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Abstract

Motivation: In clinical trials, individuals are matched using demographic criteria, paired, and then ran-
domly assigned to treatment and control groups to determine a drug’s efficacy. A chief cause for the
irreproducibility of results across pilot to Phase 11l trials is population stratification bias caused by the
uneven distribution of ancestries in the treatment and control groups.

Results: Pair Matcher (PaM) addresses stratification bias by optimising pairing assignments a priori
and/or a posteriori to the trial using both genetic and demographic criteria. Using simulated and real
datasets, we show that PaM identifies ideal and near-ideal pairs that are more genetically homogene-
ous than those identified based on competing methods, including the commonly used principal compo-
nent analysis (PCA). Homogenising the treatment (or case) and control groups can be expected to
improve the accuracy and reproducibility of the trial or genetic study. PaM’s ancestral inferences also
allow characterizing responders and developing a precision medicine approach to treatment.
Availability: PaM is freely available via R [https:/github.com/eelhaik/PAM|and a web-interface at

http://elhaik-matcher.sheffield.ac.uk/ElhaikLab/.
Contact:[e.elhaik@sheffield.ac.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

understand why randomised control trials ni@ymore successfuh

1 Introduction smaller trials.

. . ) Matching treatment (or casejith control groupss the most elementary
It is well recognized that pharmaceutical research and development

o o and critical parbf any trial (or study). Mismatched groups introduce ge-
(R&D) isin crisis. The numbesf new drugs approved per billidS dol- ) . )
) . netic heterogeneity that may obscure performafdke trialed drug, for
lars spenton R&D has halved roughly every nine years siri@50

o ; . example,dueto genetic predispositioto responseo the treatment, and
(Scanneletal.2012)asspendingn the industry has inflatetd anaverage

. . . . resultin reduced reproducibility between different cohorts (Scamtall
of ~$5.8 billion per drugn 2011comparedo $1.3 billion per drugn 2005 o .
o } ] 2012) Currently, individuals are matched baseddemographic criteria
(Roy2012) The latter phased clinical trials test thdrug’s efficacy com-

. ) ) ) (e.g., age, gender, and self-reportedte”) and then randomly assigned
paredto a placeboor other treatmentd a randomised trial setting and )
) ) . to treatment and controls grouptis well acknowledged thatueto the
require assessing tens, hundreds (PHas#ls), and eventually tersf o ) ) )
) ) : significant heterogeneity among humans, demographic-based matching
thousands (Phadéd trials) of volunteers over a long periaif time to . ) L )
. ) ) . ) aloneis inadequate. Trials are, thereby, vulnerdblestratification bias,
prove that therés substantial evidencef a clinical benefibf the drug. ) ) . ) o ]
) . ) . i.e., differenced genetic ancestry between individuals, whichrenfac-
Only onein 12 drugs that enters human clinical trials engdganing ap-

) . . toredin when trial participants are grouped basadlemographics alone.
proval from the FDAIt is acknowledged thaineof the biggest drivers

. ) ) . This undetected bias may contribtaéiased interpretatioof trial results
of the increasén R&D costsis the regulatory process governing Phase-

- . . dueto lack of genetic information that may confound interpretation, lead-
Il clinical trialsof new pharmaceuticals (R®012) As the regulatory

environments unlikely to relax (Scannelét al. 2012) it is importantto
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ing to alterationgn the false negativer false positive resultsyith subse-
quent financial and patient health consequerieies1). In large groups,
the stratification bias malge less pronounced, howevétr s practically
unavoidablen the casef rare diseasedueto the difficultiesin recruiting
genetically homogeneous participants (Yusuf and W204s$) Crucially,
this biasis more severén small cohorts, leadintp an applied misinter-
pretationof thedrug’s efficacy thatwill be difficult to replicatein larger
trials.

Population stratificatiorcan be addressedby optimising the treatment-
control matches a priori or/and a posteriorthe trial using a varietgf

PaM can alsobe usedto guide precision medicine approasho treat-
ment, for instancen characterizing a subgrowp respondersr mutation
carriers (Baughrt al. 2018) and designing fodiw up trials focusingon
this group.

