-CO2 GHGs by nine high level sectors, whereas the IO represents 106 sectors according to

Standard Industrial Classification (SIC) used mainly in economic accounting. Despite being close in number, the classification systems are quite

different.WemapCO2 and non-CO2 emissions projections to SIC sectors to develop IO-compatible production emissions data. See the supporting

information on theWeb, sheets D and E, for themapping between classification systems.

To calculate the carbon intensity of UK production sectors (e), the UK's sectoral emissions (f) are divided by economic output (x) of each sector

(i) (Equation (2)):

ei =
fi
xi

(2)

For future carbon intensity projections et+1
i

,we use official production emissions projections by sector (i) at five year time intervals (t + 1). A

change in output (x) is determined by a change in final demand,2 using Equation (3):

et+1
i

=
ft+1
i∑j=n

j=1 aijxj + yt+1
i

(3)

BEIS climate policy projections are underpinned by central demographic, economic and price estimates (detailed in Department for Business

Energy and Industrial Strategy (2018)). The econometric trends of household disposable income (yj) are used to project levels of household spend-

ing to 2032 in the IO framework. At this stage the pattern of spend is held constant. Government and capital spend (yj) follows estimated eco-

nomic growth in theUKwhereas demand for UK exports follows estimates ofworld economic growth. Increased spending (yt+1) ismodelled by the

Hadamard product of the vector of the original final expenditure (yt) and a vector of rate of growth for the new year (gt+1)3 (Equation (4)):

yt+1 = yt ⊙ gt+1 (4)

The Leontief equation is used to reallocate the emissions projections by source sector to the final products they become embodied in for the

two climate policy scenarios, using Equation (5):

qt+1
climate

= et+1 (I − A)−1 ŷt+1 (5)

1 The IPCC requires only the reporting of CO2-related GHGs

2 IO analysis is a demand drivenmodel and the size of the economy adjusts tomeet an increase in demand

3 g is a matrix representing growth across four final demand column's spending on 106 sectors. The growth rate within each consumer's final demand for products is the same, however the growth

rate varies by final consumer
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TABLE 2 Summary of material productivity strategies

SECTOR PUTTING LESS IN (PRODUCTION) GETTINGMOREOUT (CONSUMPTION)

CLOTHING& TEXTILES Reduce supply chain waste through efficiency improvements in
fibre and yarn production, dyeing and finishing

Dispose of less and reusemore
Dispose of less and recycle more
Use for longer

FOOD&DRINK Reduce avoidable foodwaste in food services and hospitality
sectors

Reduce avoidable household foodwaste

PACKAGING Reduceweight of packaging (metal, plastic, paper, glass)
Waste prevention

n/a

VEHICLES Reduce steel, aluminium and additional weight without
material or alloy changes

Yield improvement (metals) in car structures through cutting
techniques

Steel fabrication yield improvement
Reuse discarded steel products

Shift from recycling to refurbishing
Car clubs
Use cars longer

ELECTRONICS,
APPLIANCES AND
MACHINERY

Reduce steel withoutmaterial or alloy changes
Steel fabrication yield improvement
Reuse discarded steel products in industrial equipment

Sharing less frequent electrical appliances (e.g. hoovers),
power tools and leisure equipment

Use for longer
Remanufacturing instead of throwing away

CONSTRUCTION Design optimisation to reducematerial inputs
Material substitution
Material reuse

n/a

Furniture* Reduce steel withoutmaterial or alloy changes Dispose of less and reusemore
Dispose of less and recycle more

*Emissions embodied in furniture was less than 1MtCO2e therefore we include savings in the overall emissions, but do not show them in the sector level analysis.

Where qt+1
climate

is the new embodied emissions by product vector calculated at five-year intervals from 2013 up to and including 2032 from the

revised improvements in carbon intensities and growth in final demand. Annual emissions between the five-year time periods are linearly inter-

polated. Changes to production recipes and the pattern of final demand are described in the next sub section and determined by the material

productivity case studies.

3.3.2 Material productivity scenarios

We gathered evidence from 43 case studies across the six manufactured products to indicate how they could be redesigned using less carbon

intensive inputs (‘putting less in‘), or the demand for new products reduced so that we get more use out of them (‘getting more out‘) (Table 2), as

done in Cooper et al. (2017) (see the supporting information on theWeb, sheet B for the full descriptions). In each casewe identified the consumer

and supplier of thematerial/ product according to the 106 sectors classified in theUKMRIO and the transactions flow affected in the input-output

model. The emissions associated with the transactions flows reduce in time as climate policies are implemented.

