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SUMMARY

Virtually all organisms seek to maximize fitness by
matching fuel availability with energy expenditure.
In vertebrates, glucose homeostasis is central to
this process, with glucose levels finely tuned to
match changing energy requirements. To discover
new pathways regulating glucose levels in vivo, we
performed a large-scale chemical screen in live ze-
brafish and identified the small molecule alexidine
as a potent glucose-lowering agent. We found that
alexidine inhibits the PTEN-like mitochondrial phos-
phatase PTPMT1 and that other pharmacological
and genetic means of inactivating PTPMT1 also
decrease glucose levels in zebrafish. Mutation of
ptpmt1 eliminates the effect of alexidine, further
confirming it as the glucose-lowering target of alexi-
dine. We then identified succinate dehydrogenase
(SDH) as a substrate of PTPMT1. Inactivation of
PTPMT1 causes hyperphosphorylation and activa-
tion of SDH, providing a possible mechanism by
which PTPMT1 coordinates glucose homeostasis.
Therefore, PTPMT1 appears to be an important regu-
lator of SDH phosphorylation status and glucose
concentration.
INTRODUCTION

Glucose homeostasis is closely regulated in animals as diverse

as flies and humans (Haselton and Fridell, 2010). Although

much is known about the central role of endocrine hormones in

glucose homeostasis, we have only a superficial understanding

of the processes that coordinate fuel availability and utilization

(Stanley et al., 2014). Conversion of carbon substrates into en-

ergy occurs predominately in the mitochondria. Recent explora-

tions of mitochondrial biology have revealed that this ancient

organelle does much more than simply convert fuel substrates

into energy (Cui et al., 2010; McBride et al., 2006; Tait andGreen,

2012). The discovery of an extensive catalog of phosphopro-

teins, kinases, and phosphatases in the mitochondrial proteome
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has revolutionized our concept of the mitochondria (Cui et al.,

2010; Goldenthal and Marı́n-Garcia, 2004; Pagliarini et al.,

2008; Zhao et al., 2011). The observation that mitochondria

possess the components to sense and process signals from

the environment by reversible phosphorylation implies that pro-

tein phosphorylation networks within the mitochondrion play an

important role in orchestrating the bioenergetics of the cell. How-

ever, questions remain regarding which phosphorylated meta-

bolic enzymes coordinate energy availability and utilization.

One likely focal point for mitochondrial signaling is succinate

dehydrogenase (SDH) (also known as respiratory complex II).

SDH is an integral membrane protein complex within the mito-

chondrion that catalyzes the oxidation of succinate to fumarate

and delivers the resulting electrons to coenzyme Q10. SDH is

unique compared to other mitochondrial respiratory complexes

in that it participates in both the electron transport chain and

the tricarboxylic acid cycle, placing it in an ideal position to affect

mitochondrial metabolism. The biochemical transformations

SDH mediates are well known, but its regulation remains poorly

understood (Rutter et al., 2010). Emerging evidence identifies

FGR as a kinase that phosphorylates the catalytic subunit of

SDH (SDHA), but the cognate phosphatase and any other

signaling regulators remain unknown (Acı́n-Pérez et al., 2014;

Salvi et al., 2007).

Here, we use a large-scale chemical screen in zebrafish

to identify the small molecule alexidine as a potent glucose-

lowering agent. We show that alexidine targets the mitochon-

drial-specific phosphatase PTPMT1 and that both chemical

and genetic perturbations of PTPMT1 lower glucose levels in

a whole organism. We identify tyrosine-phosphorylated SDHA

as a substrate of PTPMT1 and demonstrate that PTPMT1 inhibi-

tion modulates SDHA phosphorylation status. Collectively, our

results point to PTPMT1 phosphatase activity as a regulatory

mechanism for SDH enzymatic activity and as an important

node for glucose homeostasis.
RESULTS AND DISCUSSION

Known Gluconeogenic Hormones and Antidiabetic
Drugs Modulate Glucose Homeostasis in Zebrafish
To determine if zebrafish larvae could be used for discovering

novel pathways regulating glucose homeostasis, we evaluated
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Figure 1. In Vivo Chemical Screen for Modifiers of Glucose Levels Identifies Alexidine as a Glucose-Lowering Agent

(A) Measurement of glucose levels in larval zebrafish after treatment with known hyper- and hypoglycemic agents (n = 3).