2 Methods

2.1 Simulated population datasets

We generate@4 datasets that comprisefl 980-1000 individualgachin

tools appliedo the genotype data and selecting matched pairs for down-

stream analyses. Due the historically high costf genotyping and se-

quencing, a priori methods rely heavilg demographic-based matching

criteria followedby statistical corrections made a posteridriat all. A

priori methods have long been considered biased, inaccurate, and unhepp-

ful (De Bono1996;McAuley etal. 1996; Fustinoni and Bille2000)due
to their relianceon self-reportedrace” (“Africans,” “Asians,” and“Euro-
peanAmericans” or “Whites”) or regional similarity, which doesot
eliminate the bias (Campbedt al. 2005; Wang, Localio, and Rebbeck
2006;Chikhietal. 2010;Elhaiketal. 2014; Yusuf and Witte2016) Un-
able to completely account for choices madethe a priori stage, a
posteriori methods may make over-simplified, unrealistigroblematic
assumptions (Kimmeekt al. 2007) particularly concerning population
structure. Computing the principal components (RE#)e genotype ma-
trix and adjusting the genotype vectbsstheir projection®n the PCds

a popular methodf accounting for population structure (Prétel.2006)
However, linear projections cannm assumedo sufficiently correct for

the effectof stratificationdueto other unaccounted confounders (Kimmel

et al. 2007) PCs also ignore the complexiy population structure, are

ADMIXTURE’s Q file format (individuals x proportiomf admixture
components) (Alexander, Novembre, and La2@@9) Here and through-

out this work,we adopted the admixture mod#l Elhaik et al. (2014)of

ine admixture components representing: North East Asia, the
Mediterranean, South Africa, South West Asia, Native America, Oceania,
South East Asia, Northern Europe, &ubSaharan Africa. Each dataset
consistedof a file with nine admixture components generated randomly
for individuals and their matching pairs and normaligethat each row
would sumto 1. Dataset 1 consisteaf 500 identical pairsHig S2). The
genetic heterogeneity between the pafrBatasets 2-8asincreasedn

a controlled manndsy modifying the admixture componertsoneindi-

vidual fromeachpair of Dataset 1 through a perturbatiohX [0...20%]
subtraced from theodd numbered admixture components and added

the even numbered admixture components. The perturbation percentage
wasapplied alternately (negatitethe first component, positite second
componenetc) to prevent normalizatioto undo the perturbation.

To assess pairing less ideal datasets, the remaining datasets were created
by removing random individuals from the original datasets. Datasbis 9-
were createtly removingoneindividual fromeachcohort (remove-1) and

influencedby uneven sampling, and cannot properly represent individuals

of mixed origins (McVear2009; Yang et al. 2012; Elhaik et al. 2014;
Lacouret al. 2015). Even newer tools (Epstein, Allen, &aiten2007;

Kimmel etal. 2007;Lacouretal. 2015)canmake only basic assumptions

concerning population structure and may ignore admixtureemo-
graphic criteria.

We developedPair Matcher (PaM)- A genetic-based tool that optimises

pairing assignments a priori and& posteriorto the trial. PaM matches

sampledy demographic and genetic criteria and allows trial desigoers

make informed decisionis real time Fig S1). PaM models individual

genomesasconsistingof gene pools (or admixture components) that cor-

respondo their recent demographic history (Elhaital. 2014;Daset al.

2016) PaM then matches individuals basettheir age, gender, and the

similarity of their admixture componenté/e first compared the accuracy
of PaM;mpie @and Palgly and then the accuraoy the best performing tool
to pairings made eithext random, basedn racial-criteria,or throughPC
analysis (PCA). Finallywe compared PaM pairing accuracyo thatof

clustering tools usebh population genetic and genome-wide association
studies (GWAS)n analyzing unmixed and mixed individuals. We also

assessed reproducibility.

Optimising the trial designanbe expectedo homogenize the treatment
(or case) and control pairs and improve the accuracy and reproducibili

of the trialor genetic study. Thisanbe expectedo lower drug develop-
mental costs and benefit patients. Togettigr biogeographical tools that
canpredict the geographical origin§the responders (Elhadtal. 2014)

Datasetd 7-24 were createdhy removing20 individuals fromeachcohort
(remove20), leaving datasetsf 999 and80individuals, respectively.

2.2 Worldwide population dataset

We used the Genographic dataset that comp$esl28,000 markers
genotyped ir633 unrelated worldwide individualsf known geographic
origins who have four grandparents from their population affiliation and
geographic regioof origin (Elhaiketal. 2014) We createdl 3 two-way
mixed individualdy hybridizing13 Indianswith 13 Britishto yield a final
cohortof 646 individuals. The hybridizatiomasdoneby merginganeven
amountof randomSNPsfrom random Indian and British individuals and
calculating the admixture componentt these genomes (Elhagt al.
2014) The admixture componentsf the Genographic and simulated
individuals (Elhaiketal. 2014,Figurel) were providedasinputto PaM.
We also analysedd0 Bedouin and40 Pakistani 25 Brahui and15
Burusho) individuals (Pattersoet al. 2012) and calculated their nine
admixture componentssin Elhaiketal. (2014).

