
Current and Future Disease Burden From Ambient Ozone
Exposure in India
Luke Conibear1,2 , Edward W. Butt2, Christoph Knote3 , Dominick V. Spracklen2, and
Stephen R. Arnold2

1Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training (CDT) in Bioenergy, University of
Leeds, Leeds, UK, 2Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds,
Leeds, UK, 3Meteorological Institute, LMU, Munich, Germany

Abstract Long-term ambient ozone (O3) exposure is a risk factor for human health. We estimate the
source-specific disease burden associated with long-term O3 exposure in India at high spatial resolution
using updated risk functions from the American Cancer Society Cancer Prevention Study II. We estimate
374,000 (95UI: 140,000–554,000) annual premature mortalities using the updated risk function in India in
2015, 200% larger than estimates using the earlier American Cancer Society Cancer Prevention Study II risk
function. We find that land transport emissions dominate the source contribution to this disease burden
(35%), followed by emissions from power generation (23%). With no change in emissions by 2050, we
estimate 1,126,000 (95UI: 421,000–1,667,000) annual premature mortalities, an increase of 200% relative to
2015 due to population aging and growth increasing the number of people susceptible to air pollution. We
find that the International Energy Agency New Policy Scenario provides small changes (+1%) to this
increasing disease burden from the demographic transition. Under the International Energy Agency Clean Air
Scenario we estimate 791,000 (95UI: 202,000–1,336,000) annual premature mortalities in 2050, avoiding
335,000 annual premature mortalities (45% of the increase) compared to the scenario of no emission change.
Our study highlights that critical public health benefits are possible with stringent emission reductions,
despite population growth and aging increasing the attributable disease burden from O3 exposure even
under such strong emission reductions. The disease burden attributable to ambient fine particulate matter
exposure dominates that from ambient O3 exposure in the present day, while in the future, they may be
similar in magnitude.

1. Introduction

Tropospheric ozone (O3) is a secondary gaseous pollutant produced by photochemical oxidation of volatile
organic compounds (VOCs) and carbon monoxide (CO) in the presence of nitrogen oxides (NOx). Increased
anthropogenic emissions of O3 precursors since the preindustrial have led to large-scale enhancements in
O3 throughout the troposphere (Young et al., 2013). Long-term exposure to ambient O3 contributes to the
risk of premature mortality (Atkinson et al., 2016; Jerrett et al., 2009; Turner et al., 2016; U.S. Environmental
Protection Agency, 2013; World Health Organization, 2013). The Global Burden of Diseases, Injuries, and
Risk Factors Study (GBD) in 2016 attributed 233,638 (95% uncertainty interval (95UI): 90,109–385,303) annual
premature mortalities to ambient O3 exposure globally, with 39% of the disease burden in India (Cohen et al.,
2017; GBD 2016 Risk Factors Collaborators, 2017). The GBD2016 used the earlier American Cancer Society
Cancer Prevention Study II (CPS-II) risk estimates (Jerrett et al., 2009) for the cause of chronic obstructive
pulmonary disease (COPD) only. These risk estimates have been updated for the same CPS-II cohort through
an extended follow-up with an expanded study population (Turner et al., 2016). Hazard ratios (HRs) were
found to increase (Turner et al., 2016). The updated risks have been used to estimate global premature
mortality from long-term ambient O3 exposure, resulting in substantially increased estimates, including in
India (Malley et al., 2017). This increased public health burden due to O3 exposure has implications for air
quality management strategies.

India is rapidly developing where changing energy demand, urbanization levels, socioeconomics, land use,
technological choices, and air quality policies are leading to rapid changes in air pollution (Gordon et al.,
2014; Health Effects Institute International Scientific Oversight Committee, 2010; International Energy
Agency, 2016; King et al., 2013). India has experienced considerable growth in recent years in industrial,
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power generation, transport, and residential sectors (Sahu et al., 2017). Population-weighted seasonal ambi-
ent O3 concentrations in India have increased by 27% from 62 parts per billion (ppb) in 1990 to 77 ppb in
2016 (Health Effects Institute, 2018). O3 concentrations have been increasing in India due to increasing emis-
sions of O3 precursors (Ghude et al., 2013; Roy et al., 2017).

A business-as-usual scenario in India is projected to increase O3 precursor emissions and future O3 concen-
trations (Chatani et al., 2014; Fiore et al., 2012; Pommier et al., 2018; Pozzer et al., 2012; Wild et al., 2012), with

associated projections increasing the disease burden from O3 exposure in India (Lelieveld et al., 2015).
Previous studies have predicted an additional smaller increase due to climate change (Kumar et al., 2018;
Pommier et al., 2018; Silva et al., 2017). Pommier et al. (2018) analyzed the combined impacts of climate
change and emission scenarios on future air quality in South Asia by 2050 and found the substantial increase

in anthropogenic emissions in India to have at least a factor of three larger impacts on O3 concentrations than
the impacts of climate change. Kumar et al. (2018) studied Representative Concentration Pathways (RCP) in

South Asia to 2050 and found South Asian daily average 8-hr O3 concentrations changed by +11 ppbv and +2
ppbv by 2050 relative to 2015 under RCP8.5 and RCP6.0, respectively, due to the combined effects of a

changing climate and air pollutant emissions. West et al. (2007) found South Asian O3 concentrations to
increase by 15 ppbv under the Intergovernmental Panel on Climate Change Fourth Assessment Report A2
emission scenario by 2030, where 10% and 35% reductions were obtainable from the current legislation
and maximum feasible reduction scenarios, respectively. Silva et al. (2017) estimated the health impacts from

climate changes on O3 concentrations in India to be 16,000 premature mortalities per year by 2100. This

estimate is 18% of the current disease burden in India attributable to ambient O3 exposure estimated by
the GBD2016 (Cohen et al., 2017; GBD 2016 Risk Factors Collaborators, 2017).

Regional reductions in methane (CH4), an important O3 precursor, have been found to lower future O3 con-
centrations in India, reducing the exposure associated disease burden (Anenberg et al., 2012). Reductions in
non-methane VOCs (NMVOC) and NOxmay have immediate air quality and health benefits near the emission
reductions (Anenberg et al., 2012; West et al., 2006, 2007). NOx reductions in Africa and North America impact
Indian O3 concentrations in spring, particularly in Delhi, while NOx reductions in Southeast Asia and East Asia
influence Indian O3 concentrations in winter, specifically over Southern India (West et al., 2009a, 2009b).
Indian O3 concentrations are mostly NOx-sensitive, where NOx emission reductions reduce the disease
burden associated with O3 exposure (Anenberg et al., 2009; West et al., 2009a). Regional transport contributes
10% to this reduction in the disease burden (Anenberg et al., 2009).