(B) S-score (log ratio of the fold change in glucose levels) ranking of the glucose-lowering ability of compounds in the Prestwick library. Alexidine’s score is

depicted in red, and its chemical structure is shown on the graph.

(C) Alexidine dose-response curve (n = 5).

(D–G) Bright-field (D and E) and fluorescent (F and G) images of wild-type livers (D and F) and ablated livers (E and G).

(H) Glucose measurements in larvae with wild-type livers versus ablated livers.

(I) Glucose measurements in alexidine-treated larvae with ablated livers (n = 3).

(J–M) Bright-field (J and K) and fluorescent (L and M) images of wild-type (J and L) b cells and ablated b cells (K and M).

(N) Glucose measurements in larvae with wild-type b cells versus ablated b cells.

(O) Glucose measurements in alexidine-treated larvae with ablated b cells (n = 3).

Data are presented as mean ± SEM. *p < 0.01. See also Figure S1.
their response to known human hyperglycemic and hypoglyce-

mic agents. Day 5 zebrafish larvae were treated with various

agents for 4–8 hr and harvested for glucose measurements. In-

sulin, extendin-4, or the antidiabetic drugs pioglitazone, glybur-

ide, or metformin significantly decreased glucose levels in

zebrafish (�50% ± 17%, p = 0.03; �76% ± 27%, p = 0.05;
Ce
�41% ± 4%, p < 0.001; �39% ± 5%, p = 0.002; �39% ± 2%,

p < 0.001 respectively; Figure 1A), as they do in humans.

Conversely, treatment with epinephrine, hydrocortisone, or

dexamethasone significantly increased glucose levels in zebra-

fish (73% ± 10%, p < 0.001; 50% ± 5%, p < 0.001; 42% ±

11%, p = 0.04, respectively), similar to their effects in humans.
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Whole-Organism Chemical Screen for Modifiers of
Glucose Levels Identifies Alexidine as a Potent Glucose-
Lowering Agent
Given that hormones and drugs that are known to change

glucose levels in humans also increase or decrease glucose

levels in zebrafish in a predictable manner, we sought to use

the zebrafish as a tool for identifying novel chemical modulators

of glucose homeostasis. We developed a high-throughput assay

that measures systemic glucose levels in larval zebrafish by

coupling glucose oxidase to a horseradish peroxidase reaction.

We screened 13,120 compounds for their effects on glucose

levels in 78,720 larval zebrafish. Among these, one of the most

potent glucose-lowering compounds was alexidine (Figure 1B),

a bisguanide compound with antimicrobial properties that was

not previously known to decrease glucose levels. In confirmation

studies, alexidine was found to significantly reduce glucose

levels in a dose dependent manner (Figure 1C). To rule out a

generalized developmental or toxicity effect, 0 hr postfertilization

embryos and 5 days postfertilization (5 dpf) larvae were treated

with alexidine for 24 hr. No morphological defects or changes

in viability were observed (Figures S1A–S1F). Additionally, larvae

were treated with alexidine for 8 hr followed by the addition of

TMRM, a dye that detects mitochondrial membrane potential

and is one indicator of intact mitochondrial function. Compared

to treatment with a chemical uncoupler of electron transport and

oxidative phosphorylation, DNP-2, alexidine did not cause a

notable change in mitochondrial membrane potential, indicating

functional mitochondria (Figures S1G–S1I).