2.3 Unmixed and mixed population datasets

t%\le used the Lazaridist al. (2014) dataset that comprises~600,841

markers genotyped in 2,345 unrelated worldwide individuals. each
population that hadt least four individualsye selectedtwo pairs of
individuals who showed the highest identity-state (IBS) similarityto
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eachotherasinferredby PLINK (—cluster—-matrix) (Purcellet al. 2007) the row minima, as well as a more complex method of minimising the sum
From the42 populations (168 individuals) identified that manner100 of the remaining row minima, however, the end results were very similar.
random individuals were pair¢d a random membef their population,  Therefore, BM uses a single minimum selection for each row, and this
creating the unmixed dataset (n=200). A mixed dataashnext created  selection is the minimum with the lowest column index j.

by randomly selecting three individuals and using the consecutive thirdBaM, extends Palyeby carrying out a more exhaustive pairing search.

of their genomeso create &@x hybrid individual. A matching pawas PaM, sorts the test cohort data iteratively in ascending order using the
createdin a similar way using different individuals from the same admixture components. The pairing procedure starts at a random row in-
populations. This procesgasrepeated 00times (n=200). Similarlywe dex (multiple times). The model starts by sorting the cohort data by the
createdx5 andx7 dataset®f the same size. Finallye assembled three first admixture component then commences the search starting with a ran-
combined datasets that congiEtunmixed +3x mixed (n=400), théatter dom row, i, index. The best pairing solution is stored. The cohort data is
dataset $x mixed (n=600), anthe latter dataset #x mixed (n=800). next sorted by the second admixture component, and the best pairing so-
lution is found. If this solution minimizes the total GD of the final solution
compared to the previous iteration then, the 'sorted admixture component
2' solution is stored. The model proceeds by successively sorting the re-
To optimise matches, PaM analyses the age (optional), gender (optionafhaining admixture components to find the best pairing solution. Poor
and admixture components for each individual in the studied cohort. Thegeairs are handled in a similar manner to Bah However, when the data
three parameters are obtained from PLINK’s fam file (using columnst are re-ordered, all previously discarded individuals are included in the new
[age] and 6 [genderhnd ADMIXTURE’s Q file. The Genetic Distance solution search.

(GD) between the paired individual is defined\g8, (ix — j)?, where i

and j are the individuals with k admixture components. PaM calculates the
nxn GD matrix for each possible pairing, where n is the number of indi-
viduals in the Q file. Each element of the matrix, specified by row i and®aM matches for the simulated datasets (2.1) were compared with a priori
column j corresponds tapair (i, j). The matrix is symmetric with respect matches based on a@eithin 5 years), gender, and “race’ defined as “Af-

to the diagonal, which contains all zeros. A corresponding nxn score maican,” “Asian,” “Latino,” or “White.” Following Elhaik et al. (2014,

trix is calculated as follows: pairs that are age (within five years by defaultfFigure 1) ancestry was inferred from the admixture components as fol-
and gender matched get one point. Nine additional points are awarded flaws: “African” ancestry was assignédthe sum of Sub-Saharan Africa
every matching admixture component ifjjil <1% for the pair (i, j). An and South Africa admixture components was larger than 58&%ar’

ideally matched pair has a score of 10 (age/gender and nine admixtuamcestry was assigned when the North East Asian component was larger
components). An optimal pairing solution for Dataset 1 that consists ofhan 10%; andLatino” ancestry was assigned when the Native American
500 pairs would be a GD of 0 between all pairs, a total score of 5,000 (toppmponent was larger than 50%. All the remaining individuals were con-
score ofL0for 500 pairs), andsunpaired individualsKig S3. sidered“White” Since self-reportetirace’ differs between studies, we
PaM operates in two modes: PaM.and PaM,. The PaMmgealgorithm considered three models: i) an individual is either African, Asian, Latino,
starts by selecting matrix row 1 (individual 1) and finding the column jor White. ii) an individual is considered either an African or non-African;
which yields the minimum GD for pair (1,j). This matrix element corre- iii) an individual is considered a mixture of Africans, Asians, Latinos, and
sponds to the first pair with row index 1 and column index j. Row 1 andWhites. The assignment accuracy of all matches was measured based on
column j and their symmetric element (j,1) are removed from the GD mathe correct pairing of individuals and their known pairs with some indi-
trix. Row 2 is next selected (provided it has not been removed in the predduals expected to be unpaired due to the removal of their exact match.
vious step) and the column which yields the minimum GD is selected to
form the second pairing. The corresponding rows and columns are then
removed from the matrix. The optimisation proceeds until all possible
pairings are created and all unpaired individuals are stored. If the test c&aM matches for the Genographic dataset (2.2) were compared with PCA-