The level of change of the transactions flow is determined by two variables: the reduction level of material/ product use (m) (an indication of the

material ambition of a strategy) and the rate of adoption by the consumer (c). A low, medium and high scenario was modelled for each case study

to reflect an uncertainty range in the ambition and adoption of a given strategy. The high estimate reflects a maximum technical potential in the

case of redesigning products, or demand reduction levels higher than seen in existing case studies with 100% adoption in most cases. The lower

level estimate reflects case studies of proven potential with relatively lower levels of adoption in the region of 33% inmost cases. Themid-estimate

reflects best case estimates with 66% adoption rate. This is similar to the technical penetration and implementation variables modelled in Wood

et al. (2018b), however wemodel a scale onwhichwewould expectmitigation results to sit given uncertainties in ambition and deployment, and to

indicate potential beyond that which is found in current case studies. A low carbon transition will require radical reductions in the waywe produce

and consumematerials and products andwe could have been evenmore ambitious in some of our case studies.

For each input (row i) to an intermediate production recipe (column j) vector aij of the A matrix affected by an intervention is defined by

Equation (6):

at+1
ij

= atij ∗
(
1 −

(
ms
ijc

s
ij

))
(6)

where at+1
ij

is the new production recipe at time (t + 1)(2032); ms
ij
is the unique level of material/ product use of a given strategy, s; and cs

ij
is the

adoption rate of policies of a particular strategy. Each element in a columnof theAmatrix represents the portion of the production recipe that each

industrymakes to the total product.We assume thatwhen a product ismade differently and requires less spend on a particular industry, this spend

is effectively reallocated to value added to ensure that the rowand column sums in the IOaremaintained. Each strategy has a unique factor that is a

combination of an industry and product interaction.m and c are on a scale of 0 to 1, with 0 representing no change and any number higher than this
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represents a reduction in the currentmaterial use and adoption rate. For example, anm value of 0.1 equates to 10%material reduction, for example

10% less steel inputs to manufacture cars. This follows for the adoption rate. Likewise, the same approach applies for each sector input (row i) to

a final consumer (column j) for final demand (Equation (7)), for example an 0.2m value equates to 20% reduction in material/ product demand, for

example a 20% reduction in clothes purchased by final consumers:

yt+1
ij

= ytij ∗
(
1 −

(
ms
ijc

s
ij

))
(7)

Embodied emissions are calculated individually for each material productivity case study, in addition to climate policies, using the standard IO

equation (Equation (8)):

qt+1
materials

= et+1
(
I − At+1

)−1
ŷt+1, (8)

and emissions savings, v, are calculated by subtracting the new embodied emissions results from the embodied emissions of the climate policy

scenario (Equation (9)):

vt+1 = qt+1
climate

− qt+1
materials

(9)

The emissions saving is calculated for 2032 (t + 1) and results are linearly interpolated between 2013 and 2032. This assumes the material

productivity strategies are implemented incrementally, reaching maximum implementation in 2032, whereas we were able to implement climate

policies at five year intervals because the official government emissions projections had the temporal detail.

The cumulative emissions savings of ‘putting less in’ and ‘getting more out’ material productivity scenarios are calculated by implementing all

strategies inone calculation fordifferingmaterial/ product useand implementation ratesusing the standard IOcalculation toavoiddouble counting

(see the supporting information on theWeb, sheet F). There are additional material productivity options that we have not been able to model, due

to a lack of extrapolatable case study evidence. These include strategies to extend the lifetimes of buildings and packaging.We have not provided a

comprehensive list, nor an upper bound of potential reductions frommaterial productivity, but an estimate based on available case study evidence

that can be applied within ourmodelling framework.

We chose not to model the rebound effect, where cost savings from reduced demand are re-spent on additional products (Arvesen, Bright, &

Hertwich, 2011; Sorrell, 2010; Sorrell, 2015), as wewould expect the pricing structures to change as a result of the implementation of the demand

reduction strategies, adding an additional layer of uncertainty. By allocating money saved from reducing intermediate spending on inputs to value

added allows the emissions intensities of the industries to remain the same and isolates the emissions effect of a change in production recipe

without considering further rebounds.