The In Vivo Glucose-Lowering Effect of Alexidine
Treatment Is Dependent on b Cells
Organismal glucose levels are regulated by multiple organs, but

two common sites of drug action are the liver (the primary site of

gluconeogenesis) and pancreatic b cells (the primary site of insu-

lin production). To discriminate between the possibilities that

alexidine was acting on the liver or pancreas, we leveraged liver

and pancreas ablation models generated in zebrafish. Hepato-

cytes were ablated using a transgenic line (lfabp:GAL4-VP16;

UAS.nfsB-mCherry) in which nitroreductase (NTR) is expressed

by the liver fatty acid binding protein promoter (Figures 1D and

1F). Upon addition of metronidazole, liver cells expressing NTR

convert the prodrug into a cytotoxic compound that leads to

cell death. At 24 hr posttreatment, the majority of hepatocytes

in the transgenic zebrafish larvae were destroyed (Figures 1E

and 1G), resulting in a significant �3-fold decrease in glucose

levels (Figure 1H; �71% ± 3%; p < 0.001). Nevertheless, after

ablation of hepatocytes, alexidine retained the ability to induce

a decrease in glucose levels, with an effect size indistinguishable

from that in unablated animals (Figure 1I). These data suggest

that the liver is not required for alexidine’s hypoglycemic effect.

By contrast, b cells were ablated using a transgenic line in which

NTR is driven by the insulin promoter (ins:nfsB-mCherry) (Figures

1J and 1L). At 24 hr postablation, near-complete loss of b cells

was observed (Figures 1K and 1M), which resulted in a signifi-

cant �4-fold increase in glucose levels (Figure 1N; 3.88 ± 0.07;

p < 0.001). In the absence of b cells, alexidine was unable to

decrease glucose levels (Figure 1O), suggesting that b cells are

required for alexidine’s glucose-lowering effect.
696 Cell Reports 10, 694–701, February 10, 2015 ª2015 The Authors
Structurally Distinct PTPMT1 Inhibitors Phenocopy
Alexidine’s Glucose-Lowering Effect
Next, we sought to determine the molecular mechanism by

which alexidine modulates glucose levels. A prior study had

shown that alexidine can inhibit PTPMT1, the only known protein

tyrosine phosphatase that resides exclusively in the mitochon-

dria (Doughty-Shenton et al., 2010). PTPMT1 is one of the

most highly conserved phosphatases known with orthologs in

four phylogenetic kingdoms. However, to date, little is known

about the substrates and the biological functions of PTPMT1

(Pagliarini et al., 2005; Shen et al., 2011; Zhang et al., 2011). To

determine if PTPMT1 inhibition is responsible for the reduction

in glucose levels induced by alexidine, we first confirmed alexi-

dine’s ability to inhibit PTPMT1 in vitro and found that alexidine

inhibits PTPMT1 with a half maximal inhibitory concentration of

1 mM (Figure 2A). Subsequent in vivo studies with chlorhexidine

(CLX), a PTPMT1 inhibitor structurally similar to alexidine, re-

sulted in decreased glucose levels (�28% ± 4%; p < 0.004; Fig-

ures 2B and 2C). Next, we evaluated the effects of a panel of

structurally distinct PTPMT1 inhibitors on glucose levels in vivo

(Figure 2B) (Park et al., 2012). Four structurally distinct PTPMT1

inhibitors (compounds 3–6) lowered glucose levels in zebrafish

to a degree that was comparable to alexidine (�28% ± 5%,

�32% ± 5%, �31% ± 4%, �25% ± 4%; p < 0.04; Figure 2D).

The finding that several structurally distinct PTPMT1 inhibitors

all lower glucose levels supports the hypothesis that PTPMT1

is the glucose-lowering target of alexidine.

PTPMT1 KO Larvae Are Hypoglycemic
To complement our chemical studies, we evaluated the effect of

knocking down ptpmt1 gene function by using a translation

blocking antisense morpholino oligonucleotide (MO). At �50%

knockdown, ptpmt1 morphants were morphologically normal

but exhibited significantly decreased glucose levels (�39% ±

7%; p = 0.02) compared to uninjected controls (Figures S2A–

S2C and 2E). We also sought to determine the effect of true

genetic ptpmt1 knockout (KO). Using TALEN-mediated gene

targeting, we generated a ptpmt1 KO line (Figures S2D–S2M).

KOs develop mitochondrial defects at �14 dpf and die at �30

dpf (Figures S2I–S2M). No KOs survived to adulthood. However,

6 dpf larvae KO display normal gross morphology and normal

mitochondria (Figures S2D–S2H). ptpmt1�/� larvae displayed

significantly decreased glucose levels compared to wild-type

controls (Figure 2F), indicating that ptpmt1 loss of function is

sufficient to lower glucose levels in vivo.