2.4 Comparing PaMsmpieand PaMzui

2.5 Comparing PaM with demographic matches

2.6 Comparing PaM with PCA matches

hort is an odd number then at least one unpaired individual is expectedased one®CA’s top two eigenvectors were calculated using SNPRelate
The paired and unpaired individuals are reported in separate text files. @heng et al. 2012)These eigenvectors were clustered using the k-means
filter pairings with a score lower than a specified acceptable value, a usemethodkmeans in R. Simildy to Luca et al. (2008), pairs were determined
controlled threshold was implemented. by a random assignment within each cluster. To compare the quality of
The threshold is related to the expected genetic homogeneity of the paitthe results, the pairing solutions for PaM and PCA were evaluated using
A high threshold would result in homogeneous pairs and a large numbeiBS clusters as an impartial genetic distance independent of admixture or
of unpaired individuals. Ahreshold of 7 indicates that the pair’s age and PCA and geographic distances calculatgth the Haversine formula
gender matched as well as 6 of their admixture components. (Gellert et al. 1989)Due to the data’s high heterogeneityPaM was used
When matrix rows have multiple identical minima, there is a potential di-with threshold of 5.

lemma since the specific row minimum selection could affect subsequent

pairings (due to the row/column removal upon pair selection), and the final

pairing solution may not be optimal. We explored different selection

schemes through exhaustive testing using single and random selection of
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2.7 Assessing PaM ’s performances on small datasets misassigned pairdy allowing only pairswith a high match score

(genetically homogeneous). This prevents the model from selecting pairs
To evaluate PaM performances on small datasets (2.2), we constructed ] o
that satisfy thedw GD minimum but do not have a favourablenach

four datasets consisting of 20, 40, 60, and 80 individuals. Each dataset L ] ) )
. ) . ) _score, thus avoiding thH@nowball” effect. Since the matris symmetric
consisted of an even number of Bedouins and Pakistanis. We applied

. ) ) andeachrow has all possible pairing feachindividual, individualswith
PaMimpie Without threshold to each dataset. To examine their effext, w . .
. ) ) a match score lower than the threshold are considered too genetically
also applied PaM with various thresholds to the largest dataset.

heterogeneous and placedthe unpaired listTable S2.
For Datasets 8; the best solutionvas obtainedwith a thresholdat a
2.8 Comparing PaM with various clustering toolson perturbation levebf 11%, where th&sD was~0 for all matched pairs,
unmixed and mixed individuals nearly half the individuals hagn acceptable score, and the numbér
misassigned paimas0. We note that for heavier perturbationstall the
PaM matches were compared with those of several clustering tools: Pcﬁiisassignments are false positives since the perturbation crégted,
and multidimensional scaling (MDS), both available from PLINK, whose chance, more suitable pairing matches than the predefined ones.
pairs were calculated as in 2.6; and genetic relationship matrix (GRMEonsidering the lovGD betweerall pairs, the majoritpf matches were
(vang et al. 2011) (version 1.91.2beta) and TreeMix (Pickrell andnear-optimal ones even after removing individuals from the dataset.
Pritchard 2012) (version 1.13), whose pairs were identified using a greedyerestinglywe observed a repeated single misassigninemostof the
approach that paired individuals with the highest covariance. All the tool$emove20 datasets Table S3. Examination of this unexpected
were assessdyy their ability to match individuals in each dataset and re- misassignment showettto be a pairingwith a very lowGD and a match

produce the results in the combined datasets. The tools were applied to §i€reof 7, makingit an acceptable assignment thougbt between the
complete and LD pruned (PLINK commanihdep 50 5 2) datasets and original partners, which could potentiathe suboptimal.

