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ABSTRACT

The Friends of Friends algorithm identifies groups of objects with similar spatial and

kinematic properties, and has recently been used extensively to quantify the distributions

of gas and stars in young star-forming regions. We apply the Friends of Friends algorithm

to N-body simulations of the dynamical evolution of subvirial (collapsing) and supervirial

(expanding) star-forming regions. We find that the algorithm picks out a wide range of groups

(1–25) for statistically identical initial conditions, and cannot distinguish between subvirial

and supervirial regions in that we obtain similar mode and median values for the number of

groups it identifies. We find no correlation between the number of groups identified initially

and either the initial or subsequent spatial and kinematic tracers of the regions’ evolution, such

as the amount of spatial substructure, dynamical mass segregation, or velocity dispersion.

We therefore urge caution in using the Friends of Friends algorithm to quantify the initial

conditions of star formation.

Key words: methods: numerical – stars: formation – open clusters and associations:

general – kinematics and dynamics.

1 IN T RO D U C T I O N

The majority of stars form in regions where the median stellar den-

sity exceeds the density in the Galactic field by several orders of

magnitude (e.g. Lada & Lada 2003; Bressert et al. 2010). These

young stars often follow a hierarchical or substructured spatial dis-

tribution (Cartwright & Whitworth 2004; Gutermuth et al. 2009;

Gouliermis, Hony & Klessen 2014; Kuhn et al. 2014; Wright et al.

2014; Jaehnig, Da Rio & Tan 2015) and also display correlated ve-

locities (i.e. low-velocity dispersions) and kinematic substructure

on local scales (e.g. Larson 1981; Jeffries et al. 2014; Foster et al.

2015; Hacar et al. 2016; Da Rio et al. 2017).

There is also mounting evidence that the gas from which stars

form also exhibits significant spatial (Cartwright, Whitworth &

Nutter 2006; Henshaw et al. 2016b; Williams et al. 2018) and

kinematic (Peretto, André & Belloche 2006; Hacar et al. 2013;

Hacar, Tafalla & Alves 2017) substructure, although analysis of

simulations that directly follow the conversion of gas to stars sug-

gests that the link between their respective spatial and kinematic

properties is highly non-trivial (Parker & Dale 2015; Vázquez-

Semadeni, González-Samaniego & Colı́n 2017; Kuznetsova, Hart-

⋆ E-mail: R.Parker@sheffield.ac.uk

†Royal Society Dorothy Hodgkin Fellow.

mann & Ballesteros-Paredes 2018) and may not be a direct one-to-

one mapping.

Quantifying how these spatial and kinematic structures form and

evolve is crucial in order to understand the typical environment

where most stars form, and the implications for planet formation and

stability (e.g. Scally & Clarke 2001; Adams et al. 2004; Parker &

Quanz 2012; Vincke, Breslau & Pfalzner 2015; Portegies Zwart

2016; Cai et al. 2017) as well as their collective evolution in the

context of Galaxy-scale astrophysical processes (e.g. Kereš et al.

2009).

A significant amount of effort has been invested in quantifying

both the spatial distributions in young star-forming regions (Larson

1995; Cartwright & Whitworth 2004; Kuhn et al. 2014; Jaffa et al.

2018) and the kinematic distributions (Foster et al. 2015; Wright

et al. 2016; Wright & Mamajek 2018). Recently, the Friends of

Friends algorithm, originally used to quantify clusters of galaxies

(Huchra & Geller 1982), has been used to quantify the initial stages

of star formation by simultaneously incorporating both the spatial

and kinematic information. This is usually realized by using the

x- and y-position and the radial velocity measurement of either gas

parcels, or individual stars.

The most notable result from these Friends of Friends analyses

has been the discovery of ‘bundles of fibres’ within filaments in

star-forming regions (Hacar et al. 2013; Hacar et al. 2017, 2018)

as well as significant substructure in both the distribution of gas

(Henshaw et al. 2016a) and of the protostars (Hacar et al. 2016; Da

C© 2018 The Author(s)
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1680 R. J. Parker and N. J. Wright

Rio et al. 2017). These results potentially indicate a universality in

the spatial and kinematic substructure in star-forming regions, but

crucially, the Friends of Friends method has not been extensively

tested on either synthetic data (Cartwright & Whitworth 2004; Lo-

max, Whitworth & Cartwright 2011; Parker & Goodwin 2015; Jaffa

et al. 2018), though a notable recent exception is the work by Clarke

et al. (2018), or on simulation data.