Given that small molecules often have multiple targets, we

also used the ptpmt1�/� larvae to verify the specificity of our

findings. We tested whether alexidine retained its glucose-

lowering activity in the absence of ptpmt1 by treating ptpmt�/�

animals with alexidine. Alexidine failed to lower glucose levels

in ptpmt1�/� animals (Figure 2G). Together, these data suggest

that PTPMT1 is the relevant target of alexidine and is necessary

for alexidine’s glucose-lowering effect.

Succinate Dehydrogenase Is a Substrate for PTPMT1
PTPMT1’s apparent ability to alter glucose levels made us

curious as to the identity of its substrates. Previously, phospho-

lipid profiling of ptpmt1�/� fibroblasts led to the discovery that



Figure 2. PTPMT1 Is the Glucose-Lowering Target of Alexidine

(A) Alexidine dose-response effect on PTPMT1 phosphatase activity.

(B) Panel of PTPMT1 inhibitors that are structurally similar (chlorhexidine) or structurally distinct (3–6) from alexidine.

(C and D) Glucose measurements in larvae treated with (C) chlorhexidine or (D) compounds 3–6.

(E and F) Glucose measurements in (E) larvae injected with ptpmt1 MO or (F) wild-type (WT) versus ptpmt�/� larvae (KO).

(G) Glucose measurements in ptpmt1�/� larvae treated with DMSO or alexidine.

Data are presented as mean ± SEM. *p < 0.01. See also Figure S2.
PTPMT1 dephosphorylates phosphatidylglycerophosphate, an

essential intermediate step in the biosynthesis of cardiolipin

(Zhang et al., 2011). At the same time, PTPMT1 belongs to

the dual-specificity phosphatase family, suggesting that its
Ce
glucose-regulating mechanism might also involve protein sub-

strates. In an effort to determine if PTPMT1 has phosphoprotein

substrates in vivo, we compared phosphoprotein profiles in ze-

brafish lysates from wild-type and ptpmt1 mutant animals.
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Figure 3. SDH Is a Substrate for PTPMT1
(A) Phosphotyrosine and phosphoserine western blots on lysates from wild-type or ptpmt+/� livers.

(B) Western blots from myc-SDHA-transfected INS-1E cell lysates subjected to incubation with FGR, followed by immunoprecipitation for myc and western blot

for phosphotyrosine.

(C) SDH enzymatic activity assay on mitochondrial lysates treated with BSA or rFGR (SD = 0.005; p < 0.0001).

(D) Western blots for phospho-tyrosine and myc from lysates treated with rPTPMT1.

(E) Quantification of n = 3 western blots.

(F) Western blots for phosphotyrosine and myc from lysates treated with alexidine.

(G) Quantification of n = 3 western blots.

(H) Mitochondrial localization of SDHA in a HEK GFP-SDHA stable line.

(I) Western blots of SDHA-PTPMT1 coimmunoprecipitation experiments in cells lysed with a mild detergent (DIG) versus a stronger detergent (DDM). Controls

included antibody only and lysate only. The last lane contained total cell lysate.

(legend continued on next page)
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Although homozygous ptpmt1 mutants do not survive to adult-

hood, heterozygous animals do survive and were used for

phosphoprotein comparisons. Lysates from ptpmt1+/� adults

displayed several proteins with increased phosphorylation rela-

tive to wild-types, including a prominent �80 kDa protein that

was dramatically hyperphosphorylated in ptpmt1+/� animals

(Figure 3A). The induction of phosphoprotein changes in ptpmt1

mutants motivated us to take a candidate-based approach to

identifying potential PTPMT1 protein substrates.

Given PTPMT1’s exclusive location within the inner mitochon-

drial membrane, we hypothesized that PTPMT1 might regulate a

mitochondrial metabolic pathway. This hypothesis was of partic-

ular interest because succinate dehydrogenase (SDH) resides on

the inner mitochondrial membrane where PTPMT1 localizes.