The contribution of sources to the disease burden from ambient O3 exposure in India were estimated in pre-
vious global studies (Lelieveld et al., 2015; Silva, Adelman, et al., 2016) using the earlier CPS-II risk estimates,
which found substantial contributions from precursor emissions from energy, land transport, and residential
sources. Previous studies of the total or source-specific disease burden associated with O3 exposure have
used global, offline chemical transport models at relatively coarse spatial resolution (between 0.5° × 0.67°
and 2.0° × 2.5°; Lelieveld et al., 2015; Malley et al., 2017; Silva, Adelman, et al., 2016; Silva, West, et al.,
2016). Tropospheric O3 has a nonlinear dependence on precursor concentrations, with production on short
time scales (Carey Jang et al., 1995; Liang & Jacobson, 2000; Sharma & Khare, 2017; Wild & Prather, 2006).
Coarse spatial resolution models dilute O3 precursors, causing simulated concentrations to diverge from
observations (Carey Jang et al., 1995; Liang & Jacobson, 2000; Sharma & Khare, 2017; Wild & Prather, 2006).
Model resolution also affects estimates of the O3 exposure-related disease burden (Punger & West, 2013;
Thompson & Selin, 2012; Thompson et al., 2014). Online-coupled modeling explicitly accounts for feedbacks
between chemistry and meteorology (Baklanov et al., 2014; Grell et al., 2004), which can be important to
consider when emissions are changing.

Here we make the first estimate of the source-specific disease burden due to O3 exposure at high spatial
resolution, using the updated CPS-II risk functions from Turner et al. (2016), in addition to analyzing the
impacts from future air pollution control pathways. We use a high-resolution (30 km, 0.3° spatial resolu-
tion) numerical weather prediction model, online-coupled with chemistry, to estimate the present-day
reductions in surface O3 concentrations in India resulting from the removal of different O3 precursor
source sectors. An annual control simulation is performed for the year 2014 and evaluated against surface
observations, then annual sensitivity simulations are performed individually removing emissions from
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biomass burning (BBU), power generation (ENE), industrial nonpower (IND), residential energy use (RES),
and land transport (TRA). We explore the impact of scenarios conducted in line with the International
Energy Agency (IEA) New Policy Scenario (NPS) and Clean Air Scenario (CAS) (International Energy
Agency, 2016). To help interpret the impacts of these emission scenarios, we conduct idealized simulations
where we individually change emissions (�10% and +10%) for the four anthropogenic emission sectors
(ENE, IND, RES, and TRA). We calculate the associated disease burden per risk estimate, per simulation.
We then perform further sensitivity studies to explore the impacts of the Indian demographic and epide-
miologic transition through to 2050 on the public health burden associated with O3 exposure. We assume
that both climate and emissions from countries outside India remain unchanged, allowing us to isolate the
impacts of changing Indian emissions. We aim to produce a valuable resource to help inform environmen-
tal policy decisions at the state and national levels regarding O3 precursor emission controls.

2. Methods
2.1. Model Description

We use the online-coupled Weather Research and Forecasting model coupled with Chemistry (Grell et al.,
2005) version 3.7.1 (National Center for Atmospheric Research et al., 2015). The model setup, emission
inventories, and model evaluation are described in detail by Conibear et al. (2018a) and are summarized
in Table S1 in the supporting information. The model domain covers South Asia at 30 km (0.3°) horizontal
resolution. Anthropogenic emissions are from the Emission Database for Global Atmospheric Research
with Task Force on Hemispheric Transport of Air Pollution (EDGAR-HTAP) version 2.2 (Janssens-
Maenhout et al., 2015) for 2010 at 0.1° × 0.1° horizontal resolution. Power generation emissions for the
energy sector are from electricity and heat production. Industrial nonpower emissions include large-scale
combustion and industrial processes. Residential energy use is defined by small-scale combustion includ-
ing heating, cooking, lighting, cooling, and auxiliary engines. Figure 1 shows the fractional contribution of
land transport, power generation, residential energy use, and industry to total annual anthropogenic
emissions of NOx, NMVOC, and CO. Land transport dominates anthropogenic emissions of NOx, while
residential energy use is the leading contributor to anthropogenic emissions of CO and NMVOC.
Anthropogenic emissions of NOx, NMVOC, and CO are all highest during the winter (DJF) and lowest in
the summer (JJA) (Figure S1 in the supporting information).

Biomass burning emissions are from the Fire Inventory from NCAR (FINN) version 1.5 (Wiedinmyer et al.,
2011). Biomass burning emissions include the open burning of biomass including wildfires, agricultural fires,
and prescribed fires, and not biofuel use and trash burning (Wiedinmyer et al., 2011). Small agricultural fires
are challenging to detect by satellite (Randerson et al., 2012). FINN better resolves emissions from these small
fires compared to some other fire emission data sets (Reddington et al., 2016). However, it is likely that emis-
sions from agricultural fires are still underestimated in our study (Cusworth et al., 2018). Biomass burning
emissions are largest in spring (MAM) and late autumn (ON), due to open crop residue burning postharvest-
ing season, and smallest in the summer (JJA) (Venkataraman et al., 2006). The Model of Emissions of Gases
and Aerosol from Nature (Guenther et al., 2006) calculates biogenic emissions online. The Global Ozone
Chemistry Aerosol Radiation and Transport with Air Force Weather Agency modifications (Chin et al., 2000)
calculates dust emissions online.

Gas phase chemistry is simulated using the Model for Ozone and Related Chemical Tracers, version 4
(MOZART-4; Emmons et al., 2010) with several updates to aromatic photochemistry, biogenic hydrocarbons,
and other species relevant to regional air quality (Hodzic & Jimenez, 2011; Knote et al., 2014). The Model for
Simulating Aerosol Interactions and Chemistry scheme (MOSAIC, Zaveri et al., 2008) with the simplified
description of organic aerosols from Hodzic and Jimenez (2011) calculates aerosol physics and chemistry with
four sectional discrete size bins: 0.039–0.156 μm, 0.156–0.625 μm, 0.625–2.5 μm, and 2.5–10 μm (Hodzic &
Knote, 2014). Photolysis rates are calculated with the Fast Tropospheric Ultraviolet-Visible module (Tie
et al., 2003), and radiation is calculated with the Rapid Radiative Transfer Model (Iacono et al., 2008).

2.2. Model Evaluation

We evaluatemodel simulated O3 using surfacemeasurements from previous measurement studies over India
representative of different chemical environments. Details of the monitoring sites are in Table S2. Surface O3
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observations used ultraviolet photometry online analyzers with a 5% accuracy (Kleinman et al., 1994). Similar
to previous studies, the model evaluation uses observational data of a different year to the simulation due to
the paucity of O3 observations over India (Kumar, Naja, Pfister, Barth, & Brasseur, 2012; Kumar, Naja, Pfister,
Barth, Wiedinmyer, et al., 2012; Kumar et al., 2015, 2018; Ojha et al., 2016; A. Sharma, Ojha, et al., 2017).

Figure 2 shows the comparison of observed and simulated O3 concentrations. Simulated O3 concentrations
are highest in northern and eastern India. Simulated O3 concentrations are lowest in summer (JJA), as seen in
previous studies (Chatani et al., 2014; Lu et al., 2018; Ojha et al., 2016; S. Roy et al., 2008). The low O3 concen-
trations in summer are likely due to the monsoon cloud cover reducing solar radiation and wet scavenging of
O3 precursors suppressing O3 production (Lu et al., 2018). Our simulations overestimate surface O3 concen-
trations relative to observations with an overall normalized mean bias (NMB) of 0.35. Previous modeling
studies over India also mostly overestimate O3 relative to observations (Chatani et al., 2014; Engardt, 2008;
Gupta & Mohan, 2015; Karambelas et al., 2018; Kota et al., 2018; Kumar et al., 2010; Kumar, Naja, Pfister,
Barth, & Brasseur, 2012; Kumar, Naja, Pfister, Barth, Wiedinmyer, et al., 2012; Lu et al., 2018; Marrapu et al.,
2014; Ojha et al., 2012, 2016; Pommier et al., 2018; S. Roy et al., 2008; A. Sharma, Ojha, et al., 2017; S.
Sharma et al., 2016; Surendran et al., 2015).

