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Abstract: This letter presents an analytical cavity expansion theory-based method for 10 

predicting peak uplift resistance of shallow horizontal strip anchors buried in sand. Based 11 

on an analytical two-dimensional stress solution for loading analysis around a cylindrical 12 

cavity, the method was developed by assuming that the peak anchor uplift resistance can 13 

be approximated by the cavity breakout pressure. In the new cavity expansion model, the 14 

ultimate failure is reached once the plastic zone develops to the ground surface, and the 15 

biaxial state of in-situ ground stresses is taken into account. A database consisting of 75 16 

model tests on shallow strip anchors in sands was compiled to valid the new method. The 17 

predicted results and measured data are in reasonable agreement, with a mean over-18 

prediction of the peak uplift resistance by 1.6%. The reliability of the new solution was 19 

also checked by comparing with other commonly used analytical solutions. It is shown 20 

that the present solution can provide a simple analytical tool for predictions of the peak 21 

uplift resistance of strip anchors in sand while a sliding-block failure mechanism 22 

dominates. 23 
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INTRODUCTION 27 

Horizontal plate anchors are commonly used for resisting uplift forces in many 28 

engineering structures such as transmission towers, drydocks, mooring systems for ocean 29 

surface or submerged platforms. As a principal tool in the routine design of earth anchors, 30 

a number of analytical solutions for predicting the uplift resistance have been proposed 31 

based on theoretical approaches such as limit equilibrium (Meyerhof and Adams, 1968, 32 

White et al., 2008), limit analysis (Murray and Geddes, 1987), and cavity expansion 33 

theory (CET) (Vesic, 1971, Yu, 2000). Among them, solutions based on the former two 34 

approaches have been developed fairly well over decades, but, by contrast, solutions 35 

based on cavity expansion theory received limited attention. It is necessary to further 36 

check and improve the accuracy and the applicability of the CET-based solutions, 37 

especially for applications to shallow plate anchors in sand as discussed later. A 38 

comprehensive overview of earth anchors refers to Das and Shukla (2013). 39 

In the cavity expansion approach, the breakout pressure of an internally pressurized cavity 40 

is often used to predict the uplift capacity of a single horizontal plate anchor. Previous 41 

CET-based models mainly include Vesic’s method (1971) and Yu’s method (2000). The 42 

failure criteria used to determine the peak resistance in these two methods both have been 43 

expressed by a relationship between the relative radius of the elastic-plastic boundary in 44 

the loading analysis around a cavity and the soil cover depth above the anchor. In Vesic’s 45 

method, the propagation of the plastic zone was determined through a quasi-static 46 

expansion analysis considering soil compressibility. In Yu’s method, the radius of the 47 

elastic-plastic boundary was directly expressed by the soil cover depth multiplying an 48 

empirical coefficient m . It has been demonstrated that, taking the moment at which the 49 

plastic zone just reaches the ground surface as the ultimate failure criterion (i.e. 1m ), 50 

Yu’s method can give fairly accurate predictions of the maximum uplift resistance of 51 

shallow anchors in undrained clays (Chen et al., 2013, Merifield et al., 2001, Yu, 2000). 52 

Nevertheless, the accuracy of previous CET-based methods is not that generally 53 

satisfactory for applications to plate anchors in sand. For example, although the Vesic’s 54 

method may perform well for uplift resistance predictions of shallow plate anchors in 55 

loose sand, a considerable underprediction would be made while applied to anchors in 56 

dense sand (Das and Shukla, 2013, Murray and Geddes, 1987). In Yu’s method, an 57 

approximate value around 0.5 of the introduced coefficient m  was suggested for anchors 58 
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in sand to match the results computed from upper bound limit analyses. However, 59 

theoretical methods for determining the value of m  have not been obtained till now. 60 

In both Vesic’s (1971) and Yu’s (2000) models, the adopted cavity expansion solutions 61 

had been derived with the idealisation that the internal and far-field stresses are uniform 62 