to the SNPs that overlapped Palene pools, which consist of ancestry

B0 40 &

informative markers (AIMs). PaM was utilized with three thresholds. ¥ ] ro i
§ 40 204 5 :
g 20 104 =S i
3 Results o — 2
280 5 12
3 50 0 g1 .
£ 3 a0 53{\1 23 A
: .50 o - 52
3.1 Assessing PaM’s performances 277 B ol
0 — R = =3
g‘:;‘ Ow @5
We first evaluated the performancesSPaMimge Without a threshold (no = | | 10| - s
limit placedon the acceptable scord pairs) andwith a thresholdbf 7 2| S _f:, L7 \ -
(necessitating the matchingf age/gender andt least 6 admixture 2 °—T—7T—T 7 =~ 7 ¢ &5 L & T T & T 3

4 - 2
Perturbation (%) Perturbation (%) Perturbation (%)

components) acrossl simulated dataset&\s expected, when applying
PaM without a threshold, th8D increasedvith increasing perturbation
or heterogeneity while the score decreased, and the nofinésassigned
pairs increased~(g 1, Table S). However, despite the perturbation and
removal of individuals, mostof the original pairs (80-100%) were per datasefx-axis), totalGD betweerall matched pairs, and total score (maximum of 10
correctly identified, particularlyn Datasets 1:6. The increasen the per painwith eachdataset having 500-480 pairs).

numberof misassigned pairis relatedto how PaMimpe Searches foan
optimum solution. PaleSelects a case index i (rowfitheGD matrix)
and finds the best match for this indgxlocating the minimunGD in the
row correspondingo the best possible match. This, however, dugs
constituteanideal match consideringll other individuals, somef whom
are best left unpaired. Since PaiM. doesnot leave any individual
unpaired (foran even cohort), g@oor pairing may create &snowball”
effect triggering othepoor pairings, resultingn anoverall increase@D
and reduced score for the final pairing solution.

We addressed this probleby applying a thresholdf 7 on the match

Fig 1. PaMsmpie performances on simulated datasets. Rows showthe results ofeight
perturbed datasets (full dataset [lefgmovel [center],andremove-20 [right])PaMimpie
wasappliedwithout athreshold(dashed) anavith a threshold of 7splid red). Columns
showthe number ofindividualsassignedo a different paithantheir original counterpart

There are two way® address the vexing issoé'rogue’ misassignments.
The firstisto set a higher threshold, and the sedsiiduse Pal;, which
carriesout a more exhaustive pairing searof iteratively sorting (in
ascending order) the cohort datg the admixture componentThe
pairing procedure for the cohort commenegsa random row index
(multiple times). This approach doeet produce rogue misassignments
and hence findsan optimum or near-optimum pairing solutions. The
numerical results for the three datasets usialjki? are shownn Tables
S3andS4 PaM, results are similaio thoseof PaMimpie €xcept that they
score. U‘nder these settil?gs, .tﬁ.ED curve-decreased sharpht a- donotallow the accidental misassignmenisifleS4, perturbation <11%)
perturbation levebf ~5%; identifying genetically homogeneous pairs, observedvith PaMympe (TableS2).

despite the increased perturbation, and discarding genetically mismatch«a@ before, the misassignments detected beyonti#iethreshold arelue

.pal.rs.. The scor@T decreasedue to the growing .numbe[‘)f unpalr?d to the high similarityin admixture componenis the post-perturbation
individuals, which represents the conservative choice of what stage and areot truly false positives. The costf using PaMy is

coh3|.deredin acce;.Jtal‘)I(.e pair. The trade-off.for the IGD.of accep.ta‘lble increased computation time, almast orderof magnitude greater than
pairsis that more |.nd|V|duaIs are left unpaweld«_ato their low pairing PaMumges run time. Dueto its superior performances, the remaining
score and are omitted from the to@D score Fig 1, Table S). The analyses werdonewith PaMipe

advantage of applying a thresholsl that it reduces the numbesf
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3.2 Comparing the performances of PaM and alterna- higher genetic similarity (i.e., smaller IBS distances) than PCA’s inferred

tive methods on simulated datasets pairs Fig 3). We identified twelve IBS cluster§ig S4) and divided all
inferred pairs to “matches” if individuals were in the same cluster and
We next compared the assignment accuracy of Rahand alternative  «pmismatches” if otherwise. PCA pairs had 270 “matches” and 46 “mis-
solutions in terms of misassigned pairs with the GD and Score illustrating,,¢-hes” with mean distances of 1,042km and 6,124km, respectively, and
the quality of the matcheBi@y 2). PaM correctly identified nearly all pairs. 1 unpaired individualsF(g 4). PaM pairs had 284 “matches” and 17
The GDs for the random assignment, where the age and gender matchggismatches” with mean distances of 484km and 557km, respectively,
but“race’ was randomly determined, were much larger than the competang 40 unpaired individuals. Compared to PCA, individuals matched by

ing solutions. Correspondingly, the random assignment’s score is mostly PaM were significantly geographically closer regardless of the category
lower than the alternative solutions. Nearly none of the pairs rand°m|¥Ko|mogorov-Smirnov goodness-fit test, p-valugacnes 2. 74*10°, p-
assigned were with their original counterparts. Valu@mismaches3.58+10%, p-valug.y=4.85*1019). In one “match” case

