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Calculation of Confidence Intervalsfor
a Finite Population Size

Steven A. Julious



Abstract

For any estimate of responsenfidence intervals are importaad they helmguantify

a plausible range of vads for the population responsddowever,there may be
instances in clinical research whire population size is finite but we wish to take a
sample from the population and make inference from this sample.

Instances where you can have a fixed population size include when undertaking a
clinical audit of patient records or in a clinical trial a researcher could be checoking f
transcription errors against patient notes.

In this paperwe describehow confidencenterval calculationgan be calculated for a
finite population. These confidence intals are narroer than confidence intervals

from population samples. For the extreme case of when a 100% sample from the
population is taken there is no error andaalkeulationis the population response.

The methods in the paper are described usincase study from clinical data
management
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1 Introduction

For any clinical investigative outcome the calculation of confidentervials is
important [l]. A 95% confidence interval is defined a® interval estimated from a
samplewithin which we are 95% certain that the tpegpulationvalue would lie. It
therefore provides a range of responses arounddtiraatevalue of interestto assist
in the assessment of the true effgjt

There are instances in clinical research where we have a finite populagonFsiz
examplein a clinical audit in a general practice a researcher ceuidwthe recods

of patientswith asthma in the practide assess thasthma medations be prescribed

for the patients Here the population is all the patients with asthma in the practice.
Thus, the research could review the clinical records for all these pabesisnply

take a sample of alhesepatientswith the knowledge that this will provide sufficient
information for the research questig8]. This sample will in turn proviel an
estimate for the parameters of interest for the populatiovhich here is all the
patients with asthma in the practice.

The same situation arises in clini¢ahl research For exampleon a site visitfor a
multi-centre trial a researcher coutdheck for transcription errors between data
entered onto the case record form against the clinical rec8idslarly, for a school

based intervention where school absenceghechildrenis the primary outcome a
resarcher could check what is recorded for the trial against the original data source
the school registers. In both these examples the population is the study population
and to get an estimate of the number of errors a researcher could review all the
recods for all the people in the trial or take a sample and from this get an estimate of
the population response.

In this paper we will first describe standard methods for confidence ihtstnaate
beforeextending this fofinite population. We will themmpply methodologies with a
motivating exampléaken from clinical data management

2 Motivational Example

In the planning of a quality controQC) checkof a database for nexritical dataa
priori it is imagined that an error ratieat couldbeobserved is 0.5%.

In doing this QC check we could 100% sample all the data in the database to assess
the proportion of errors. As this is nontical data there may be a wish to save
resource by taking a sample and estimate the proportion of errors fromrtigs,

only if this sample gives cause for concern take a bigger sample from the databas

In this case study &vare mainly interested in ruling out what the error rate could be
worst case and so we wish to calculateonfidence interva(Cl) for the eventate



and make any assessment froime upper boundrom the Clfor the worst case
estimate of error rate

2.1 Standard Methods Ignoring the Finite Population Size
2.1.1 Normal Approximation Confidence Intervals

If kK events are observed in n observations such hleadtent rate can be estimated
be p=k/n. Then the 95% confidence interval for p can bmastl from

1_
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Wherea is the level of statistical significance (a=0.05 would give 95% confidence
intervals) and Z the standard Normal values for a.

1.1.1. BetaDistribution Confidence Intervals

For the case studthe error rate is expected to be very low. Thus,calculate
confidence intervals for a binary respongse will make use of the link between the
Binomial andBeta distribution The utility of calculating confidence intervals using a
Beta distribution in the context of this paper is that the methodology can be used if the
event of interest is very raresuch as assessing the number of errors in a data base

Using a Beta distribution the lower bouiwdt a confidence interval is defined &s§]
(2) 1-BETAINV(l-a&/2,n-k+1k),

and upper as [4-6]

(3)  BETAINV(l-a/2,k+1n-Kk).