SDH participates in both the electron transport chain and the

tricarboxylic acid cycle, placing it in an ideal position to affect

mitochondrial metabolism. Furthermore, the SDH subunit

SDHA is approximately the same size as the protein that is

hyperphosphorylated in ptpmt1 mutants. A conserved phos-

phorylation site was recently discovered on SDHA that can be

phosphorylated by FGR kinase and is physiologically relevant

for mitochondrial function (Acı́n-Pérez et al., 2014; Salvi et al.,

2007). Given these observations, we hypothesized that SDHA

is a substrate of PTPMT1 and that phosphorylation of SDHA ac-

tivates the enzyme leading to increased succinate utilization.

To determine if SDHA is a substrate for PTPMT1, lysates from

myc-SDHA-transfected INS-1E b cells were treated with BSA

or the tyrosine kinase FGR in vitro followed by immunoprecipita-

tion of myc-SDHA and western blotting for phosphotyrosine.

Phosphorylation of SDHA at baseline was undetectable; how-

ever, compared to BSA, FGR potently phosphorylated SDHA

(Figure 3B). Next, we sought to determine if FGR-mediated

phosphorylation has functional effects on SDH activity. To do

so, we incubated phosphorylated SDH with purified FGR or an

equivalent amount of BSA and then assessed SDH activity levels

using a colorimetric activity assay. FGR-incubatedmitochondrial

lysates exhibited increased enzymatic activity relative to con-

trols, suggesting that phosphorylation of SDH increases SDH ac-

tivity (Figure 3C). This finding is consistent with a previous report

showing that FGR can phosphorylate Y604 on SDHA (Acı́n-Pérez

et al., 2014).

To determine if phosphorylated SDHA is a substrate of

PTPMT1, lysates from myc-SDHA-transfected INS-1E cells

were treated with the tyrosine kinase FGR in the presence of

rPTPMT1 or BSA. Compared to control-treated lysates, PTPMT1

significantly decreased tyrosine phosphorylation of SDHA in

FGR-treated lysates (Figures 3D and 3E). Next, mitochondrial

lysates were treated with FGR in the presence of DMSO or alex-

idine to determine if inhibition of PTPMT1 affects SDHA phos-

phorylation. Alexidine treatment resulted in a �2-fold increase

in the level of pY-SDHA compared to mitochondrial extracts

treated with DMSO (Figures 3F and 3G).
(J) Succinate levels in zebrafish larvae treated with DMSO or alexidine.

(K) SDH activity in mitochondria from zebrafish larvae treated with alexidine (SD

(L) Collectively, these studies suggest a model in which (1) alexidine inhibits the p

phosphorylated form of SDHA, (3) enzymatic activity of SDH increases, and (4) g

Data are presented as mean ± SD. *p < 0.01. See also Figure S3.

Ce
To determine if PTPMT1 interacts with SDHA, we performed

coimmunoprecipitation experiments in a human embryonic kid-

ney (HEK) cell line that stably expresses GFP-SDHA (Figure 3H).

PTPMT1 coimmunoprecipitated with SDHA, suggesting a phys-

ical interaction exists between these two proteins (Figure 3I). The

interaction was disrupted by using a stronger detergent, indi-

cating a transient or weak interaction between the two proteins

as is commonly observed in phosphatase-substrate interactions

(Figure 3I). Reversing the target used for pull-down recapitulated

that PTPMT1 and SDHA interact (Figures S3A–S3F). Finally,

mutating tyrosine residue 604 of SDHA decreased the interac-

tion between PTPMT1 and SDHA (Figures S3C–S3F). Collec-

tively, these data demonstrate that pY-SDHA is a substrate of

PTPMT1 in vitro.

Chemical Inhibition of PTPMT1 Decreases Succinate
Levels via Increased SDH Activity In Vivo
Having observed that SDH is a substrate for PTPMT1 and that

phosphorylation of SDH increases its activity, we sought to

determine if PTPMT1 inhibition could cause a significant change

in succinate levels in vivo. We performed a targeted liquid chro-

matography-tandem mass spectrometry scan that analyzed 48

intermediary metabolites in zebrafish treated with alexidine.