160

PaM paired an individual from Papua New Guinea wigeruvian, which
yielded a geographic distance of over 13,000 km. However, Skogland et
al. (2015) showed that some native American populations can trace their
origins to Papua New Guinea, suggesting fhat/’s assignment was ap-
propriate. The 13 mixed Indo-British individuals formed a part of the Tar-
tar/Tajikistan IBS clusterHjg S4). PCA paired the Indo-British individu-

als with people from Tajikistan (4), Iran (2), Tatar (1), Russia (1), Ingush
(1) and India (1). It correctly made one Indo-British pair and left out one
individual. By contrast, PaM formed 6 Indo-British pairings, leaving the
13" individual unpaired (although the Indo-British were part of the same
IBS cluster consisting of Tartars and Tajikistanians). Overall PaM pro-
duced pairs that are geneticallyid 3) and geographically=g 4) signifi-

cantly more homogeneous than PCA. These results highlight the accuracy
of PaM and its ability to handle admixed individuals.

Datasets 1-8

-Genetic Distance

Misassigned pairs
Score (thousands)

Datasets 17-24
T

2 & B B

0 20 [} 62 0 14

F':::'inrh:a:u‘)‘l;‘(“.;l L I;enmhe:‘mm("iil: k I‘cr::\rh:ilmir‘:i“-.l
Fig 2. PaMsmple (threshold of 7) performances on 16 simulated datasets against five
competing methods. Columns showhe number of misassigned individuaistal GD, and
pairscorefor Random assignment (re®acemodel 1 (cyan), Raaaodel2 (yellow), Race
model 3(green),and PaM (black). Resultsfor Datasets9-16 were identical to thoseof

Datasetdl-8 andareno shown.

The first two self-reportedrace’ models (African, Asian, Latino, or
White; Africanhon-African) perform only slightly better than the random "
assignment in terms of GD and the score. The results of the third mod z
(mixtures of African, Asian, Latino, or White) are considerably better than
the previous models or random assignments. This is to be expected, sin
this model can be considered a reduced form of 'R ake-admixture

= [B. C.
| rca ‘
|

Lol 8,

san

[

Distance (thou

" 100 150 200 o 00 5 200 | 50 100 Vi 00
Pair number Pair number Pair number

components model. Our results indicate that pairs obtained through stangly 4 The geographical distance between individual pairsinferred by PaM and PCA.
ard demographics criteria (age, gended aelf-defined “race”) are as  Geographiodistances arealculatedbetween pairsvhereboth individualsarewithin the
poor as those obtained at random. We note, that since the simulated dgs-definedclusters(A), whereindividualsarein differentclusters(B), andfor all individ-
tasets comprised of the same admixture components used hytfaM ualsregardles®f cluster assignmexc).

performances observed in simulation may not reflect the algorithm's accu-

racy for real populations. .
3.4 Evaluating PaM’s performances on small datasets

3.3 Comparing PaM’s performances with PCA’s Applied to datasets ranging from 2080individuals of Bedouin and Pa-
kistani descentig S5, PaM (no threshold) perfectly paired all individu-
We next compared the performances of PaM with a PCA-based approagly with members of their populations each timpplying PaM with

on the Genographic dataset consisting of worldwide individuals aﬂongsidpﬂgher thresholds to the largest dataset created slightly fewer pairs but
13 simulated Indian-British individuals. PaM was applied to the admixture o e genetically homogeneous oriéslqle S3.
components of all individuals and PCA was applied to the SNP data

0.35
3.5 Comparing the performances of PaM and various
803 clustering toolsfor unmixed and mixed individuals
o3
Z
b= Clustering accuracy is typically demonstrated by showingwleditcu-
V(.25 T . . . . .
® rated individuals are predicted to geographic regions, whereas mixed in-
dividuals are more challenging to analyse under various population and
0.2 7 o P 7 data settings. Here, we evaluated the pairing accuracy of five tools that