An exception to the latter is the work by Kuznetsova et al. (2018),

who show that the kinematic structures are likely influenced by

the accretion histories of the groups of stars. However, even star-

forming regions with a moderate stellar density (∼100 M⊙ pc−3)

evolve significantly in the first few Myr after star formation, and

an obvious avenue of investigation is the longevity of groups iden-

tified by the Friends of Friends algorithm during their subsequent

dynamical evolution.

Furthermore, no studies have tested the Friends of Friends al-

gorithm on multiple random realizations of the same distribution.

Tests of spatial distribution algorithms (such as the Q-parameter

or mass segregation algorithms; Cartwright 2009; Parker & Good-

win 2015) are essential to understand the significance of any single

observed (or simulated) result.

In this paper we test the Friends of Friends algorithm on N-body

simulations of the dynamical evolution of star-forming regions. The

paper is organized as follows. In Section 2 we describe the Friends

of Friends algorithm, and the N-body simulations we utilize. We

present our results in Section 3 and provide a discussion in Section 4.

We conclude in Section 5.

2 M E T H O D

In this section we describe the set-up of our N-body simulations and

the method used to define groups based on the Friends of Friends

method.

2.1 N-body simulations

Observations and simulations of the early stages of star forma-

tion both suggest that stars form with a spatially and kinematically

substructured distribution. (In part, this has inspired the prolifera-

tion of the use of Friends of Friends algorithms in star formation

studies (Hacar et al. 2013; Da Rio et al. 2017), as star-forming re-

gions are clearly inhomogeneous in terms of their spatial and kine-

matic properties.) To mimic this substructure, our simulated star-

forming regions are set up using the box fractal method described in

Goodwin & Whitworth (2004) and Cartwright & Whitworth (2004).

We direct the reader to Goodwin & Whitworth (2004), Allison et al.

(2010), and Parker et al. (2014) for full details of this method, but

we briefly summarize it here.

A box fractal is constructed by defining a ‘parent’ in the centre

of a cube of side Ndiv (we adopt Ndiv = 2), which spawns N3
div

subcubes. Each of these subcubes contains a first generation ‘child’

at its centre. The construction of the fractal distribution proceeds by

determining which of the children then go on to become parents. The

probability that a child becomes a parent is given by ND−3
div , where

D is the fractal dimension. This process is repeated recursively and

the final generation of children becomes stars, which are positioned

randomly within the fractal distribution. When the fractal dimension

is low, fewer children spawn their own offspring and the resultant

fractal distribution contains more substructure.

In two sets of simulations we present in this paper, the fractal

dimension is D = 1.6, which gives the highest degree of substructure

in a three-dimensional distribution. This is in order to facilitate the

detection of multiple groups of stars by the Friends of Friends

algorithm. A higher fractal dimension, e.g. D = 2.0 or 2.6, would

lead to fewer distinct groups of stars in the resultant distribution.

However, as we discuss below, the fractal dimension also governs

the velocity structure in our box fractal method and may influence

the way spatio-kinematic groups disperse, so we ran a further two

sets of simulations with the fractal dimension set to D = 2.0 and

2.6, respectively.

The velocities of the parents in the fractal are drawn from a

Gaussian with a mean zero, and the children inherit the velocities

of their parents plus an extra random component, the size of which

scales as ND−3
div (i.e. in a similar fashion to the spatial distribution)

and decreases through each successive generation. This results in a

kinematic distribution where stars on local scales have very similar

velocities, but on larger scales the velocities can be quite different.

In the box fractal method, on local scales of size L the velocities

scale as v(L) ∝ L3 − D. We expect the time-scale for the erasure of

substructure to be of the order of t(L) ∼ L/v(L), so for a fractal with

D = 1.6 the time-scale for the erasure of structure is t(L) ∝ L−0.4,

for D = 2.0 t(L) ∝ L, and for D = 2.6 t(L) ∝ L0.6. This implies that

structure is erased faster on large scales in the case of D = 1.6, but

erased faster on small scales in the cases of D = 2.0 and 2.6.

Interestingly, the D = 2.0 and 2.6 fractals are more consistent with

the Larson (1981) observed line-width relations,1 where v(L)∝L0.38

[and therefore t(L)∝ L0.6], so we might expect that spatio-kinematic

structure in observed star-forming regions would be erased faster

on smaller scales.

We scale the velocities of the stars to a virial ratio αvir = T/|�|,

where T and |�| are the total kinetic and potential energies, respec-

tively. In one set of simulations αvir = 0.3, i.e. subvirial, where the

global motion of the stars is to fall towards the centre of the po-

tential. In the second set of simulations αvir = 1.5, i.e. supervirial,

where the global motion is for the star-forming region to expand.