We found that alexidine treatment caused a highly significant

decrease in succinate levels (p = 4.3 3 10�5; Figure 3J). There-

fore, the PTPMT1 inhibitor alexidine causes a decrease in succi-

nate levels in vivo that correlates with the increased SDH activity

it causes in vitro. To confirm that the decrease in succinate is due

to increased consumption of succinate rather than a block earlier

in the tricarboxylic acid cycle, SDH activity was measured in

mitochondria isolated from zebrafish larvae treated with alexi-

dine or DMSO. Alexidine treatment increased the rate of succi-

nate dehydrogenase activity by 59% (0.00125 ± 0.00007 to

0.00212 ± 0.00003 DOD/min; p = 0.0003), demonstrating that in-

hibition of PTPMT1 increases the rate of SDH activity in vivo

(Figure 3K).

Collectively, these studies suggest a model in which (1) alexi-

dine inhibits the phosphatase activity of PTPMT1, (2) FGR activ-

ity leads to the accumulation of the phosphorylated form of

SDHA, (3) enzymatic activity of SDH increases, and (4) glucose

levels decrease (Figure 3L). The finding that alexidine ultimately

activates SDH provides an explanation for why it is so effective

at lowering glucose levels. Increased SDH activity may lower

glucose levels in at least two complementary ways: by stimu-

lating the uptake of glucose and by increasing the rate of glucose

utilization.

Interestingly, previous work has demonstrated that ptpmt1

knockdown in INS-1E b cells results in increased insulin

secretion in vitro (Pagliarini et al., 2005). By linking PTPMT1

and SDH, our data provide a possible mechanism by which

PTPMT1 inhibition causes insulin secretion. Consumption of

succinate by SDH is known to induce insulin secretion, a
= 0.02, p = 0.0003).

hosphatase activity of PTPMT1, (2) FGR activity leads to accumulation of the

lucose levels decrease.
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phenomenon described by ‘‘the succinate theory’’ (Alarcon

et al., 2002). Therefore, inhibition of PTPMT1 may lower

glucose levels by engaging succinate metabolism to promote

insulin secretion. Currently, the methodology to collect blood

from a 5 dpf larva and measure blood insulin concentrations

does not exist, making it difficult to determine directly if alexi-

dine induces insulin secretion in zebrafish. Nevertheless, our

data demonstrate that after b cell ablation in zebrafish, alexi-

dine was unable to decrease glucose levels, providing addi-

tional support for the idea that insulin secretion plays some

role in alexidine’s mechanism of action.

Our ablation data support an insulin-mediated pathway for

alexidine’s effects. One caveat, however, is that peripheral

tissues such as muscle require insulin for insulin-mediated

glucose uptake. Therefore, the ablation model may also be

consistent with a mechanism of action involving glucose utili-

zation. Interestingly, inhibition of PTPMT1 increases the ATP/

ADP ratio (Pagliarini et al., 2005). Further, skeletal muscle ex-

presses high levels of PTPMT1. Therefore, a second com-

plementary mechanism by which a PTPMT1-SDH connection

may regulate glucose levels is altering the rate of glucose

utilization. Phosphorylation of SDH has recently been identi-

fied as a regulatory point in cellular adaption to changing

nutrient demands (Acı́n-Pérez et al., 2014). Reactive oxygen

species-driven activation of SDH by FGR affects SDH activity,

supercomplex distribution in the mitochondria, and metabolic

adaptation of mitochondria to starvation or hypoxia/reoxy-

genation (Acı́n-Pérez et al., 2014). Therefore, in addition to

increasing glucose uptake by stimulating insulin secretion,

PTPMT1 inhibition may increase the rate of glucose utilization

by stimulating SDH activity. By establishing a link between

PTPMT1 and SDH, we not only describe a new function for

a poorly understood phosphatase (PTPMT1) but also pro-

vide a molecular regulatory mechanism for SDH, an enzyme

fundamental to mitochondrial function and the coordinated

uptake and utilization of glucose. Furthermore the identifica-

tion of PTPMT1 as a target for augmenting SDH provides

new possibilities for modulating glucose homeostasis. A better

understanding of this pathway might ultimately lead to new

opportunities to intervene pharmacologically in diabetes and

other metabolic disorders.