Figure 1. Fractional contribution per sector to total annual anthropogenic emissions. Fractional contribution of land transport (TRA), power generation (ENE),
residential energy use (RES), and industry (IND) to anthropogenic emissions of (a–d) nitrogen oxides (NOx), (e–h) nonmethane volatile organic compounds (NMVOC),
and (i–l) carbon monoxide (CO).
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Models have been found to have limited success in simulating local scale titration chemistry of O3 with nitric
oxide (NO), causing O3 concentrations to be overestimated (Chatani et al., 2014; Engardt, 2008; Pommier
et al., 2018; S. Sharma et al., 2016; Sharma, Sharma, et al., 2017). Urban observations close to large NOx emis-
sion sources tend to have lowO3 concentrations due to this titration effect (Clapp & Jenkin, 2001). To examine
this effect, we separately evaluate themodel against rural (including semirural, coastal, and high altitude) and
urban (including semiurban) observations (Figure S2). The model simulates O3 concentrations closer to
observations for rural sites (NMB = 0.28) than for urban sites (NMB = 0.41). This suggests that the titration
of O3 with large NO concentrations may be causing the model to overestimate O3 where high NO concentra-
tions are likely not captured by the model.

Previous studies have found Indian O3 concentrations to be larger downwind of heavily populated regions
relative to urban areas (Lal et al., 2008; Lawrence & Lelieveld, 2010). The combination of EDGAR-HTAP with
MOZART has also been found to enhance surface O3 mixing ratios due to vertical mixing of enhanced O3 that
has been produced aloft (S. Sharma et al., 2016). The overestimation of O3 could also be due to our underes-
timation of dust aerosols (Conibear et al., 2018a). Heterogeneous reactions on dust surfaces have been found
to reduce O3 concentrations (Kumar et al., 2014; Li et al., 2017). Accurate simulation of dust emissions and
including these heterogeneous reactions reduced the difference between observed and simulated O3 con-
centrations in India from 16 to 2 ppbv (Kumar et al., 2014). Model overestimation of O3 could also be due
to uncertainties in emission inventories over India (Janssens-Maenhout et al., 2015; Jena et al., 2015; Monks
et al., 2015; Saikawa et al., 2017).

Overall, our simulation of O3 concentrations is similar to previous studies (Chatani et al., 2014; Gupta &
Mohan, 2015; Karambelas et al., 2018; Kota et al., 2018; Kumar et al., 2018; Kumar, Naja, Pfister, Barth, &
Brasseur, 2012; Kumar, Naja, Pfister, Barth, Wiedinmyer, et al., 2012; Pommier et al., 2018; A Sharma,
Sharma, et al., 2017; S Sharma et al., 2016), and we compare concentrations in this control (CTL) simulation
to that simulated under a number of different air pollution control pathways (section 2.3).

2.3. Air Pollution Control Pathways

We explore the sensitivity of surface O3 concentrations and the resultant disease burden to different air
pollution control pathways (scenarios) by conducting annual simulations using meteorology and boundary
conditions for the year 2014. These scenarios are discussed in detail in Conibear et al. (2018b). Briefly, we

Figure 2. Comparison of observed and simulated O3 concentrations. (a) Annual mean surface O3 concentrations from the model for 2014 (background) compared
with observations (filled circles, with text showing site abbreviation and measured annual mean). (b) Comparison of annual and monthly mean surface O3 con-
centrations (the colors of filled circles are grouped per site for annual and monthly values). We show the overall best fit line as solid, and the 1:1, 2:1, and 1:2 lines as
dashed lines. Comparison of annual mean observed and simulated values: normalized mean bias (NMB) = 0.35, the best fit line has slope = 1.21, and Pearson’s
correlation coefficient (r) = 0.55. Separate comparison against rural sites: NMB = 0.28, slope = 1.18, and r = 0.67. Urban sites: NMB = 0.41, slope = 1.24, and r = 0.47.
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scale the anthropogenic emissions from the control scenario by factors
from the NPS and the CAS from the IEA (International Energy Agency,
2016). The NPS considers all relevant existing and planned policies as
of 2016, while the CAS represents stringent and proven energy policies
and technologies tailored to national circumstances. By 2040 in India,
the NPS reduces the growth of sulfur dioxide (SO2), NOx, and fine parti-
culate matter (PM2.5) to +9% on average relative to 2015 emissions,
while the CAS brings emissions of SO2, NOx, and PM2.5 below 2015 levels
by an average of 65%. To help interpret the results for these scenarios,
we conduct idealized simulations where each of the anthropogenic sec-
tors (ENE, IND, RES, and TRA) has emissions increased or decreased by
10%. These anthropogenic sectors have been previously found to be
key sources of O3 precursors (S. Sharma et al., 2016; Silva, Adelman,
et al., 2016; Silva, West, et al., 2016). These are in addition to the simula-
tions where we individually remove the emissions from BBU, ENE, IND,
RES, and TRA sectors.

2.4. Health Impact Estimates

Long-term exposure to O3 has been found to be a likely cause of detri-
mental respiratory effects (U.S. EPA, 2013). We do not estimate the
impact of long-term O3 exposure on cardiovascular mortality due to lim-
ited causal evidence (U.S. EPA, 2013). We calculate the disease burden
associated with COPD from ambient O3 exposure using relative risk
(RR) estimates from the earlier CPS-II study (Jerrett et al., 2009), in addi-
tion to the updated CPS-II study (Turner et al., 2016). The updated CPS-II
study derived RR estimates from a larger study population (+49%),

studying twice as many deaths during a longer follow-up period (+22%). The updated CPS-II study used
improved exposure estimates and found the HRs for respiratory mortality increased. The earlier CPS-II
study found HR per 10 ppb for respiratory mortality after adjusting for PM2.5 confounding of 1.04 (95UI:
1.01–1.07), while the updated CPS-II study found HR for COPD mortality after adjusting for PM2.5 and nitro-
gen dioxide (NO2) confounding of 1.14 (95UI: 1.08–1.21). The updated CPS-II study found through sensitiv-
ity analyses that the long-term O3 health impacts are not confounded by socioeconomic status or
modeling approach. To be consistent with the GBD, we estimate premature mortality from the risk of
ambient O3 exposure from the cause of COPD only. The GBD used the earlier CPS-II study risks with 3-
month average daily maximum 1-hr O3 concentrations (3mDMA1), while the updated CPS-II study used
annual average daily maximum 8-hr O3 concentrations (ADM8h). Here we use both the earlier (Jerrett
et al., 2009) and updated (Turner et al., 2016) RR estimates, with the corresponding O3 metric.

We estimate prematuremortality associated with O3 exposure (M) for COPD for adults over 25 years of age (as
per GBD) following equation (1). Mortality is a function of the baseline mortality rate (I), attributable fraction
(AF), and the exposed population (P) per age group. AF is a function of the effect estimate (β) and the change
in O3 concentrations (ΔX) relative to the low-concentration cutoff (LCC), given in equation (2). Both the earlier
and updated CPS-II study AF functions are given in Figure 3, clearly showing the impact of the increased HR
for the updated CPS-II study. The exposure-response function for the updated CPS-II is nonlinear, relative to
the earlier CPS-II function, where there are larger changes in risk for low concentrations compared with
higher concentrations (Pope et al., 2015).