However, due to the (local) correlated velocities in the fractal dis-

tributions, a significant degree of violent relaxation (Lynden-Bell

1967) occurs (see Allison et al. 2010; Parker et al. 2014; Parker &

Wright 2016, for examples of the dynamical evolution of these types

of systems). In our simulations, violent relaxation occurs within the

substructure, while the global bulk motion of the simulation is either

to collapse (in the αvir = 0.3, subvirial case) or rapidly expand (in

the αvir = 1.5, supervirial case).

Each simulation contains N = 1500 single stars, drawn from the

Maschberger (2013) formulation of the initial mass function (IMF)

with a probability distribution

p(m) ∝

(

m

μ

)−α
(

1 +

(

m

μ

)1−α
)−β

, (1)

where μ= 0.2 M⊙ is the average stellar mass, α = 2.3 is the Salpeter

(1955) power-law exponent for higher mass stars, and β = 1.4

describes the slope of the IMF for low-mass objects (which also

deviates from the log-normal form; Bastian, Covey & Meyer 2010).

We sample this distribution in the mass range 0.01–50 M⊙.

The radii of our fractal star-forming regions are set to 1 pc.

This radius, and the degree of spatial substructure as set by the

fractal dimension, gives high to moderate local stellar densities

(ρ̃ ∼ 104 M⊙ pc−3 for D = 1.6, ρ̃ ∼ 103 M⊙ pc−3 for D = 2.0,

and ρ̃ ∼ 102 M⊙ pc−3 for D = 2.6), which means that the initial

1Note that recent work by Traficante et al. (2018) has shown that massive

star-forming clumps deviate quite strongly from the Larson (1981) relations.

MNRAS 481, 1679–1689 (2018)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
1
/2

/1
6
7
9
/5

0
9
0
1
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 1

9
 N

o
v
e
m

b
e

r 2
0
1
8



Evolution of Friends of Friends 1681

Table 1. Summary of the variables in the initial conditions of our N-body

simulations. The columns are the fractal dimension, D, the virial ratio, αvir,

and the local density ρ̃.

Fractal

dimension Virial ratio Local density

D = 1.6 αvir = 0.3 ρ̃ ∼ 104 M⊙ pc−3

D = 1.6 αvir = 1.5 ρ̃ ∼ 104 M⊙ pc−3

D = 2.0 αvir = 1.5 ρ̃ ∼ 103 M⊙ pc−3

D = 2.6 αvir = 1.5 ρ̃ ∼ 102 M⊙ pc−3

substructure will dynamically evolve. It is unclear if there is a typi-

cal initial density for star formation (and if there is one, what it is;

Marks & Kroupa 2012; Parker 2014; Parker & Alves de Oliveira

2017), but ρ̃ ∼ 103 − 104 M⊙ pc−3 is consistent with models of the

formation and evolution of the Orion Nebula Cluster (Allison et al.

2010; Allison & Goodwin 2011).

In summary, we evolve four sets of N-body simulations, each

with the same number of stars and initial radius, but we vary the

initial degree of substructure, the initial local density, and the ini-

tial virial ratio αvir. We use the kira integrator in the Starlab

environment (Portegies Zwart et al. 1999, 2001) to evolve the star-

forming regions for 10 Myr. We do not include stellar evolution. A

summary of the simulation initial conditions is given in Table 1.

2.2 Friends of Friends group detection

As with other recent work (Hacar et al. 2013, 2016; Da Rio et al.

2017; Kuznetsova et al. 2018), we base our Friends of Friends

detection algorithm on the original method for classifying clusters

of galaxies in redshift space by Huchra & Geller (1982). We perform

our analysis using the full six-dimensional information available

(x, y, and z, as well as the corresponding velocity components vx,

vy, and vz). Most observational studies are done in three dimensions

(usually x, y, and vz), but we have verified that our results do not

significantly differ if done in fewer dimensions. However, by using

the full 6D information we would expect the Friends of Friends

algorithm to identify real group structures without being hampered

by projection effects.

The algorithm proceeds as follows. If a star is not yet assigned

a group, we search for companions to that star that are less than a

distance dL and a velocity difference less than vL. If the nearby star

fulfils both criteria then we start a new group and add companions

that are less than dL and vL from any star in the group. If no further

stars fulfil the criteria another unassigned star is chosen randomly

and we repeat the process.