Pair number implement different clustering strategies in datasets that consist of un-
Fig 3. IBS distance between PaM (solid) and PCA (dashed) inferred pairs. mixed and mixed individuals and combinations of those datasets. PaM
We evaluated the homogeneity of the pairs inferred by PaM and PCA usignificantly outperformed all tools in each teSiy( 5 Table S§, except
ing both geographic and genetic distances. Aitolff’s inferred pairs had  in comparison to MDS in the 3x Mixed dataseith an average accuracy
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of 87+9% compared to PCA (68+16%), MDS (72+14%), GRM

3.7 Software availability

(29+£16%), and TreeMix (7+18%). The accuracy for PCA and MDS varied

PaM is freely available as a downloadable R package from

with the number of loadings used. The pairing with both 10 (76+159

” rhttps://qithub.com/eelhaik/PAkﬂG Mb). In addition, a web-service has

[PCA] and 79+17% [MDS]) and 20 (71+9% [PCA] and 78+9% [MDS])

been created that allows users to upload genetic and demographic data for

loadings was similar and higher than with two loadings (58+10% [PCA]

and 57+10% [MDS]). MDS outperformed PCA in nearly every. ferste-
Mix performed the worsiWhen admixed individuals were provided Tree-
Mix reports were highly inaccurate (see a simplistic examplegnsg.

their test cohort in PLINK format and receive the optimised pairings solu-
tion by email fittp://elhaik-matcher.sheffield.ac.uk/ElhaikLab/

The combined datasets (unmixed + mixed), designed to test reproducibdt ~ Discussion

ity, proved challenging with PaM exhibiting the smallest drop in averageciinical trials are requiretb determine drug efficacgn multiple cohorts

accuracy (-5%), compared to PCA (-12%), MDS (-7%), and GRM (-9%)
All tools performed better on the gene pool SNP 58%| than on the
LD-pruned (53%) and genome-wide datasets (57%).

[1PaM o kL
Unmixed| [CIPCA = el
MDS ;
GRM -
T | TreeMix o —F ]
*
3x Mixed "[:l} . ]* “
] ] ]:
- S — t
5x Mixed M ]* ]* l‘
e 4
(<] o ]!-
© S = T ]‘ N
E 7x Mixed A 8] i
o - [ =
c i
§e] {1 ]:r
B Unmixed| + — " ]: .
S 3x Mixed L B
a i
8 L
o{I¥
Unmixed b T }1 ]: I
3x Mixed paiti TH 5
5x Mixed e
Unmixed o ]: X
3x Mixed .. — L -,
5x Mixed i ;
7x Mixed|
] T T 1
0 0.25 0.5 0.75 1

Proportion of correct pairs

Fig. 5. Pairing accuracy for varioustools across multiple datasets. Boxplotssummarize
the pairing accuracy ddll thetrialsin each population datasétableS6), e.g.,thePCA for
unmixed individuals includthethreeanalyse§PCA2/10/20)or eachof thethreedatasets.
The order ofthetools’ resultsper population dasetis shownin thelegend.Significance
wasestimated foPaMusing Wilcoxon rank-surtest(p-value<*0.05, *#<0.01).

3.6 Runningtime

Running on a single core Intel i5 computer, RgMfinds the near opti-
mum pairings in ~15 minutes for a test cohort of 1,000 individuals
whereas Pal finds the optimised pairings in ~3 hours. If accessed
online, results are typically emailed within 20 minutes.

-of sizes ranging from0 to 10,000, where participants are split into

treatment and control groups. The outcorméghese trials determine
whether a drug shoultle testedin a larger cohort andf successful,
approved for use (Ro2012) To evaluate the therapeutic effecisthe
tested drug, treatment and control pairs hawee be genetically
homogeneos to minimize the variatiorin the response thas due to
different genetic backgrounds. Therefore, paiohgohort individualds
typically doneat random after controlling for demographic criteria (e.g.,
age, sex, and self-reportettace’) a priori to the trial. However,
randomisation doesot resolve population stratification, particulaity

very small cohortsr multiple strata with few individuals (Ganju and Zhou
2011) and the results mayot be replicatedin a follow up larger trial,
which may disqualifyan effective drug. Correcting for population
stratification a posteriorio the trial is also problematicdue to the
difficulty in modelling ancestry and admixture and the reliaoceelf-
defined“race} a highly unreliable predictor (De Bori®96; Fustinoni