As with the Normal case beforezis the level of statistical significance, k the number
of events observed and n the sample size in the investigaBEMAINV (e) refers to

the cumulative distribution function of a Beta distribution. The upper and lower
bounds calculate fronf2) and (3) will provide range of plausible values that the
population prevalence is likely to be within.

Cdculations using the Beta distribution are referred to as exact confidencalsiter
and in some texts as Clopper Pearsgn [The theoretical rational behind using the
Beta distribution is more complicated than for standard Normal approximation
calculations. However, operationally they are easy to calculate and can batedlcu



in most statistical packages, or using spreadsheet packages such as SAS or even
Excel. Indeed théBETAI NV(-) notation given in this paper is taken from Excel.

Note (2) works for all values except when k=0. Here the lower bound would be fixed
at 0 (or 0/n). Also(3) works for all values except when k=n. Here the upper bound
would be fixed at 1 (or k/n).

2.1.2 OneTailed or Two Tailed?

The question of whether to calculate one or two tailed confidence intervals is not
straightforward 8]. For confidence intervals it depends on whether you wish to
provide an estimate of the plausible range for the true value (two tailed) or a value
which you are confident that the true value will not exceed (one tailed).

For rare events it is often one tailed adahce that that you are interested in such that
a onetailed I o % bound is estimated from

(4)  BETAINV(l-a,k+1n-k).

This one tailed confidence interval will give you an upper bound fopteealence
for a given number of events (k) in n subjects that you would-le% confident that
the population prevalence is unlikely to be greater than.

Note there is a school of thought that when computing a one tailed test you should set
your significance level at half that of a two sided tegf [ In this paper we shall use
the same level of significance for both two and siued tests.

2.1.3 Worked Example Ignoring the Finite Population Sample

In the planning of a QC of a databdse non-critical data we imagined that an error
rate we would sewould be 0.5%. We are mainly interested in ruling out what the
error rate could bevorst case and so we wish to calculate simply a one tailed
confidence interval for the upper boumsing a Beta distribution

Table 1 gives an illustratiorof the possible results if we observed an error rate of
0.5%, with its corresponding confidence interval upper bguid various sample
sizes. Here we angnoring the fact we actually have a finite population $ipen
whichthe sample is drawn.



Table 1. Confidence intervals for a proportion of observed errorsin a QC for different sample
sizes.

Number  Sample Point One Tailed Upper
of Errors Size Estimate (%) 95% CI (%)
1 200 0.0 2.35
3 600 0.0 1.29
5 1000 0.%0 1.05
10 2000 0.20 0.85
30 6000 0.20 0.68
40 8000 0.0 0.65
50 10000 0.0 0.63
125 25000 0.0 0.58
250 50000 0.0 0.56
500 100000 0.0 0.54
1250 250000 0.0 0.52

2.2 Methodsfor Accounting for Finite Populations

2.2.1 Normal Approximation

To calculate confidence intervals for a binary response to account for thleaiactir
sample size n is in fact drawn from a finite sample size N we can estimaitepe
andlower lound of the confidence interval, using a Normal approximation, to be [10]

p-p) [N-n
© iz, PR N

It is worth comparing he resul(5) with (1) given earlier— for a standard 95%
confidence interval estimate. Thed&nal right hand term has the effect of making
the confidence interval narr@v Such that for the extreme case of n=N, where a
100% sample is take, there is no error as p is the population estimate

2.2.2 BetaDistribution

If a Beta distribution is to be ed to estimate the confidence interval thvesm can
estimate the lower bound of the confidence interval to be [10]

k N-n N-n
(6) H{l_ N _1]+(1— BETAINV (1-a/2,n—k +1,k)) N1
and upper as [10]
@) %(1_ N- n]+(BETAINV(1—a/2,k+ln— k)) :_2 :

The upper and lower bounds calculate fri@nand(7) will provide range of plausible
values that the population prevalence is likely to be wiletounting for the fact that



the sample from which the estimate is obtained is actually a fra¢ttw), of the
population sample size, N

It is easier to think in terms of the proportion of the finite sample drawn r defined as

(8) r:N.