Arguably, the most challenging aspect of the Friends of Friends

analysis is to define the distance and velocity thresholds, dL and vL,

above which stars are assigned into different groups. Because we

are analysing multiple N-body simulations, each containing multi-

ple snapshots of data, we have automated the process of defining

dL and vL. We create an ordered list of all possible separations be-

tween stars, and all possible differences in velocity. We set dL to

be the median separation divided by three (�̃r/3) and vL to be the

median velocity difference (�̃v). There is no real physical basis

behind these choices, other than they divide the star-forming re-

gion into a reasonable number of groups (i.e. 1–20). These thresh-

olds vary from simulation to simulation (and over time), but the

initial values are typically �̃r/3 ∼ 0.3 pc and �̃v ∼ 1 km s−1,

which are similar to the threshold lengths adopted in observa-

tional studies (Hacar et al. 2016; Da Rio et al. 2017). However, we

note that dividing a hierarchical fractal distribution into constituent

groups is somewhat artificial, and we discuss this issue further in

Section 4.

Finally, in order to mimic observational studies, and to avoid the

potentially artificial imposition of boundaries, we set an automatic

stellar density threshold where any star that resides in the lowest

quartile of an ordered list of stellar densities is not assigned to

a group. This is intended to reduce the prospect of ‘bridges’ of

only one or two stars between groups causing the algorithm to

merge two otherwise distinct groups. However, as we will see, this

conservative threshold does not alleviate confusion in the Friends

of Friends group detection.

2.3 Other kinematic and spatial measures

In Section 3 we will also look for a dependence of the number of

groups identified by the Friends of Friends algorithm on other kine-

matic and spatial measures. These techniques have been presented

in previous papers so we direct the interested reader to the relevant

literature, however we briefly summarize them here.

We determine the Q-parameter (Cartwright & Whitworth 2004;

Cartwright 2009; Lomax et al. 2011; Jaffa, Whitworth & Lomax

2017), which compares the average length of the edges on the

minimum spanning tree of all the stars in a region, m̄, to the average

separation between stars, s̄:

Q =
m̄

s̄
, (2)

where Q < 0.7 indicates a substructured distribution and Q > 0.9

indicates a smooth, centrally concentrated distribution. In Section 3

we will plot Q against three other measures.

First, we will take the ratio of the statistical radial velocity disper-

sion (the velocity measured along the z-axis), σ , to the interquar-

tile range (IQR) of the radial velocities (σ /IQR). Parker & Wright

(2016) show that this ratio exceeds unity for clusters that have

formed via violent relaxation and merging of substructure. Sec-

ondly, we determine the relative surface density of the most mas-

sive stars, 	LDR, by comparing the median surface density of the

10 most massive stars 	̃10 to the median surface density of all stars,

	̃all (Küpper et al. 2011; Maschberger & Clarke 2011; Parker et al.

2014):

	LDR =
	̃10

	̃all

, (3)

where 	 ≫ 1 indicates that the most massive stars are in areas of sig-

nificantly higher than average stellar density. Finally, we will follow

the evolution of the mass segregation ratio, 
MSR, which compares

the length of the minimum spanning tree of the NMST most massive

stars, lsubset, to the average length 〈laverage〉 of NMST randomly chosen

stars (Allison et al. 2009). There is a dispersion associated with the

average length of random MSTs, which is roughly Gaussian and

can be quantified as the standard deviation of the lengths 〈laverage〉

± σ average. Instead of using σ average, we conservatively estimate the

lower (upper) uncertainty as the MST length which lies 1/6 (5/6)

of the way through an ordered list of all the random lengths (corre-

sponding to a 66 per cent deviation from the median value, 〈laverage〉).

This determination prevents a single outlying object from heavily

influencing the uncertainty. The mass segregation ratio is then


MSR =
〈laverage〉

lsubset

+σ5/6/lsubset

−σ1/6/lsubset

, (4)

MNRAS 481, 1679–1689 (2018)
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1682 R. J. Parker and N. J. Wright

Figure 1. Evolution of groups defined by the Friends of Friends algorithm in a simulated subvirial (αvir = 0.3) star-forming region with initial fractal dimension

D = 1.6. Stars that have a local stellar density below the first quartile in the distribution are not assigned to a group and are coloured grey. The colours in the

subsequent snapshots do not correspond to the colours in the first snapshot (t = 0 Myr).

MNRAS 481, 1679–1689 (2018)
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Evolution of Friends of Friends 1683

Figure 2. The evolution of distance and velocity threshold lengths auto-

matically calculated at every snapshot in the simulation. The solid lines are

the distance thresholds, �̃r/3 and dashed lines are the velocity thresholds

�̃v for three simulations with 4 (the mode – black lines), 8 (median – green

lines), and 25 (extreme – red lines) groups initially identified by the Friends

of Friends algorithm.

where 
MSR ≫ 1 indicates that a star-forming region is significantly

mass segregated.