(Vesic, 1972, Yu and Houlsby, 1991). However, in-situ horizontal and vertical soil 63 

stresses usually are not equal (i.e. the earth pressure coefficient at rest 0K  is not ideally 64 

equal to unity) (Guo, 2010, Lee et al., 2013, Mayne and Kulhawy, 1982). Rowe and Davis 65 

(1982a, 1982b) pointed out that the load-deformation characteristics of soil around a plate 66 

anchor depend on the value of0K . Likewise, under biaxial far-field stresses, the plastic 67 

zone developed around a cylindrical cavity may significantly differ from that computed 68 

by a simplified one-dimensional analysis (Bradford and Durban, 1998, Detournay, 1985, 69 

1986, Galin, 1946, Zhuang and Yu, 2018). It was introduced above that the criteria used 70 

to determine the anchor uplift capacity in the CET-based models are associated with the 71 

propagation of the plastic zone and its relative position to the ground surface. For these 72 

reasons, it is believed that the possible 0K  effect should be taken into account in the cavity 73 

expansion approach for anchor uplift capacity predictions. 74 

In the light of above discussions, an analytical CET-based solution is developed to predict 75 

the uplift resistance of horizontal strip anchors in sand by additionally considering biaxial 76 

in-situ stresses in the stress analysis around a cylindrical cavity under loading. The new 77 

solution is validated by comparing with 75 pull-out model tests with strip plate anchors 78 

performed in sand and other commonly used analytical models. 79 

CAVITY EXPANSION APPROACH FOR ANCHOR UPLIFT CAPACITY PREDICTION 80 

For a horizontal strip plate anchor pulling-out at a sufficiently slow rate, the peak uplift 81 

resistance experienced is assumed to equal the sum of the ultimate radial pressure (up ) 82 

needed to break out a cylindrical cavity underneath the ground surface and the weight of 83 

the soil occupied by the volume of a half cavity above the plate anchor (sW ) as depicted 84 

in Fig. 1 (Vesic, 1971). For a plate anchor placed at relatively shallow depths, it has been 85 

suggested by Vesic (1971) and Yu (2000) that the breakout of a plate anchor occurs while 86 

the outer boundary of the plastic zone predicted by a cavity expansion analysis is 87 

sufficiently close to or at the ground surface. While elastic-perfectly-plastic cavity 88 

expansion solutions derived under hydrostatic stress conditions are applied, Yu (2000) 89 
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demonstrated that an empirical coefficient m  has to be introduced to relate the maximum 90 

radius of the plastic region (
maxepr ) and the soil cover depth above the anchor, that is 91 

maxepr mH . Accordingly, based on a stress analysis around a cylindrical cavity adopting 92 

the Mohr-Coulomb yield criterion (Yu, 2000), up  for an anchor in cohesionless materials 93 

can be expressed as: 94 

(1 1/ )

0 0

2
2

1

pK
p

u q
p

K H
p p F p m

K D


      

 (1) 95 

where 0p  is the effective soil stress above the anchor, namely 0 'p H . '  is the 96 

effective unit weight of the soil. H is the embedment depth of a plate anchor. D is the 97 

anchor breadth. (1 sin ) / (1 sin )pK     . ĳ represents the effective friction angle of soil. 98 

Then the dimensionless anchor breakout factor in cohesionless materials equals: 99 
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By definition, the value of m  is influenced by the boundary conditions and load-101 

deformation characteristics of soil above the plate anchor. In reality, the coefficient of 102 

earth pressure at rest in sands normally is less than unity (Guo, 2010, Mayne and 103 

Kulhawy, 1982). To additionally account for the 0K  effect in the loading analysis around 104 

a cylindrical cavity, the asymptotic mapping function of equation (A- 1) in the appendix  105 

is used to estimate the distribution of the plastic zone (Detournay, 1985, Zhuang and Yu, 106 