3.4 Progress towards longer term international climate objectives

Carbon budgets will need to be set beyond 2032 in line with global climate agreements. We compare the cumulative emissions across our climate

and material productivity emissions scenarios to 2032, with cumulative emissions budgets associated with three alternative temperature-related

2050 carbon targets:

• 66% chance of 1.5◦C–Global emissions converge to an average global per capita emissions point in 2050which does not exceed the total cumu-

lative budget to keep average global temperature rise to less than 1.5◦C

• 66% chance of 2◦C – Same as above but for 2◦C

• UK 80% target – the existing UK 2050 climate target is equivalent to a 50% chance of exceeding 2◦C average global temperature rise, but is not

reconciled with a 2◦C global cumulative budget

This calculation tells ushowmuchof the2050carbonbudgets theUKwill haveemittedby2032according to thedifferentpolicy implementation

rates, and by assuming that 2032 emisson levels prevail we calculate the years till the 2050 budgets will be exhuasted.

3.5 Scenario summary

In summary, we model five scenarios (Table 3). Two relate to the implementation of existing and planned climate policies of the UK government,

and three introduce material productivity strategies across different levels of material use (varying from low to high ambition) and adoption. The

material productivity scenarios are intended to present a range of emissions savings related to uncertainty in the ambition and adoption of them.
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TABLE 3 Climatemitigation scenarios modelled

SCENARIO CLIMATE POLICIES ECONOMICVARIABLES MATERIAL PRODUCTIVITY

EXISTING Existing Central No policies

PLANNED Existing and planned Central No policies

MP_LOW Existing and planned Central Low ambition and adoption

MP_MEDIUM Existing and planned Central Medium ambition and adoption

MP_HIGH Existing and planned Central High ambition and adoption

TABLE 4 Carbon budgets, cumulative emissions and emissions surplus or deficit, Mt CO2e

CB2 CB3 CB4 CB5

POLICY IMPLEMENTATION EMISSIONSDESCRIPTION (2013–17) (2018–22) (2023–27) (2028–32)

CARBONBUDGETS Cumulative emissions 2,782 2,544 1,950 1,725

EXISTING POLICIES Cumulative emissions 2,657 2,424 2,081 1,958

PLANNEDPOLICIES Cumulative emissions 2,655 2,393 2,042 1,921

Budget surplus/deficit 127 151 −92 −196

MATERIAL PRODUCTIVITY - LOW Cumulative emissions 2,654 2,389 2,035 1,911

Budget surplus/deficit 128 154 −85 −186

MATERIAL PRODUCTIVITY -MED Cumulative emissions 2,650 2,375 2,013 1,880

Budget surplus/deficit 130 163 −63 −155

MATERIAL PRODUCTIVITY - HIGH Cumulative emissions 2,644 2,353 1,975 1,829

Budget surplus/deficit 134 175 −25 −104

4 RESULTS AND DISCUSSION

Most existing climate policies focus on the power sector. If the UK implements its existing and planned climate policies, emissions embodied in the

power sector will reduce to 8% by 2032, yet the UKwon't have met its legislated 4th and 5th carbon budgets. While energy used in manufacturing

is decarbonising, additional measures that reduce demand for materials and products is needed.

We present the scenario results in five sections. These in turn show:

(1) The economy-wide emissions savings over the four yet to be completed carbon budget periods (2013-2032). This indicates whether imple-

mentingmaterial productivity strategies, in addition to existing andplanned climate policies, canmeet theUK's economy-wide carbonbudgets;

(2) Acomparison of the cumulative emissions savings of economy-widematerial productivity strategies across the four carbon budgetswith exist-

ing and planned climate policies. This indicates whether the scale of reductions are comparable to climate policies;

(3) The emissions savings from combined ‘using less’ and ‘getting more’ strategies in the 4th and 5th carbon budgets (2023-2032) compared to

savings fromplanned (i.e. not savings fromexisting) climate policies. This indicateswhether combinedmaterial productivitymeasures can save

more carbon than planned climate policies;

(4) Emissions savings by sector in 2032. These are presented both in absolute terms and relative to each sector's total emissions. This indicates

which sectors have the highest absolute mitigation potential, and also highlights sectors that may have comparatively low absolute emissions

but save a higher proportion of them throughmaterial productivity measures;

(5) The percentage of carbon budgets associated with alternatively ambitious 2050 climate targets expended by 2032, and the years left till they

are exhausted, assuming emissions remain at 2032 levels. This indicates the additional emissions reductions required in future depending on

the ambition of longer term targets.