3 R ESULTS

3.1 Subvirial (collapsing) star-forming regions

We show five snapshots of the evolution of a typical subvirial sim-

ulation in Fig. 1, with three different viewing angles (along the z-,

y-, and x-axes, respectively) for each snapshot. Each group detected

by the Friends of Friends algorithm is shown by a different colour,

with stars sitting below the density threshold shown by the grey

points. We emphasize that due to the disappearance (or sometimes

formation) of groups, long-lived groups are not necessarily shown

by the same colour in different snapshots. The Friends of Friends

algorithm has detected four distinct groups at t = 0 Myr in this par-

ticular simulation (panels a–c). As this simulation has a subvirial

bulk motion, we would expect the individual groups to evolve and

merge as the star-forming region coalesces to a cluster, which occurs

during the first 1 Myr. Interestingly, however, the number of groups

briefly increases to 5 by 0.4 Myr (panels g–i) before reducing to one

main group after 0.7 Myr (panels j–o).

All of the subvirial simulations lose their substructure within

the first 1 Myr and form a bound cluster (Parker & Meyer 2012;

Parker et al. 2014). Interestingly, the number of distinct groups

that the Friends of Friends algorithm identifies at t = 0 Myr varies

significantly. In our suite of 20 simulations, identical apart from the

random number seed used to set the positions, velocities and stellar

masses, the number of groups identified varies between 1 and 25,

where the mode is 4 and the median number of groups is 8.

To check whether this is due to the automatically calculated

threshold lengths, in Fig. 2 we plot the evolution of both the distance

length, �̃r/3 (solid lines) and the velocity length, �̃v (dashed lines)

for simulations where the Friends of Friends algorithm identifies

4 groups (black lines), 8 groups (green lines), and 25 groups (red

lines). While the distance threshold is smaller when more groups are

identified, this trend is not fulfilled for the velocity thresholds. We

also note that the differences in both thresholds between the three

simulations are very small (all are less than 0.4 pc and ∼ 1 km s−1).

Fig. 3 shows a different subvirial simulation, with 13 groups

identified initially, which evolves to a similar-looking single cluster

after 1 Myr, which is indistinguishable from the cluster shown in

Fig. 1.

To investigate whether the long-term evolution of the cluster

depends on the initial number of groups identified by the Friends

of Friends algorithm, in Fig. 4 we plot the Q-parameter against

the kinematic and spatial diagnostics of cluster evolution, σ /IQR,

	LDR, and 
MSR. (We refer the interested reader to Parker & Wright

(2016) and Parker et al. (2014) for detailed descriptions of how

these diagnostics evolve over time due to dynamical relaxation.)

For this paper, we colour code these plots according to the number

of groups the Friends of Friends algorithm picks out. The green

coloured points indicate simulations where the Friends of Friends

algorithm picks out 5 groups or fewer at t = 0 Myr; the blue symbols

indicate between 5 and 15 groups, and the magenta symbols indicate

that the Friends of Friends algorithm has picked out more than 15

groups. It is clear that the initial number of groups picked out by the

algorithm is not related to the magnitude of the σ /IQR ratio, or the

spatial structure, Q, the relative local surface density, 	LDR, or the

occurrence and amount of mass segregation as measured by 
MSR.

3.2 Supervirial (expanding) star-forming regions

We show a typical example of a supervirial star-forming region in

Fig. 5. As in Fig. 1, we show five snapshots in time and three view-

ing angles for each snapshot. Our first result is that the numbers of

groups identified by the Friends of Friends algorithm at t = 0 Myr

in the suite of 20 simulations are almost identical to the numbers

identified in the subvirial simulations, with a range between 1 and

20, a mode of 4, and a median of 8. However, the virial ratio in

these supervirial simulations is αvir = 1.5, meaning that the global

velocity dispersion is significantly higher than in the subvirial sim-

ulations (αvir = 0.3) presented above. This difference in velocity

scaling between the two sets of simulations leads to very different

dynamical evolution (expansion and preservation of some substruc-

ture versus collapse and erasing of all substructure), yet the number

of groups identified by the Friends of Friends algorithm does not

betray the future evolution of an individual star-forming region.

This is because the threshold lengths are automatically calculated,

and so any linear scaling of the velocities (such as changing the

virial ratio) will not give statistically different results.

In these simulations a significant degree of substructure is re-

tained, and so we might expect the Friends of Friends algorithm to

identify multiple distinct groups of stars. While this is the case, the

number of groups identified after 0.1–0.5 Myr of dynamical evo-

lution is typically only 1–3, despite the region displaying rather

obvious visual spatial substructure (e.g. panels j–l in Fig. 5). At

earlier stages of this simulation (0.4 Myr – panels g–i), bridges of

stars are apparent between the (visual) groups of stars which would

explain why the Friends of Friends algorithm classifies them as

one large group (the red points in panels g–i). However, at later

stages these bridges are not as apparent, and the physical distances

between the visual groups are larger.