Two LCCs represent uncertainty in the HR as either the minimum exposure (LCCmin) or the fifth percentile
(LCCfifth), whereby if the O3 concentration is below the LCC, there is no effect of O3 exposure on mortality
and ΔX equals zero. The earlier CPS-II study (Jerrett et al., 2009) used the minimum and fifth percentile LCCs
of 33.3 and 41.9 ppb, respectively, while the updated CPS-II study (Turner et al., 2016) used the minimum
and fifth percentile LCCs of 26.7 and 31.1 ppb, respectively. Epidemiological studies generally find little evidence
for low concentration thresholds, and disease burden estimates using thresholds will therefore be conservative
(U.S. EPA, 2013). β is the natural log of the HR for a 10-ppb increase in long-term O3 exposure (equation (3).

Figure 3. Attributable fractions as a function of ambient O3 concentrations
for chronic obstructive pulmonary disease from both the earlier American
Cancer Society Cancer Prevention Study II (CPS-II; Jerrett et al., 2009) and
the updated CPS-II study (Turner et al., 2016). Mean (solid line) as well
as upper and lower 95% confidence intervals (shading) shown for both
low-concentration cutoffs (LCCmin and LCCfifth).
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M ¼ I�AF�P (1)

AF ¼ 1� eβΔX (2)

β ¼ ln HRð Þ
10

(3)

Years of life lost (YLL) are estimated following equation (4), where the premature mortality (M) is multiplied by
the age-specific life expectancy (LE) remaining at the age of death from the standard reference life table from
GBD2016 (Global Burden of Disease Study 2016, 2017).

YLL ¼ M�LE (4)

2.5. Future Demographics and Baseline Mortality Rates in India

Population density, age groupings, and baseline mortality rates are taken from the International Futures (IFs)
integratedmodeling system (Hughes et al., 2011) baseline scenario (Hughes et al., 2012) for 2015 and 2050. In
Conibear et al. (2018b), we found that the population age distribution in India in 2050 shifts toward older
ages relative to 2015 (40 years and older) and there is large population growth, particularly across the
Indo-Gangetic Plain. The baseline mortality rate for COPD reduces slightly in 2050 relative to 2015 for age
groupings 60 years and older. The baseline mortality rate for COPD in 2015 from IFs is slightly larger than
the corresponding rate from GBD2016 for age groupings 75 years and older, and lower than those from
GBD2015 (Institute for Health Metrics and Evaluation, 2018). The Gridded Population of the World, Version
4 national identifier grid (Center for International Earth Science Information Network, & NASA
Socioeconomic Data and Applications Center, 2016) allocated data by country.

2.6. Uncertainties and Assumptions

To account for uncertainty in the RR estimates, we sample 1,000 estimates of β from normal distributions of β
using 95% uncertainty intervals to derive a distribution of the AF. We estimate the uncertainty in O3 concen-
trations for each metric (3mDMA1 and ADM8h) per grid cell as ±2 standard deviations using daily O3 concen-
trations from the metric value. We combine the fractional errors in quadrature (i.e., square root of the sum of
squares). Emission inventories of important O3 precursors, such as NOx emissions, are uncertain over India
(Janssens-Maenhout et al., 2015; Jena et al., 2015; Monks et al., 2015; Saikawa et al., 2017). We only use a single
model to estimate O3 concentrations, while previous studies have highlighted the importance of using an
ensemble of estimates (Post et al., 2012; Silva, Adelman, et al., 2016; Silva, West, et al., 2016).
Overestimated O3 production in polluted regions may bias the source attribution of O3 more toward local
sources due to the shorter production time scales (Wild & Prather, 2006). The response of O3 concentrations
to changes in emissions is nonlinear, meaning an emission removal approach to quantify attributions can
differ from a source tracking approach (Clappier et al., 2017; Mertens et al., 2018).

We use the same meteorology for all simulations to focus on the impacts of emission changes and hence do
not include the impacts of climate changes on O3, although these climate-driven changes are likely smaller
relative to those driven by emission changes (Kumar et al., 2018; Pommier et al., 2018; Silva et al., 2017). Our
results are limited to the impacts from these projected emission changes in India on the disease burden asso-
ciated with O3 exposure in the context of changing demographics and background mortality rates.
Reductions in O3 precursors in India may reduce O3 concentrations outside of India, providing public health
benefits not accounted for in our study (West et al., 2009a). Reduced O3 concentrations will also reduce
damage to crops and the economic cost associated with premature mortalities (Ghude et al., 2014, 2016;
Sinha et al., 2015), as well as providing substantial climate co-benefits (Shindell et al., 2012).

We do not consider the short-term health impacts of ambient O3 exposure (WHO, 2013). The risk estimates
we use for O3 have been adjusted for confounding from PM2.5 and NO2, implying that double counting of
health impacts from PM2.5 and O3 exposure should be small. However, we avoid summing the disease bur-
den from ambient O3 and PM2.5 exposure as they are caused by similar diseases (e.g., COPD). We assume that
the risk estimates from the CPS-II study apply to the Indian population, even though the O3 concentrations
that the Indian population are exposed to are higher than exposures used in the CPS-II studies (Malley
et al., 2017).
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3. Results
3.1. Comparison of Disease Burden Using earlier and Updated Exposure-Response Functions

Figure 4 compares the estimates of premature mortality, mortality rate per 100,000 population, and YLL in
2015 from ambient O3 exposure in India using our model-simulated surface O3, and risk estimates from both
the earlier CPS-II study (Jerrett et al., 2009) and the updated CPS-II study (Turner et al., 2016). The disease bur-
den estimates (premature mortality, YLL, and mortality rate) using the updated CPS-II risks from Turner et al.
(2016) are approximately 200% larger than the disease-burden estimates using the earlier CPS-II risks from
Jerrett et al. (2009). This is primarily due to the larger hazard risk ratios (HR = 1.14 compared to HR = 1.04).
Using earlier CPS-II risks, we estimate 124,000 (95UI: 57,000–203,000) and 107,000 (95UI: 42,000–185,000)
annual premature mortalities from COPD due to O3 exposure in India for 2015 using LCCmin and LCCfifth,
respectively. Using updated CPS-II risks, these increase to 374,000 (95UI: 140,000–554,000) and 336,000
(95UI: 128,000–501,000) annual premature mortalities from COPD due to O3 exposure in India for 2015 using