Hence, using r we can estimate the lower bound of the confidence interval to be

(9) 5(1— wj+(1— BETAINV(1-a/2,n—k +1k)) w,
n n—r -
and upper as
(10) 5(1— - Ir)”j+(|3ETA| NV (L—a/2,k +1n—k)) [ L=0N
n n—r n—r
From
(7) a one tailed confidence interval for the upper bound could be obtained from
k N-n N-n
11) —|1- +(BETAINV(1-—a,k+1,n-k :
()n{ —1]( L-akedn-khT—
Which when written in terms of r becomes
(12) 5(1— (1_r)nJ+(BETAINV(1—a,k+],n—k)) d=nn.
n n—r n—r

From now on in the paper the concentration will be on methods using the Beta
distribution

Note again, as for the Normal approximation earliem=N then all the confidence
intervals return the point estimate, k/n, as the best estimate.

2.2.3 Worked Example Accounting for the Finite Population Sample

For the same example earlier of a QC of a database efritmal data suppose we
are actually taking a 10% sample such th&.X= For the same sample sizes and
anticipatedQC error rateg0.5%) as previouslyTable 2 gives an illustration of
possible assuming an error rate of 0.5% is observed in the data.

Suppose the third rovin the table ar¢he results we have observedie QC. Thus,
we have taken a sample of size 1000 and found 5 errors giving a best estimate of the



error rate of 0.5%. However, from the confidence intervals we can be 95%a taeta
eror rate is no worse than 1.02%.

As we are interested in the estimate of how plausibly high could the error rae be
this would necessitate actienwe have only quoted the upper boundook tailed
confidence interval. Two tailed confidence intervas not quoted as an estimate of
how plausibly low the error rate could be is not of interest in the situation being
described.

In the table we have repeated the results for the standard population egtiaate
earlier inTablel. Note how the confidence interval the finite population estimate

are narrower thafor the population estimaterhis is becausthe population estimate
resultis calculated ignoring the valuable information that the sample siep tetkn a

finite population. However, as the sample size increases the difference between the
two methods becomes less pronounced.

A consequence of not using the fixed population estimate result could bebtheed
on the confidence interval the errorrate could be over stated which could lead to
unnecessary further investigations

Table 2. Confidence intervals for a fixed proportion of observed errorsin a QC for different
sample sizesasa proportion r=0.1 of thetotal sample size.

One Tailed Upper 95% CI (%)

Number  Sample Point Standard Populatiotr  Fixed Population
of Errors Size Estimate (%) Estimate Size Estimate
1 200 0.0 2.35 2.26
3 600 0.20 1.29 1.25
5 1000 0.0 1.05 1.02
10 2000 0.0 0.85 0.83
30 6000 0.0 0.68 0.67
40 8000 0.0 0.65 0.63
50 10000 0.0 0.63 0.62
125 25000 0.0 0.58 0.57
250 50000 0.0 0.56 0.55
500 100000 0.20 0.54 0.54
1250 250000 0.%0 0.52 0.52

A guestion to consider is whether a 10% sample is reasonable. As highlighted earlier
if we had a sample size of 10@d error rate of 0.5% then we would be able to say
that we are confident that the true rate in the entire population is no less than 1.02%.
Obviously if we sample a greateroportion of the population we would have a bigger
sample size and hence greater precision.

Figurel gives the precision for our sample estimate for different proportions sampled
(r=n/N) assuming we havenaobservedQC error rateof 0.5% and a population



sample size 010,000 We can see for this worked example ti&t precision in the
estimates falls quickly until about 10% of the population is sampled. After this the
precision falls at a slow rate until we have 100% of the population sampled.

Figure 1. Percentage precision by proportion sampled assuming a population sample size of
10,000 and a QC error rate of 0.5%
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Figure 2 reconsiders the problem for the same population size &hda€@. This

figure gives the gain in precision for every 0.01 increase in the proportion sampled.
The gain n precision is measured as the absolute gain in precision measured and is
assessed by estimating the as the width of the confidence intervalXiprfor a

given sample size n and taking this away from the confidence interval woid#n f
sample size of4

Here again we can see there is a gain in the precision until around 10% of the
population is sampledfter whichthere is no marked gain.