The reason the Friends of Friends algorithm does not detect

many distinct groups in this simulation (and others) appears to

be due to the large amount of spatial and kinematical mixing that

occurs throughout the dynamical evolution of the star-forming re-

gion. In Fig. 6 we show the x–y plane of the snapshot at 3 Myr

MNRAS 481, 1679–1689 (2018)
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1684 R. J. Parker and N. J. Wright

Figure 3. As Fig. 1, but showing the evolution of groups defined by the Friends of Friends algorithm for a different realization of a simulated subvirial

(αvir = 0.3) star-forming region with D = 1.6. This simulation is identical to that in Fig. 1, save for the random number seed used to assign positions, velocities,

and masses to the stars. In this simulation, 13 distinct groups are found by the Friends of Friends algorithm, compared to 4 in the simulation shown in Fig. 1.

Stars that have a local stellar density below the first quartile in the distribution are not assigned to a group and are coloured grey. The colours in the subsequent

snapshots do not correspond to the colours in the first snapshot (t = 0 Myr).

Figure 4. Different measures of spatial and kinematic evolution in our subvirial (αvir = 0.3) simulations. In panel (a) we show the Cartwright & Whitworth

(2004) Q-parameter against the radial velocity dispersion divided by the interquartile range of radial velocities (Parker & Wright 2016). In panel (b) we show

the Q-parameter against the relative local surface density ratio of the 10 most massive stars, 	LDR (Küpper et al. 2011; Parker et al. 2014). In panel (c)

we show the Q-parameter against the mass segregation ratio 
MSR (Allison et al. 2009). The boundary between hierarchically substructured and centrally

concentrated distributions is shown by the horizontal dashed lines, and the vertical dashed lines correspond to unity for the other measures, indicating no

special configuration for the massive stars. In all panels, the green symbols indicate simulations where the Friends of Friends algorithm picks out 5 groups or

fewer at t = 0 Myr; the blue symbols indicate between 5 and 15 groups, and the magenta symbols indicate that the Friends of Friends algorithm has picked out

more than 15 groups. There is no strong dependence of the dynamical evolution on the initial number of groups.

from Fig. 5(m), but the stars are colour coded according to their

original groups at t = 0 Myr (Fig. 5a). Clearly, stars have migrated

significantly, yet the star-forming region has preserved some spatial

substructure. Interestingly, Arnold et al. (2017) find a similar result

when examining the formation of binary star clusters – two clus-

ters orbiting a common centre of mass – from initially supervirial,

substructured star-forming regions like those in this paper. Arnold

et al. (2017) find that the stars that constitute the components of the

MNRAS 481, 1679–1689 (2018)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
1
/2

/1
6
7
9
/5

0
9
0
1
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 1

9
 N

o
v
e
m

b
e

r 2
0
1
8



Evolution of Friends of Friends 1685

Figure 5. Evolution of groups defined by the Friends of Friends algorithm in a simulated supervirial (αvir = 1.5) star-forming region with D = 1.6. Stars that

have a local stellar density below the first quartile in the distribution are not assigned to a group and are coloured grey. The colours in the subsequent snapshots

do not correspond to the colours in the first snapshot (t = 0 Myr).

MNRAS 481, 1679–1689 (2018)
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1686 R. J. Parker and N. J. Wright

Figure 6. Same as Fig. 5(m), but showing the stars colour coded according

to their original groups in Fig. 5(a). Significant mixing of the groups has

occurred, despite the region retaining spatial and kinematic substructure.

binary clusters do not originate in the same location as their fellow

constituents, making it impossible to predict where a star will end

up during the evolution of a supervirial star-forming region.

We now investigate whether the long-term evolution of the super-

virial star-forming regions depends on the initial number of groups

identified by the Friends of Friends algorithm. In Fig. 7 we plot

the Q-parameter against the kinematic and spatial diagnostics of

dynamical evolution, σ /IQR, 	LDR, and 
MSR and we colour code

these plots according to the number of groups the Friends of Friends

algorithm picks out. The green points indicate simulations where

the Friends of Friends algorithm picks out 5 groups or fewer at

t = 0 Myr; the blue symbols indicate between 5 and 15 groups, and

the magenta symbols indicate that the Friends of Friends algorithm

has picked out more than 15 groups. As with the subvirial simu-

lations, the initial number of groups picked out by the algorithm

is not related to the subsequent magnitude of the σ /IQR ratio, or

the spatial structure, Q, the relative local surface density, 	LDR, or

the occurrence and amount of mass segregation, 
MSR (though the

amount of mass segregation in supervirial star-forming regions is

minimal because the massive stars rarely interact with each other).