and Biller 2000) A similar challenge existén case-control genetic
investigations intentb find a loci associatedith a phenotypef interest.
Unfortunately, even after decadef genetic research, the ueé self-
defined racial categorizatios still highly prevalentin clinical setting.
Though mosbf the genetic variatiom humansis between continental
populations (12%) (Elhaik012) who exhibit biological variety, like
different drug responses, racial terminologyan ineffective mearto
classfy mixed people, even those believethe unmixeddueto ignorance

of their demographic history (e.g., Marstetlal. 2016;Daset al. 2017)
Applying various tools to unmixed and mixed datasets provided a unique
view of their clustering accuracyWe demonstrated that using standard
demographic criteria, such as sedported “race” yields random results,
suggesting that ancestry should be identified genetically (e.g., Baughn et
al. 2018). We further showed that PCA pairs geographically and genet-
ically suboptimal and that it is incapable of modelling mixed populations
(Figs. 4and5), representing the vast majority of the population in coun-
tries like the USA. That PCA and PCA-like tool are still being used in
GWAS and even considered the “gold standard” by some and that PCA
loadings from past GWAS are being used in GWAS meta-anay/pas-

zling providedPCA’s known weaknesse3he uneven sampling, for in-
stance, which exist in any dataset bsBCA predictions (McVean 2009;
Elhaik et al. 2014). There is no consensus on the number of PCs to ana-
lyze: although Price et al. (2006) used a defautenfCs and Patterson

et al. (2006) advised using the Tra@yidom statistic to determine the

number of components, in practicality, authors use an arbitrary number of
PCs or adopt ad hoc strategies to aid in their decision (e.g., Solovieff et al.
2010) This may be due to the high sensitivity of the Trafidom statis-

tics to linkage disequilibrium, which inflates the number of PCs

(Patterson, Price, and Reich 2006) and the expectation that the PCs would
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Pair Matcher (PaM)

reflect genetic similariésthat are difficult to observe in higher PCs. PCA personalised medicine solutions tailotedpopulation groupsTo avoid

is also sensitive to the choice of markérsi{le S§. The GRM estimates  suboptimal pairings wheall pairs are assignedge introdueda threshold

the genetic relationship between two individuals and is one of the coréor the minimum acceptable genetic similarity between tested pairs, which
functions of the GWAS package GCTA (Yang et al. 2011). It calculatessignificantly reduced spurious assignments. The scorés&ngrovided

the average ratio of the covariance over the expected heterogeneity acrasghe output allow further prioritizatioof the pairs. Though PaM seeks

all genes. In other words, it represents how much two individuals covaryhe best matching pair feachindividual ands agnostido the sizeof the
relative to what is expected on average for an average SNP. This measut&aset and admixture scheme,caution from applying Pakb a poorly

is susceptible to LD and cannot be expected to handle mixed individualsonstructed admixturechemes that faiko capture the global genetic
Indeed, its best performances were for the unmixed individalse S§. biodiversity. Finally, deto its short computational timeye recommend

Its prioritization over PCA (Yang et al. 201i)thereby, inconsistent with  using PaMmpe overPaMy, which performs a nearly exhaustive search.

its low performances compared to PCA with two PRsmarkably, the  In summary, we develop PaMa software tool that employs demographic
less popular MDS outperformed PCA in almost every trial. This may beand genetic criteri¢o find optimisedor near-optimised pairings solution
explained by the tendency of MDS to preserve pairwise distances betweéor test cohorts consistiraf unmixed and mixed individuals. Paddnbe

the points, which is in line with how the data were generated and evaliaccessed onliner beinstalledon the local computer.

ated. By contrast, PCA attempts to preserve the covariance of the data,

which may be less sensitite population structure. PCA’s requirement
that the data will follow a multivariate normal distributioray also pose

a challenge that does not exist in MDS. Our analysis of TreeMix result
was based on the covariance matrix, which limitations were already dis-

cussed, rather than on the tree’s topology. This is because TreeMix’s fur- Fundi ng

thest assumption that the history of the sampled populations is approXihjs work was partially supported by the UK Medical Research Council
mately tree-like (Pickrell and Pritchard 2012) is not met in the mixed angpc_pc_14115 and MR/R025126/Konflict of Interest: EE consults
combined datasets. Nonetheless, the limitations of the covariance matrise DNA Diagno.stics Centre.

observed herel@ble S6) andTreeMix’s limitation in capturing complex

admixture events (Lipson et al. 2013) are reflected in the poor perfor-
g . . References

mances of TreeMixHig. S6). Interestingly, TreeMix also attempts to
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