4.1 Bridging themitigation gap

Table 4 presents the legislated UK carbon budgets, modelled emissions under implementation of climate and material productivity scenarios, and

the cumulative emissions surplus or deficit. Negative values indicate a deficit. TheUK's planned climate policies are anticipated tomeet the second

and third carbon budgets, however, will leave a 92 and 196 Mt deficit in the 4th and 5th budgets. Depending on the ambition and adoption rate

of material productivity strategies, they are estimated to reduce the 4th budget deficit between 7 and 67 Mt (8–73%) and the 5th budget deficit

between 10 and 92Mt (5–47%).
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F IGURE 1 Emissions savings frommaterial productivity scenarios compared to UK climate policy savings

4.2 Comparisonwith climate policies

Figure 1 compares the scale of potential emissions savings from material productivity strategies to those modelled by BEIS for specific climate

policies over the second to fifth carbonbudgets.We find that the aggregate emissions savings frommaterial productivity strategies are comparable

to those from existing climate policies and are therefore worth pursuing.

Maximum savings from thematerial productivity strategieswe assessed across the 2nd to 5th carbon budgets (totalling 210MtCO2e) are equiv-

alent to those projected as a result of UK car fuel efficiency policies (173Mt) and building regulations (156Mt) that set minimum energy efficiency

requirements to conserve fuel and power in new buildings from 2002 to 2010 (Building Regulations Part L (2002+2005/6). In our medium deploy-

ment scenario (93Mt), savings are equivalent to the 8% target for biofuel use by diesel and petrol suppliers through the EU Renewable Transport

Fuel Obligation (RTFO) (81 Mt). Taking our lowest case scenarios we anticipate savings in the region of 23 Mt, similar to those anticipated from

Heavy Goods Vehicle (HGV) fuel efficiency policies and sustainable local transport plans.

4.3 Strategy emissions savings

We assessed strategies for reducing the inputs and demand for products in six sectors and compared this with emissions savings from planned

climate policies (i.e. not the savings fromexisting climate policies) over the 4th and5th carbonbudgetwhich are shown to have a deficit. This enables

us to compare savings from new policies yet to be legislated. Collectively the projected savings from material productivity strategies are greater

than those from planned climate policies (Figure 2). Savings from the individual strategies are given in the supporting information on the Web,

sheet B, however, we focus on the cumulative savings from production (‘putting less in’) and consumption (‘gettingmore out’) and the 6 key sectors.

A range of material productivity strategies will be needed and we are primarily exploring the economy-wide potential of material productivity to

bridge the UK's mitigation gap.

To bridge the mitigation gap there will need to be changes to both the design of products and their consumption. This is subject to consumer

preferences, business practices and policies (Barrett, Cooper, Hammond, & Pidgeon, 2018). Technical obsolescence has been designed into prod-

ucts for decades as a means for businesses to cut production costs and increase sales (Sherif & Rice, 1986). The low cost of products is currently a

major barrier to designing and using products for longer (Cox, Griffith, Giorgi, & King, 2013).While evidence suggests that consumers exhibit pref-

erences towards durable goods (Gnanapragasam, Cole, Singh, & Cooper, 2018), systems of production with planned (Satyro, Sacomano, Contador,

& Telles, 2018) and perceived (Wieser and Tröger, 2018) obsolescence needs to be overcome.4 On the one hand designers can lack the expertise to

create lighter or longer-lasting products (Bakker,Wang, Huisman, &DenHollander, 2014) whereas on the publics side shifts away from ownership

4 although this is not always the case with energy using products where improvements in energy efficiency are greater than the energy used to produce a new product



10 SCOTT ET AL.

F IGURE 2 Comparison of cumulative savings frommaterial productivity scenarios and planned climate policies for the 4th and 5th carbon
budgets
Note: Cumulative emissions savings from production and consumption side material productivity strategies for the 4th and 5th carbon budgets are relative
to the planned climate policies scenario and savings from planned climate policies are relative to the existing climate policies scenario. All savings are UK
territorial emissions only.

F IGURE 3 Range of territorial emissions savings by sector in 2032. a) shows absolute emissions savings and b) shows the percentage saving
relative to each sector's overall embodied emissions

of products to sharing schemes requires public acceptance of access-based costs, yet consumers share concerns about risks and responsibilities of

entering contract-based agreements (Cherry & Pidgeon, 2018).