EXPERIMENTAL PROCEDURES

Zebrafish

Animals were maintained and embryos were obtained according to standard

fish husbandry protocols in accordance with the Massachusetts General Hos-

pital Institutional Animal Care and Use Committee. See Supplemental Exper-

imental Procedures for details.

Chemical Screen

The Prestwick (1,120), Spectrum (2,000), and ChemBridge (10,000) libraries

were screened at a concentration of �8 mg/ml. The assay was carried out

on larval zebrafish loaded into 96-well plates. Viability was assessed

by observing heart rate, and glucose was measured using the Amplex

Red Glucose Assay Kit (Invitrogen) according to the manufacturer’s

instructions. Product formation was determined by reading fluorescence

emission at 595 nm. All other compounds were purchased from Sigma-

Aldrich. PTPMT1 inhibitors were synthesized from Sigma-Aldrich (Park

et al., 2012).
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Phosphatase Assay

PTPMT1 activity wasmeasured using the EnzChek Phosphatase Assay Kit (In-

vitrogen). The assay buffer contained 100 mM DiFMUP, 20 mM Na acetate,

5 mM Bis Tris, 5 mM Tris, 5% DMSO, and 22 nM rPTPMT1 (pH 7.0). Measure-

ments were taken every 2min for 60min at 358 nm excitation/455nm emission.

Metabolic Profiling

See Supplemental Experimental Procedures for details.

Morpholino Oligonucleotide Injections

A ptpmt1 translation-blocking MO (GeneTools) was used (50-TTCTCGCT

AAAACACTCGACATGGT-30). MO was injected into the yolk at the one-cell

stage. Knockdown was quantified by western blot.

Cell Culture

INS-1E cells (a kind gift from Dr. Pierre Maechler, Geneva University) were

cultured in RPMI-1640 supplemented with 10 mM HEPES, 2 mM L-glutamine,

1 mM sodium pyruvate, 0.05 mM 2-mercaptoethanol, 5% fetal bovine serum

(FBS), 100 IU/ml penicillin, and 100 mg/ml streptomycin (Merglen et al.,

2004). HEK cells were grown in DMEM, 10% FBS.

SDH Activity Assay

Whole-cell lysates were prepared by incubating the cell pellet in 10% n-do-

decyl b-d-maltoside for 30 min followed by centrifugation at 20,000 3 g for

10min. Alternatively, mitochondria were prepared by differential centrifugation

in mitochondrial buffer B. SDH activity was measured in cell lysates or whole

mitochondria using 2,6-dichlorophenolindophenol according to the Rosen

method (Rosen et al., 1987).

Kinase Assay

See Supplemental Experimental Procedures for details.

Statistical Analyses

All results are expressed as means ± SD or SEM. A two-tailed Student’s t test

was used to determine p values.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2015.01.010.

AUTHOR CONTRIBUTIONS

A.K.N. and R.T.P. contributed to conception and design, acquisition of data,

interpretation of data, and drafting of the manuscript. Y.N.J., L.D.R., A.D.,

and J.H.R. contributed to the acquisition and interpretation of data. R.E.G.

contributed to the interpretation of data and critical revision of draft.

ACKNOWLEDGMENTS

Tg (ins:nfsB-mCherry) was a gift from Michael Parsons. Many thanks to Quinn

Peterson for thoughtful comments on themanuscript. Thisworkwas supported

by a T32HL007208 and aMGHECORTosteson Award (2012A051526) (A.K.N.)

and by a Charles and Ann Sanders MGH Scholar Award (R.T.P.). Electron mi-

croscopy was performed in the Microscopy Core of the Center for Systems

Biology/Program inMembrane Biology, which is partially supported by Inflam-

matory Bowel Disease grant DK43351 and Boston Area Diabetes and Endocri-

nology Research Center (BADERC) award DK57521. R.T.P. receives research

funding from Hoffmann-La Roche and Merck.

Received: August 25, 2014

Revised: December 10, 2014

Accepted: December 31, 2014

Published: February 5, 2015

http://dx.doi.org/10.1016/j.celrep.2015.01.010
http://dx.doi.org/10.1016/j.celrep.2015.01.010


REFERENCES
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