Figure 2. Gain in precision by proportion sampled assuming a population sample size of 10,000
and a QC error rate of 0.5%
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2.24 Extendingthe Results

It should be noted that the results in this paper do not just apply to binary data. If a
mean was to be estimatédm a sample size of, sampledfrom a finite population

size ofN patientsthen the Normal approximation results could in this paper could be
extended If the mean isstimated asg with corresponding standard error & +/n .

Then, the 95% confidence interval can be estimated from

lo IN=n
13 XtZ —
( ) 1-al2 n N_l

Where a is the level of statistical significance (0=0.05 would give 95% confidence
intervals) and Z the standard Normal values for o as before

This result, like for binary dat& an extension of a population estimate confidence
interval of

(14) Xt Zloc/Z\/E
n



3 Sample Size Calculations

So far we have simply discussed the sample size in terms of proportion of the
database sampled. If what we wished to have was a point estimate estimated with
appropriate precision than this approach may require sample size greatehthes
needed for a requisite precision. Unlike conventional sample size calcylations
which we calculate the number of patients required in a trial, in the contebtio&l

audit there is no ethical issues in having an over (or under) estimateck ssingpl
However, it takes time to do a@and an inappropriate sample size may lead to
resource being used on the task which could be diverted to over sources.

In this sub section we will briefly describe sample size calculations that will give a
requiredprecision for a finite population.

3.1 Standard MethodsIgnoringthe Finite Population Size

To calculate the sample size to obtain a given pregiswefined as half the wide
for a confidence intervafor a two tailed confidence interval for a given aipated
response, p, we can use the following result

(15) w=(BETAINV(1-a/2k+1n-k)+BETAINV(l-a/2,n-k+1k)-1)/2

We can iterate on n until we get a sample size with the requisite precisiogifena
p. We can estimate k frolk=pn. This approach is known as a precision based
approach to sample size estimatjb8]

The equivalent result for a one tailed confidence interval would be

(16) w=BETAINV(l-a,k+Ln-k)-k/n

3.1.1 Worked Example Ignoring the Finite Population Sample

We wish to undertake a QC of a clinical database. We anticipate that the error rate
will be around 0.5% but we wish to have an estimate of the response with precision
also of 1%. The precision here would be assessed in terms of a one tailed 95%
confidence interval From(16) the sample size is estimated tod32.

3.2 Methodsfor Accountingfor Finite Populations

To calculate the sample size to obtain a given pregisipior a given anticipated
response, p, we can use the following result

n—-r

A7) w= ((BETAI NV(1-a/2k+1n-k)+BETAINV (1-a /2,n—k+1,k) +1)\/W] /2



Where k=pn and we iterate on n until we get a sample size with the requisiteoprecis
for a given p.

The equivalent result for a one tailed confidence interval would be

@-r)n
n—r

(18) %(— (1n__r2nj+(BETAINV(l—a,k+ln—k))

Similarly for a two tailed confidence interval a sample size could be obtaioed f
(16) and(18)

In these calculations only precision based calculations with 95% confidencalsite
were considered. However the work can be extended to other trial obj¢t8vibs]
ard levels of confidence [15]

3.21 Worked Example Accounting for the Finite Population Sample

We now wish to repeat the QC worked sample of early. However, we now wish to
take account of the fact that the clinicatabase haa finite size 065,000 data points.

From (18) the sample size is estimate to4@9. This isa little less than 10% of the
actual data base.

4 Discussion

In this paper confidence intervals were described for a response rate for a given
sample size using the Beta distributione then extended the problem for the
situation where we have a finite population size from which we are samplimg.
approach led to more precise estimates. For the extreme case where the sample is the
same as the population size there is no error in the estimate.

We recommend the approaches described on this paper be userk ifstla finite
population sizérom which a sample is being taken
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