4.4 Sector emissions savings

Figure 3 shows the range of emissions savings embodied in our 6 key sector outputs in 2032. Emissions savings are a proportion of territorial

emissions only, and not emissions embodied in imported supply chain components of these goods. In this chart we assume that decarbonisation

happens in linewith existing andplanned climate policies. Hence, the carbon intensity of the power used tomanufacture these goods is significantly

reduced from today. The stacked bars represent the different deployment rates.
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TABLE 5 Progress towardsmeeting longer-term climate targets (see section 2.4 for a description of the targets)

POLICY IMPLEMENTATION TIMEFRAME <66%1.5◦CCDC <66%2◦CCDC UK 2050 TARGET (80%)

CLIMATE PACKAGE Budget exhausted (%) 80% 74% 70%

Years/months till exhausted 5yr8m 8yr6m 9yr11m

MATERIAL PRODUCTIVITY-LOW Budget exhausted (%) 80% 73% 70%

Years/months till exhausted 5yr10m 8yr6m 9yr11m

MATERIAL PRODUCTIVITY-MED Budget exhausted (%) 80% 73% 70%

Years/months till exhausted 6 yr 8yr8m 10yr2m

MATERIAL PRODUCTIVITY-HIGH Budget exhausted (%) 79% 72% 69%

Years/months till exhausted 6yr4m 9yr1m 10yr6m

Planned climate policies are expected to save an additional 31Mt in 2032 compared to today's policies. The material productivity strategies

would further reduce these between 2 and 21MtCO2e (Figure 3a). This includes a 43%, 24%and 23% reduction in emissions embodied in vehicles,

construction, and clothing and textiles respectively (Figure 3b).

4.5 Remaining carbon budget

To calculate cumulative budgets associated with the alternatively ambitious 2050 targets we assume a linear reduction in emissions from 2032

until 2050 to achieve each target. Table 5 shows the percentage of budget exhausted by 2032 for different mitigation targets and years left till

exhausted assuming emissions remain at 2032 levels going forward.When comparedwith the UK's legally-binding 80% reduction target, adopting

high deployment material productivity strategies, including savings from BEIS’ climate policies, will exhaust 69% of the UK's cumulative budget by

2032, leaving 4,193MtCO2e to emit from 2032 to 2050. If the UK emits the same level from 2032 onwards this budget will be used up in 10 and a

half years, seven and a half years short of 2050. If the UK adopts the aspirations of the Paris Agreement to limit global temperature rise to 1.5◦C,

79–80% of the UK's 2050 budget by 2032will have been exhausted. The budget will be used up in less than six and a half years if the UK continues

to emit as it does in 2032, nearly 13 years short of 2050. Future carbon budgets will therefore need to restrict emissions greater than existing

budgets.

Introducingmaterial productivitymeasures in addition to climate policies only gives the UK extramonths, not years, until these carbon budgets

are exhausted. For example, if the UK adopts a 66% probability of remaining under 1.5◦C the budget will be exhausted in five years eight months

with the current climate package in place. Implementing maximum material productivity strategies would only buy the UK an additional eight

months. This shows the enormity of the challenge and the need to think about transforming material and product use considerably more than we

havemodelled here.

5 CONCLUSIONS

The rationale behind this modelling was to estimate the potential for material productivity strategies to bridge the UK's territorial mitigation gap

and that associated with international climate objectives. An IO framework enables us to calculate savings at the economy-wide level, compared

to more detailed bottom up studies looking at one particular product. Econometric analysis was used to project economic and emissions variables

in the IO framework, allowing us to assess the interactions between material productivity measures alongside climate policies which set cumula-

tive targets into the future. Case studies with ranges for ambition and adoption were used to simulate material productivity gains to introduce a

behavioural realism, investigate uncertainty and overcome limiting behaviour assumptions related to rational choice theory.

Wemeasured the (1) potential to help achieve the UK's fourth and fifth carbon budgets (2022–2032), which are anticipated to have a shortfall

given existing and planned climate policies, and (2) howmuch of the UK's carbon budget to achieve transformative change alignedwith alternative

2◦C and 1.5◦C temperature-related targets will be exhausted by 2032. Emissions savings from the case studies that wemodelledwere comparable

to those from the UK government's existing and planned climate policy package and could reduce deficits in the 4th and 5th carbon budgets by

up to 73% and 47% respectively. The stricter the climate goal in the future, the earlier we will exhaust a remaining carbon budget deemed fair for

the UK. Without further changes to those we have modelled here, the UK budget for an 80% reduction target will be exhausted in as little as 10

years, which could reduce to 6 years under a 1.5◦C scenario. This analysis demonstrates that material productivity deserves greater consideration

in climate policy.
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