2018). It gives that the range of the plastic zone in the vertical direction is (1 )[ (1 ) ]    107 

times of that predicted by the corresponding solution derived under equivalent uniform 108 

initial stresses. Thus, with the same assumption that the peak uplift resistance is reached 109 

once the plastic zone propagates to the free ground surface, an approximate theoretical 110 

expression of the coefficient m  in equation (1) can be derived as: 111 

1

1

(1 )
m   


 (3) 112 

in which 113 
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where (1 ) / (1 )p pK K    ; / pS  . 0 0( ) / 2v hP      ; 0 0( ) / 2h v     , 115 
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) is a Gaussian or ordinary hypergeometric function. K0 is approximated by the commonly 117 

used Jaky’s (1948) equation here, namely 0 crit1 sinK   . crit  represents the critical state 118 

friction angle of sand. Note that 0   and 1m  while K0 equals unity. 119 

For a strip plate anchor placed in sand, the uplift response mainly varies with the relative 120 

embedment depth ( /H D ) and sand relative density (rD ) (Ilamparuthi et al., 2002, Liu et 121 

al., 2011, Merifield and Sloan, 2006). At relatively shallow depths, a sliding-block failure 122 

mechanism (global shear failure) dominates. The peak uplift resistance is mobilised while 123 

a pair of distributed shear zones stemming from the edges of the anchor extend to the 124 

ground surface (e.g. Fig. 1) and increases proportionally with increases of /H D . At 125 

greater depths, the uplift resistance is primarily determined by the localized compression 126 

(local shear failure) and the failure plane may not develop to the ground surface. The 127 

transition depth between the global shear failure mode and the local shear failure 128 

mechanism varies with state and deformation characteristics of the soil above (Chen et 129 

al., 2013, Meyerhof and Adams, 1968). As it assumes that the ultimate failure occurs 130 

while the plastic zone develops to the ground surface, the present solution (i.e. equations 131 

(2) and (3)) is designed for shallow strip anchors pulled out to failure with a sliding-block 132 

mechanism. 133 

The mobilised friction angle   can be measured in tests under similar sand state and 134 

stress level of sand above the plate anchor at failure. Alternatively, the Bolton’s (1986, 135 

1987) empirical equation (i.e. Eq.(5)) is employed to estimate   which might be stress- 136 

and state-dependent (Bradshaw et al., 2016). In conjunction with the Bolton’s correlation, 137 

the present solution can be recast in terms of crit , rD , mp , and /H D  that can be easily 138 

determined during a site investigation. 139 

peak crit RA I    (5) 140 

where RI  is a dilation indicator, spanning the range of 0 to 4. ( ln ) 1R r mI D Q p    while 141 

150kPamp   (Bolton, 1986); 5 1R rI D   while 150kPamp   (Bolton, 1987). A  is taken 142 

as 5 for the strip anchor uplift problem (plane strain). Q  is the natural logarithm of the 143 

grain crushing strength (in kPa) (Randolph et al., 2004), which is sand-specific and stress-144 
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level dependent (Chakraborty and Salgado, 2010). Typical values of Q  and crit for a 145 

variety of sands have been summarized by Randolph et al. (2004). mp  is the mean 146 

confining stress at failure, kPa. For simplicity, it is taken as the effective overburden soil 147 

pressure at the depth of H here, that 'mp H   (White et al., 2008). 148 

COMPARISON WITH MODEL TEST RESULTS AND DISCUSSION 149 

In order to assess the new solution thoroughly, a database comprising 75 pull-out tests on 150 

model plate anchors in sands has been assembled. To simulate the plane strain condition, 151 

only tests on plate anchors with an aspect ratio of L/D (length/breadth) greater than 7 have 152 

been included as suggested in results reported by Murray and Geddes (1987) and Rowe 153 

and Davis (1982b). To roughly meet the requirement of the sliding-block failure 154 

mechanism, only tests with an embedment ratio of / 8H D   (White et al., 2008) are 155 

collected. The database spans a wide range of relative density (Dr=17~86%, mean 37.8%) 156 

and embedment depths (H/D=1~8, mean 4.35). Details of each test series are summarised 157 

in Table 1. 158 

Taking the measured parameters given in Table 1, anchor breakout factors of the test 159 