Figure 4. Estimates of (a) premature mortality, (b) mortality rate per 100,000 population, and (c) years of life lost in 2015 from ambient O3 exposure in India using the
earlier American Cancer Society Cancer Prevention Study II (CPS-II; Jerrett et al., 2009; dashed bars) and the updated CPS-II study (Turner et al., 2016; solid bars)
risk estimates. The error bars represent 95% uncertainty intervals.
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LCCmin and LCCfifth, respectively. The annual premature mortality estimates using updated CPS-II risks are
202% and 214% larger than mortality estimates using earlier CPS-II risks for LCCmin and LCCfifth, respectively.
We quantify 1,899,000 (95UI: 875,000–3,111,000) and 1,639,000 (95UI: 650,000–2,834,000) annual YLL from
COPD due to O3 exposure in India for 2015 for earlier CPS-II risks using LCCmin and LCCfifth, respectively.
These increase to 5,729,000 (95UI: 2,138,000–8,482,000) and 5,148,000 (95UI: 1,963,000–7,679,000) annual
YLL from COPD due to O3 exposure in India for 2015 for updated CPS-II risks using LCCmin and LCCfifth, respec-
tively. The annual YLL estimates using updated CPS-II risks are 217% and 214% larger than estimates using
earlier CPS-II risks for LCCmin and LCCfifth, respectively. We estimate that the annual mean mortality rate
per 100,000 population for India from O3 exposure is 10 (95UI: 4–16) and 8 (95UI: 3–14) for the earlier CPS-
II risks for LCCmin and LCCfifth, respectively. The mortality rate is 28 (95UI: 11–43) and 25 (95UI: 10–39) per
100,000 population for the updated CPS-II risks for LCCmin and LCCfifth, respectively. The annual mortality
rates per 100,000 population are 180% and 213% larger for the updated CPS-II risks relative to the earlier
CPS-II risks for LCCmin and LCCfifth, respectively.

Figure 5 shows the 3mDMA1 and ADM8h O3 concentrations across India with the associated respective
premature mortality estimates and mortality rate per 100,000 population. The population-weighted surface
O3 concentrations for the 3mDMA1 metric is 94.5 ppbv and for the ADM8h metric is 77.2 ppbv. Surface O3

concentrations are larger over northern and eastern India. The overall disease burden is highly concen-
trated in the Indo-Gangetic Plain, with hot spots across India relating to population density. The mortality
rate is less spatially variable, though highest in north eastern India, with values of 13 per 100,000 popula-
tion for the Jerrett et al. (2009) risks and 34 per 100,000 population for the updated risks from Turner
et al. (2016).

Figure 5. Premature mortality estimates due to O3 exposure across India in 2015. All calculations for the control scenario. (a and d) Annual mean surface O3
concentrations. (b and e) Annual premature mortality. (c and f) Annual mortality rate per 100,000 population. (a–c) Calculated following Jerrett et al. (2009).
(d–f) Calculated following Turner et al. (2016). (a) shows the 3mDMA1 O3 metric. (d) shows the ADM8h O3 metric. See text for details.

10.1029/2018GH000168GeoHealth

CONIBEAR ET AL. 342



3.2. Reduction in O3 Concentrations and Disease Burden per
Source Removal

Table 1 shows the reduction in population-weighted 3mDMA1 and
ADM8h O3 concentrations across India associated with the removal of dif-
ferent emission sectors. The spatial changes in annual-mean surface O3

concentrations of these source removals are shown in Figure S3. We find
that emissions from land transport dominate (28% of 3mDMA1 and 35%
of ADM8h) the reduction in O3 concentrations from all individual source
removals, with substantial reductions from energy (14% of 3mDMA1 and
23% of ADM8h) and residential energy use emissions (9% of 3mDMA1
and 11% of ADM8h). The summation of these source reductions is 60%
from 3mDMA1 and 76% from ADM8h. The summation of source reduc-
tions is less than 100% due to sources not investigated in this study (e.g.,
aircraft NOx and biogenic VOCs), sources outside of the domain, natural

sources (e.g., stratospheric O3 transport, lightning NOx, and soil NOx), and due to the nonlinear response of
O3 to precursor emission changes. The source summation less than 100% has been seen in previous studies
over India by Silva, Adelman, et al. (2016), Silva, West, et al. (2016), and S. Sharma et al. (2016), and Fiore et al.
(2004) demonstrated the influence of additional sources to O3 concentrations in the United States.

Table 2 shows the source contributions to the annual premature mortality estimate associated with O3 expo-
sure in India in 2015 using Turner et al. (2016) risks and LCCmin. We calculate the source contributions using
two different methods: the attribution and subtraction methods (Conibear et al., 2018a; Kodros et al., 2016).
The attribution method estimates the source contribution to the disease burden as the total disease burden
estimate multiplied by the fractional source contribution to total O3 concentrations from each emission
removal simulation. The subtraction (also known as zero-out) method calculates the difference between
the total disease burden estimate and an estimate where a source has been removed. The estimates from
the attribution and subtraction method are expected to produce different results due to the shape of the
exposure-response function, despite both methods using the same O3 concentrations contributions from
each emission removal simulation. We recently showed a similar effect for PM-related mortality in India
(Conibear et al., 2018a).

At the national level, the contribution from land transport emissions to the disease burden calculated using
Turner et al. (2016) risks is 35% for the attribution method and 46% for the subtraction method. For energy
emissions, the contribution to the total disease burden is 23% and 28% for the attribution and subtraction
methods, respectively. The spatial distributions of the dominant contributing sources (land transport and
energy emissions) to the disease burden associated with O3 exposure in India are shown in Figure S4. The
summation of the source contributions to mortality from the attribution method is 284,000 (95UI:
106,000–421,000) annual premature mortalities (76% of control simulation), while for the subtraction
method, it is 355,000 (95UI: 133,000–526,000) annual premature mortalities (95% of control simulation).

Table 1
Reduction in Population-Weighted Surface O3 Concentrations in India
Associated With Removing Different Sources

Reduction to
population-weighted
surface O3 concentration BBU ENE IND RES TRA Total

3mDMA1 O3 ppbv 4.0 13.5 4.5 8.1 26.4 56.5
% 4 14 5 9 28 60

ADM8h O3 ppbv 1.7 17.4 3.9 8.1 27.0 58.1
% 2 23 5 11 35 76

Note. Two different O3 metrics (3mDMA1 and ADM8h) are shown. Sources
are biomass burning (BBU), power generation (ENE), industrial nonpower
(IND), residential energy use (RES), and land transport (TRA). Absolute
(ppbv) and relative (%) reductions are shown.

Table 2
Source Contributions to the Annual Premature Mortalities Associated With Ambient O3 Exposure in India in 2015 Calculated Using Turner et al. (2016) Risks and LCCmin,
Including Source Contributions to the Annual Premature Mortalities Associated With Ambient PM2.5 Exposure From Conibear et al. (2018a)

Source contribution to
annual premature mortalities BBU ENE IND RES TRA Total

O3 attribution Number (×103) 7 (3–11) 86 (32–127) 19 (7–28) 41 (15–61) 131 (49–194) 284 (106–421)
% 2 23 5 11 35 76

O3 subtraction Number (×103) 10 (4–15) 105 (39–156) 22 (8–33) 45 (17–67) 173 (65–256) 355 (133–527)
% 3 28 6 12 46 95

PM2.5 subtraction Number (×103) 12 (8–16) 90 (60–122) 66 (45–90) 256 (162–340) 43 (29–58) 467 (304–626)
% 1 9 7 26 4 47

Note. The absolute number and percentage of total premature mortalities associated with O3 exposure in India are shown for two different methods (attribution
and subtraction) and for the subtraction method for PM2.5 exposure. Sources are biomass burning (BBU), power generation (ENE), industrial nonpower (IND), resi-
dential energy use (RES), and land transport (TRA). The values in parentheses represent the 95% uncertainty intervals (95UI).
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The source contributions to the O3 burden from the attribution method are smaller than source contributions
from the subtraction method, due to the present-day O3 concentrations experienced in India being in the lin-
ear section of the exposure-response function, and to the high minimum pollutant threshold (26.7 ppb for
Turner et al., 2016 risks and LCCmin).