3.3 Varying the initial degree of substructure

As discussed in Section 2.1, we might expect the evolution of spatio-

kinematic groups identified by the Friends of Friends algorithm to be

correlated with the initial fractal dimension of the simulation. So far,

we have presented the results for the cases where D = 1.6, where we

expect the time-scale for structure erasure to be t(L) ∝ L−0.4, which

means that structure is erased more quickly on larger scales. Con-

versely, when the fractal dimension is higher (D = 2.0 or 2.6, then

structure is erased more quickly on smaller scales [where t(L) ∝ L

for D = 2.0 and for D = 2.6 t(L) ∝ L0.6].

We show a typical example of a simulation where the initial

fractal dimension is D = 2.0 in Fig. 8, with stars above the density

threshold of the first quartile assigned to groups. Again, the colours

of groups identified at later snapshots are not correlated with the

colours of the groups identified at t = 0 Myr. These initial conditions

(D = 2.0 and αvir = 1.5) often lead to the formation of a binary

cluster (Arnold et al. 2017), and this happens in more than 50 per

cent of the realizations of this set of initial conditions.

We do not see any clear evidence for the time-scale for substruc-

ture erasure to be different for the D = 2.0 simulations compared to

the simulations with D = 1.6 (with similar results for the D = 2.6

simulations that we do not show here for the sake of brevity). This

may be because the groups identified by the Friends of Friends algo-

rithm are not representative of the physical scales in our box fractal,

or simply that the Friends of Friends algorithm cannot distinguish

between multiple groups once dynamical evolution takes place.

As in the corresponding supervirial simulations with D = 1.6, the

simulations with less substructure also expose the same problem

with the Friends of Friends algorithm, namely that distinct clumps

of stars are assigned to the same group due to bridging stars, and

some of these groups are transient between snapshots (such as the

cyan coloured group in Figs 8j–l, which disappears in snapshots

either side of 0.7 Myr).

We identify fewer groups initially than in the D = 1.6 case

(a mode of 2 and a median of 5), but with similarly large range

in group number (1–15). We therefore conclude that the issues

identified with the Friends of Friends technique are not unique to a

particular set of initial conditions.

4 D ISCUSSION

Our analysis of N-body simulations using the Friends of Friends

algorithm to identify spatio-kinematic groups exposes several issues

with using this technique to quantify the initial conditions of star

formation.

First, we have performed our analysis on fractal distributions. By

definition, fractals are hierarchical and self-similar, with the only

boundary conditions being the size scale of the distribution and

the velocity dispersion. Therefore, any groups that are identified

are necessarily artificial and arbitrary (see also Parker & Goodwin

2015), without any physical meaning. In an observed star-forming

region, it is also usually extremely unclear whether the region can be

broken down into constituent parts. This is especially relevant if star

formation is inherently hierarchical or self-similar (e.g. Elmegreen

2018), which implies that there is no scale length for star formation.

Secondly, we find a wide range in the number of groups identified

by the Friends of Friends algorithm. Our simulations that are set

up to be in subvirial collapse and have a high degree of initial spa-

tial and kinematic substructure contain between 1 and 25 groups,

with a mode of 4 and a median of 8, for statistically similar fractal

distributions, identical apart from the random number seed used to

initialize the positions and velocities. Worryingly, we find very sim-

ilar numbers of groups when the fractals are scaled to be supervirial

(i.e. expanding), despite the regions having very different initial ve-

locity dispersions. Therefore, the number of groups identified in a

star-forming region (or filaments – cf. Hacar et al. 2013, 2017) does

not betray any information about the physical initial conditions and

may be subject to line-of-sight confusion (Clarke et al. 2018).

Thirdly, during the subsequent dynamical evolution of our star-

forming regions, stars move between groups, often creating bridges

between groups so that two distinct groups become one larger group.

Observational studies (Hacar et al. 2016; Da Rio et al. 2017) often

attempt to mitigate for this by introducing a density threshold, so

that lone stars (or gas parcels) do not unduly influence the num-

ber of groups (or filaments) identified. We also applied a density

threshold to our N-body simulations, but find that bridges of stars

still occur, and that the Friends of Friends algorithm cannot separate

larger groups. In part, this is due to the fact that stars migrate sig-
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Evolution of Friends of Friends 1687

Figure 7. Different measures of spatial and kinematic evolution in our supervirial (αvir = 1.5) simulations. In panel (a) we show the Cartwright &

Whitworth (2004) Q-parameter against the radial velocity dispersion divided by the interquartile range of radial velocities (Parker & Wright 2016). In

panel (b) we show the Q-parameter against the relative local surface density ratio of the 10 most massive stars, 	LDR (Küpper et al. 2011; Parker et al.