3.3. Impact of Emission Mitigation Scenarios on O3 and Associated Disease Burden

Figure 6 shows the impact of different emission scenarios on surface O3 concentrations. The NPS increased
the population-weighted ADM8h O3 concentrations by 1%, while the CAS reduced them by 24%. The
removal of land transport emissions reduces population-weighted ADM8h O3 concentrations by 35%, and
the removal of energy emissions reduces them by 23%. These results show that the removal of land transport
emissions produces greater reductions in O3 concentrations than the CAS. The larger reduction of O3 via
removing land transport emissions may be due to land transport emissions heavily dominating contributions
to anthropogenic NOx emissions, coupled to many population regions of India being NOx limited. O3 produc-
tion in India has been found to bemostly NOx-limited where O3 reductions are more sensitive to the emission
control of NOx than VOC, while some studies find that urban areas are VOC-limited (Kumar, Naja, Pfister, Barth,
& Brasseur, 2012; Kumar, Naja, Pfister, Barth, Wiedinmyer, et al., 2012; Lu et al., 2018; Mahajan et al., 2015; Ojha
et al., 2012; Pommier et al., 2018; Saikawa et al., 2017; A. Sharma, Ojha, et al., 2017; S. Sharma et al., 2016). The
complex emission changes within the CAS combine a 24% increase in industrial NOx emissions and a 78%
reduction in land transport NOx emissions, with substantial reductions in residential VOC emissions, which
can potentially alter the O3 sensitivity to NOx changes. In the NPS where land transport NOx emissions
decrease by 45%, O3 concentrations increase over Delhi. This increase is possibly due to the urban VOC lim-
ited regime where O3 production is inversely proportional to NOx. When designing air pollution control

Figure 6. Impacts from air pollution control pathways on surface O3 concentrations in India. (a) National-mean relative changes in population-weighted ADM8h
surface O3 concentrations for different emission scenarios relative to the control scenario in 2015. (b–g) Absolute change in ADM8h O3 concentrations for different
emission scenarios relative to the control (CTL) scenario. Emission scenarios are New Policy Scenario (NPS), Clean Air Scenario (CAS), and when individual
emission sectors are switched off: power generation (ENE 0%), industrial nonpower (IND 0%), residential energy use (RES 0%), and land transport (TRA 0%).
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pathways to reduce the health impacts from O3 exposure, care is required to consider how changing
anthropogenic emissions will affect O3 production, and specifically sensitivities to NOx and VOC emissions
under different regimes.

We estimate the percentage of the population exposed to different concentration levels according to the
World Health Organization (WHO) 8-hr daily maximum O3 concentration of 50 ppb, which is the same as
the Indian National Ambient Air Quality Standards (NAAQS) released by the Ministry of Environment and
Forests, Government of India (Ministry of Environment and Forests, 2009; World Health Organization,
2006). For all scenarios except ENE 0%, CAS, and TRA 0%, all of the Indian populations in both 2015 and
2050 remain exposed to O3 concentrations above WHO and NAAQS O3 metrics. For the ENE 0%, CAS, and
TRA 0% scenarios, 13%, 14%, and 52% of the populations, respectively, had their exposures brought into line
with the WHO and NAAQS O3 metrics (Figure S5).

Figure 7 shows the impacts of different emission scenarios on total premature mortality associated with O3

exposure. Figure 8 shows the corresponding results for the mortality rate per 100,000 population. For emis-
sion change only in 2015 (i.e., population, age structure, and background mortality are unchanged), the NPS
has small impacts (+1%) on annual premature mortality relative to the control in 2015 due to small change
(+1%) in O3 in this scenario. In contrast, the CAS reduces annual premature mortality by 30% relative to
the control due to the 24% reduction in O3 under this scenario. The greater relative reduction in premature
mortality compared to O3 is due to the strong sensitivity of risk to O3 (Figure 3) at the concentrations cur-
rently experienced across India (population-weighted ADM8h estimated to be 77.2 ppbv). The TRA 0%

Figure 7. Impacts from air pollution control pathways on annual premature mortality from ambient O3 exposure in India. (a) National mean changes in annual
premature mortality estimates from ambient O3 exposure per scenario, for both emissions only changes between 2015 and 2050 (solid bars) and overall changes in
2050 including 2015 to 2050 changes in emissions as well as population growth, population aging, and baseline mortality rates (POP/AGE/BM, dashed bars). The
dashed horizontal line represents the change in annual premature mortality in 2050 if emissions remain at 2015 levels. (b–g) Change in annual premature
mortality from ambient O3 exposure in 2050 from different emission scenarios (see Figure 6) relative to the control scenario in 2015 accounting for emission changes
and POP/AGE/BM changes. All health impacts are calculated using Turner et al. (2016) RR and LCCmin.
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scenario results in a 46% reduction in premature mortality (due to a 35% reduction in O3), and the ENE 0%
results in a 28% reduction in premature mortality (due to a 23% reduction in O3).

The impact of the demographic transition through to 2050 on the premature mortality estimates heavily out-
weighs the impacts from emission changes. If emissions remain at 2015 levels, we estimate the annual pre-
mature mortality will increase by 200% to 1,126,000 (95UI: 421,000–1,667,000) due to population aging and
growth increasing the number of people susceptible to air pollution. The impact of the NPS is similar to
changes to those from no emission change (+205%). The IND 0% and RES 0% scenarios offset part of the
increase in the annual premature mortality estimate due to the demographic transition, avoiding 65,000
(9%) and 136,000 (18%) premature mortalities, respectively. The TRA 0%, CAS, and ENE 0% scenarios offset
a substantial amount of the increasing disease burden from the demographic transition, avoiding 520,000
(69%), 335,000 (45%), and 316,000 (42%) premature mortalities per year. This means that even under the
stringent emission controls implemented in the CAS, annual premature mortality from ambient O3 exposure
will increase in 2050 by 111% above the 2015 control scenario to 791,000 (95UI: 202,000–1,336,000)
premature deaths.

For no change in emissions through to 2050, the mortality rate per 100,000 population will increase by 139%
to 67 (95UI: 24–104) due to the demographic transition. The impact of the NPS by 2050 on mortality rate per
100,000 population is similar to changes to those from no emission change (+139%). The IND 0% and RES 0%
scenarios offset part of the increase in the annual mortality rate estimate due to the demographic transition,
avoiding 3 (4%) and 7 (10%) annual deaths per 100,000 population, respectively. The TRA 0%, CAS, and ENE
0% scenarios offset 32 (48%), 19 (28%), and 21 (31%) annual deaths per 100,000 population, respectively,

Figure 8. Impacts of air pollution control pathways on annual mortality rate per 100,000 population from ambient O3 exposure in India. (a) National mean changes in
annual mortality rate per 100,000 population estimates from ambient O3 exposure per scenario, for both emissions only changes between 2015 and 2050
(solid bars) and overall changes in 2050 including 2015 to 2050 changes in emissions as well as population aging and baseline mortality rates (POP/AGE/BM, dashed
bars). The dashed horizontal line represents the change in annual mortality rate per 100,000 population in 2050 if emissions remain at 2015 levels. (b–g) Annual
change in mortality rate per 100,000 population from ambient O3 exposure in 2050 from different emission scenarios (see Figure 6) relative to the control scenario in
2015 accounting for emission changes and POP/AGE/BM changes. All health impacts are calculated using Turner et al. (2016) RR and LCCmin.
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from the demographic transition in 2050. Under the stringent emission control scenario of CAS, the annual
mortality rate from exposure to O3 in 2050 will increase by 71% above the 2015 control scenario to 48
(95UI: 13–86) deaths per 100,000 population.

These results highlight the dominant role of the demographic transition by 2050 in controlling the suscept-
ibility of the Indian population to air pollution, leading to a substantial mortality increase. Stringent air pollu-
tion control pathways can provide essential public health benefits offsetting part of the disease burden from
O3 exposure.

3.4. Sensitivities to Demography and Baseline Mortality Rates

To explore the sensitivity of calculated disease burden to different parameters in our methodology, we apply
population density from 2015 (POP2015), population age groupings from 2015 (AGE2015), or baseline mor-
tality rates from 2015 (BM2015) individually. Each sensitivity study shows the influence of the other para-
meters in combination in 2050, highlighting the temporal impact in that specific variable (Figure S6). For
the control scenario, the 2015 mortality rate changed by +139% in 2050 due to changes in demography
and baseline mortality. In comparison, the mortality rate changed by +96% for POP2015, �21% for
AGE2015, and +196% for BM2015. For the control scenario, the 2015 annual premature mortality estimate
changed by +201% in 2050 due to changes in demography and baseline mortality. In comparison, premature
mortality changed by +134% for POP2015, +2% for AGE2015, and +271% for BM2015. These sensitivity stu-
dies highlight the strong dependence of the future disease burden from O3 exposure in India to an aging
population, where there is a large transition to increased susceptibility.

4. Discussion

Figure 9 compares our total and source-specific premature mortality estimates for India from O3 exposure
with previous studies (Cohen et al., 2017; GBD 2010 Risk Factors Collaborators, 2012; GBD 2013 Risk
Factors Collaborators, 2015; GBD 2015 Risk Factors Collaborators, 2016; GBD 2016 Risk Factors
Collaborators, 2017; Ghude et al., 2016; Lelieveld et al., 2015; Malley et al., 2017; Silva et al., 2013; Silva,
Adelman, et al., 2016; Silva, West, et al., 2016).

For calculations using Jerrett et al. (2009) risks, estimates of the total annual premature mortality from O3

exposure in India in the present day vary from 78,000 to 190,000 (GBD 2015 Risk Factors Collaborators,
2016; GBD 2016 Risk Factors Collaborators, 2017; Lelieveld et al., 2015; Malley et al., 2017; Silva et al., 2013;
Silva, Adelman, et al., 2016; Silva, West, et al., 2016), between �36% smaller and +55% larger than our esti-
mates. Our estimate of premature mortality is +15% (LCCmin) and �1% (LCCfifth) of the estimate from
GBD2015 (GBD 2015 Risk Factors Collaborators, 2016) and +38% (LCCmin) and +19% (LCCfifth) of the estimate
from GBD2016 (GBD 2016 Risk Factors Collaborators, 2017). The slightly larger estimates in our study are pri-
marily due to higher estimates of O3 concentrations combined with higher (lower) COPD baseline mortality
rates from the IFs model relative to GBD2016 (GBD2015). For calculations using Turner et al. (2016) risks, we
estimate annual premature mortality to be 12% higher than Malley et al. (2017), the only other study that has
applied these risks, due to higher O3 concentrations across India in our study. Turner et al. (2016) found sig-
nificant positive associations between O3 and all-cause, circulatory, and respiratory mortality, suggesting that
our estimates from COPD only may be conservative. Overall, our estimates of annual premature mortality in
India for the present day from O3 exposure are in general agreement with previous key studies.

In terms of source contributions, one previous study calculated the disease burden from O3 exposure in India
for 2005 using Jerrett et al. (2009) risks and the subtraction method (Silva, Adelman, et al., 2016). For seasonal
O3 concentrations, they found approximately equal leading contributions from energy (9%), land transport
(9%), and residential (9%) emissions. They found that premature mortality fractional contributions were
approximately double the fractional contributions to O3 concentrations, with 17% from energy, 16% from
land transport, and 16% from residential emissions. In contrast, we find land transport to dominate the frac-
tional source contributions to seasonal O3 concentrations (28%) over energy (14%) and residential (9%) emis-
sions (Table 1, 3mDMA1 metric). Our larger contribution from land transport may be due to the growth in
land transport emissions between 2005 and 2010, where Indian passenger and freight kilometers increased
by 6.54% and 3.61% per year, respectively (Venkataraman et al., 2018). In agreement with this previous study,
we find the fractional source contributions to premature mortality were approximately double the fractional
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contributions to O3 concentrations due to the low concentration cutoffs, with land transport again
dominating (46%) over energy (28%) and residential (12%) emissions (Table 2, subtraction method).

Another study estimated the source contributions to present-day annual-mean surface O3 concentrations
and found land transport emissions to dominate (8%, 3.3 ppb) above those from industry (5%, 2.1 ppb),
energy (4%, 1.9 ppb) and residential (3%, 1.4 ppb) sources (S. Sharma et al., 2016). The main difference in
source contributions to annual-mean O3 concentrations in our study is that we estimate larger contributions
from land transport (30%, 13.6 ppb) and energy (24%, 11.0 ppb) emissions (Figure S3). This is likely due to
lower emissions of O3 precursors from land transport and energy in the emission inventory used in
S. Sharma et al. (2016), relative to that used in our study (EDGAR-HTAP version 2.2).

Overall, we agree with these previous studies that a number of emission sectors are important, though we
find larger contributions from land transport and energy emissions. Future work needs to better constrain
the sensitivity of O3 concentrations to different emission sectors.

Our results show that decreasing land transport emissions reduces O3 concentrations across India. Though in
the future with decreasing VOC emissions from the residential sector and increasing the number of vehicles,
this trend could change the future sensitivity of O3 production to precursor emission changes, which was also
found in previous studies (Chatani et al., 2014; Sharma et al., 2016).

Figure 9. Comparison of premature mortality estimates for India due to ambient O3 exposure. Estimates are shown using relative risks from either the earlier
American Cancer Society Cancer Prevention Study II (CPS-II) study from Jerrett et al. (2009; dashed bars) or the updated CPS-II study from Turner et al. (2016)
(solid bars). (a) Total premature mortality from O3 exposure from all sources. Estimates shown for both lower concentration cutoffs (LCCmin and LCCfifth). We
compare this study (green) with previous studies (orange). (b) Estimates of premature mortality from different emission sectors (see key) using either the attribution
or the subtraction method. Estimates are shown for LCCmin. The error bars represent 95% uncertainty intervals.
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Here we have shown that for the disease burden from ambient O3 exposure in India, contributions from the
subtraction method are up to 43% larger than the attribution method. However, in our previous work esti-
mating the disease burden from PM2.5 exposure in India, we showed that the source contributions from
the subtraction method are 2–2.5 times smaller than those from the attribution method (Conibear et al.,
2018a). In this study for emissions only changes in 2015 for O3, the CAS reduces annual premature mortality
by 30% relative to the control, due to the 24% reduction in O3 under this scenario. In our previous work for
emissions only changes in 2015 for PM2.5, the CAS reduces annual premature mortality by 39% relative to the
control, due to the 67% reduction in PM2.5 under this scenario (Conibear et al., 2018b). The relative reduction
in premature mortality from O3 exposure is larger than the relative reduction in O3 concentrations. In con-
trast, the relative reduction in premature mortality from PM2.5 exposure is smaller than the relative reduction
in PM2.5 concentrations. The exposure-response functions for both O3 and PM2.5 are nonlinear. The differ-
ences in the relative reductions in concentration and mortality for both PM2.5 and O3 are due to the position
of present-day pollutant concentrations on the nonlinear health functions, and also due to the different mini-
mum pollutant thresholds assumed, below which there is no health impact.