2014). In panel (c) we show the Q-parameter against the mass segregation ratio 
MSR (Allison et al. 2009). The symbols and lines are the same as in

Fig. 4.

nificant distances during the dynamical evolution of the simulations

(Fig. 6) and swap between groups (see also Arnold et al. 2017). The

problem of ‘bridging’ is likely ignored in observational studies if

the thresholds for group definition are tuned to each specific region

at a given time, rather than being automated as we have done here.

Fourthly, we have found no dependence on the later evolutionary

state of the star-forming regions on the number of groups identi-

fied initially by the Friends of Friends algorithm. We measured the

amount of spatial substructure, mass segregation, velocity disper-

sion, and relative surface densities, and find no dependence on the

number of initial groups.

We note that some of our simulations have initially very high

stellar densities (ρ̃ ∼ 104 stars pc−3). This facilitates rapid dynam-

ical evolution, but does not affect the number of groups identified

initially. We ran a set of low-density simulations (ρ̃ ∼ 10 stars pc−3)

and found similar behaviour, albeit on longer dynamical time-scales.

Similarly, changing the initial degree of spatial and kinematic sub-

structure (which can invert the time-scales on which we would

expect structure to be erased) does not affect our conclusions.

We have performed our analysis using the full six-dimensional

information (as the position and velocity vector of every star contain

three components). We also performed it in three dimensions (x, y,

and vz) to mimic the information available in (most) observational

studies and found similar results. Indeed, one could argue that the

confusion present when all of the spatio-kinematic information is

available should preclude any further use of the technique in fewer

dimensions.

5 C O N C L U S I O N S

We analyse N-body simulations of the dynamical evolution of sub-

virial (collapsing) and supervirial (expanding) star-forming regions

and apply an automated Friends of Friends algorithm to pick out

groups or stars that have similar spatial and kinematic properties.

Our conclusions are the following:

(i) The Friends of Friends technique picks out wide-ranging num-

bers of groups in statistically identical spatio-kinematic fractal dis-

tributions, despite the threshold lengths for distance and velocity

varying little between individual simulations. The mode is 4 and

the median is 8 but the number of groups identified across 20 iden-

tical simulations ranges from 1 to 25.

(ii) We do not see any difference in the number of groups identi-

fied in subvirial and supervirial simulations. The mode and median

numbers of groups are identical, and the range is almost identical.

This is because although the initial velocity scalings are very differ-

ent (0.3 km s−1 for the subvirial simulations versus 1.5 km s−1 for

the supervirial simulations), the scaling is linear and our Friends

of Friends algorithm automatically calculates distance and veloc-

ity thresholds. In practice, this means that any automated analysis

would not be able to distinguish between very different initial star

formation conditions.

(iii) The dynamical evolution of the star-forming regions causes

the groups to merge together in Friends of Friends space, even if

(as in the case of the supervirial simulations) there are still dis-

tinct spatial substructures. This occurs because stars migrate be-

tween groups as the simulation progresses, but the groups do not

dynamically mix with each other. Therefore, at a given point in

the evolution of a star-forming region, a spatio-kinematic group

is not retaining any information on the initial properties of that

group.

(iv) Furthermore, there is no dependence of the later spatial and

kinematic evolution of the star-forming regions on the number of

groups identified by the Friends of Friends algorithm. The amount

of mass segregation, overall spatial structure, and velocity disper-

sion that develops with time are unrelated to the initial number of

groups, implying that the global dynamical evolution of the star-

forming region cannot be related to any group structure defined by

the Friends of Friends method.

Taken together, our results suggest that the Friends of Friends

algorithm may not be particularly useful for quantifying the initial

conditions of star-forming regions, and we urge users to include

tests on synthetic data sets in any future analyses (see also Clarke

et al. 2018).
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1688 R. J. Parker and N. J. Wright

Figure 8. Evolution of groups defined by the Friends of Friends algorithm in a simulated supervirial (αvir = 1.5) star-forming region with moderate levels of

initial spatial and kinematic substructure (fractal dimension D = 2.0). Stars that have a local stellar density below the first quartile in the distribution are not

assigned to a group and are coloured grey. The colours in the subsequent snapshots do not correspond to the colours in the first snapshot (t = 0 Myr).
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