The O3 concentrations currently experienced across India (population-weighted ADM8h of 77.2 ppbv,
Table 1) are in the steeper part of the exposure-response function, where the health effects are sensitive to

changes in pollutant concentrations (Figure 3). In contrast, the PM2.5 concentrations currently experienced

across India (population-weighted annual mean of 57.2 μg m�3) are in the flatter part of the exposure-

response functions, where the health effects are less sensitive to changing PM2.5 concentrations (Conibear

et al., 2018a). The O3 exposure-response function assumes that there is no health impact below 26.7 ppbv,

the LCCmin from Turner et al. (2016). Reducing O3 concentrations from the present-day value (77.2 ppbv)

to the LCCmin, a reduction of 65%, would therefore reduce premature mortality by 100%. The exposure-

response function for PM2.5 assumes a theoretical minimum risk exposure level of 2.4 μg m�3, meaning that

concentrations across India would need to be reduced by 96% (from 57.2 μg m�3) to reduce premature mor-

tality from exposure to PM2.5 by 100% (Conibear et al., 2018a). This difference results in larger relative reduc-

tions in health impacts for the same relative reduction in O3, compared to PM2.5. If subsequent exposure-
response functions assume different minimum pollutant thresholds (or lower concentration cutoffs, LCC),

the calculated sensitivity of health impacts to changes in O3 concentrations will also change.

We find that with no emissions change to 2050, the demographic and epidemiological transitions increase
the annual premature mortality due to O3 exposure by 200% and the mortality rate per 100,000 population
by 139%, while the corresponding impacts from PM2.5 exposure in India are 75% and 39%, respectively
(Conibear et al., 2018b). The larger increase for the O3 burden under constant emissions is due to the limited
improvement in baseline mortality rate for COPD, while for the PM2.5 exposure burden there are substantial
reductions in baseline mortality rates for lower respiratory infections, ischemic heart disease, and
cerebrovascular disease.

Figure 10 compares the disease burden from PM2.5 and O3 exposure in India in 2015 and 2050 due to
changes in emissions and changes in demography. In our previous work, we estimated the present-day dis-
ease burden from ambient PM2.5 exposure in India to be 900,000 (95UI: 683,000–1,252,000) premature mor-
talities per year, increasing to 967,000 (95UI: 820,000–1,194,000) under the CAS in 2050, for a 67% reduction
in population-weighted annual mean PM2.5 concentrations (Conibear et al., 2018b). Here we estimate the
present-day disease burden from ambient O3 exposure in India to be 374,000 (95UI: 140,000–554,000) prema-
ture mortalities per year, increasing to 791,000 (95UI: 202,000–1,336,000) under the CAS in 2050, for a 24%
reduction in population-weighted annual mean O3 concentrations. This suggests that the future disease bur-
den from PM2.5 and O3 exposures in India may be similar in magnitude, in contrast to the present day where
the disease burden from PM2.5 dominates that from O3 exposure. This is due to the combination of the smal-
ler reduction in O3 (24%) compared to PM2.5 (67%) under the CAS and because the COPD baseline mortality
rates are predicted to remain high through to 2050, whereas there are substantial reductions in the baseline
mortality rates for other diseases that are related to PM2.5 exposure (lower respiratory infections, cerebrovas-
cular disease, and ischemic heart disease). The predicted increase in health affects both from PM2.5 and O3

exposure due to the demographic and epidemiologic changes highlight the challenge facing Indian efforts
to reduce the public health risks from exposure to poor air quality in India.
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5. Conclusion

Long-term exposure to surface O3 is a risk factor for human health in India. Here we are the first to estimate
the source-specific disease burden associated with long-term O3 exposure in India at high spatial resolution,
using the updated risk functions from the CPS-II. We estimate using the updated CPS-II risk function that in
2015 there were 374,000 (95UI: 140,000–554,000) annual premature mortalities from long-term O3 exposure
in India, 200% larger than the disease burden estimates using the older CPS-II risk function. We find land
transport emissions dominate the source contribution to this disease burden (35%), followed by emissions
from power generation (23%). The source contributions to the O3 disease burden in India from the subtrac-
tion method are up to 43% larger than the attribution method due to the position of present-day O3 concen-
trations on the steeper part of the nonlinear health function and the relatively high minimum pollutant
threshold. This is in contrast to the PM2.5 disease burden in India where the source contributions from the
subtraction method are 2–2.5 times smaller than those from the attribution method due to the position of
present-day PM2.5 concentrations on the flatter part of the nonlinear health function and the relatively low
minimum pollutant threshold.

Figure 10. Comparison of (a) premature mortality and (b) mortality rate estimates for India due to PM2.5 and O3 exposure.
Estimates are shown for the 2015 control (CTL) scenario, the New Policy Scenario (NPS) in 2050, and the Clean Air Scenario
(CAS) in 2050. Estimates of the disease burden for O3 exposure (green) are from this study using relative risks from the
updated American Cancer Society Cancer Prevention Study II study from Turner et al. (2016) and LCCmin. Estimates of the
disease burden for PM2.5 exposure (orange) are from Conibear et al. (2018b) using the integrated-exposure response
function (Burnett et al., 2014) updated for GBD2016 (GBD 2016 Risk Factors Collaborators, 2017). Estimates for O3 exposure
are from chronic obstructive pulmonary disease (COPD) only. Estimates for PM2.5 exposure are from COPD, lower
respiratory infections, cerebrovascular disease, lung cancer, and ischemic heart disease combined. The error bars represent
95% uncertainty intervals.
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With no change in emissions by 2050, we estimate 1,126,000 (95UI: 421,000–1,667,000) annual premature
mortalities, an increase of 200% relative to the control in 2015 due to population aging and growth increasing
the number of people susceptible to air pollution. We find the IEA NPS provides small changes (+1%) to this
increasing disease burden from the demographic transition. Under a stringent air pollution control pathway,
the IEA CAS, we estimate 791,000 (95UI: 202,000–1,336,000) annual premature mortalities in 2050. This repre-
sents an avoidance of 335,000 premature mortalities a year compared to the scenario of no emission change,
offsetting 45% of the increase in premature mortalities due to the demographic transition. However, this
shows that even under a scenario of strong emission reductions leading to a 24% reduction in O3 concentra-
tions across India, population growth and aging are likely to lead to increasing premature mortality from O3

exposure. We do not include impacts of climate change or the impacts of changing emissions from outside
India on O3 concentrations or the disease burden. We find that the future disease burden from PM2.5 and O3

exposures in India may be similar in magnitude, in contrast to the present day where the disease burden from
PM2.5 dominates that from O3 exposure. Our study highlights the challenge facing efforts to improve air
quality related public health in India, but that critical public health benefits are possible with stringent
emission reductions.
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