database have been back-calculated using equations (2) and (3), and they are compared 160 

with the test data in  161 

Fig. 2, plotted against relative density and embedment ratio. It is shown that a mean over-162 

prediction of the peak uplift resistance by 1.6% is made by the new solution, and the 163 

coefficient of variation (COV) is 0.15. Relatively significant outliners (overpredictions) 164 

appear in tests of Dickin (1988) with loose sand at relatively deep depths as marked in 165 

the graphs. As reasonable predictions are shown for tests of Dickin (1988) that were 166 

performed in dense sand at H/D=1-8 and in loose sand at H/D=1-4, it is believed that the 167 

overpredictions are because a local failure mechanism dominates in loose sand at H/D>4 168 

rather than the sliding-block failure mechanism associated with the current method 169 

(Meyerhof and Adams, 1968). 170 

Alternatively,   in the new solution may be approximated by the peak plane-strain 171 

friction angle calculated using equation (5) (i.e. peak  ). As the tests of this database 172 

are all performed in silica sands, Q  in equation (5) is taken as 10 (Bolton, 1986). All other 173 

input parameters are taken from the sources references as summarised in Table 1 without 174 
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any optimisation. Fig. 3 shows that the calculated results by the alternative method also 175 

compare favourably with the test results of the database. 176 

It has been stated that the propagation of the plastic zone is influenced by the boundary 177 

conditions and soil deformation above the plate anchor. Experimental investigations 178 

(Ilamparuthi et al., 2002, Liu et al., 2011, Merifield and Sloan, 2006, White et al., 2008) 179 

showed that increasing dilation may occur above the anchor at failure in denser sand 180 

which accompanied by more lateral volume expansions. As a result, extra lateral 181 

confining pressure would be mobilised. This can be confirmed by back-calculating the 182 

far-field earth pressure coefficient using equations (1) and (3). In the present solution, the 183 

earth pressure coefficient is conservatively taken as the in-situ value for simplicity. As 184 

sand dilation is strong state-dependent (Bolton, 1986, Li and Dafalias, 2000), both stress 185 

level and initial density could affect the value of m . Values of the coefficient m  defined 186 

in equation (1) have been back-calculated with the measured anchor factors and are 187 

plotted in Fig. 4. In the present database of tests, the dependency of m  on the sand relative 188 

density is more significant, and a linear relationship between m  and rD  was fitted in Fig. 189 

4. Meanwhile, example results calculated using equations (3) and (5) are also plotted, 190 

taking 40kPamp  , / 5H D   for illustration purpose. The theoretical solution predicts 191 

that m  increases with relative density and earth pressure coefficient. Although the 192 

mobilised lateral confining pressure might be slightly greater than that at rest, the back-193 

calculated m  of this database mostly distribute in the range calculated by equation (3) 194 

incorporating the Bolton’s equation (i.e. equation (5)) with typical in-situ values of 0K . 195 

COMPARISON WITH ANALYTICAL METHODS 196 

The new solution is also compared with the commonly used limit equilibrium methods 197 

and upper-bound plasticity solution in Fig. 5. In these methods, the break-out factor of 198 

strip plate anchors in sand can be expressed in a unified form of 199 

anchor 1 up

H
N f

D      (6) 200 

where 201 

0 0
1 peak

1 (1 )cos 2
tan (tan tan )

2 2up

K K
f

  

       
 (White et al., 2008) (6 a) 202 

2 tanup uf K    (Meyerhof and Adams, 1968) (6 b) 203 
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3 tanupf    (Murray and Geddes, 1987) (6 c) 204 

By assuming that the inclination angle of shear planes ( ) on each side of the inverted 205 

trapezoidal block equals the angle of dilation ( ) (i.e.    in Fig. 1), a simple limit 206 

equilibrium solution as Eq.(6 a) was derived by White et al. (2008). Eq.(6 b) gives the 207 

limit equilibrium solution of Meyerhof and Adams (1968). uK  was suggested equal 0.95 208 

for strip anchors. Equation (6 c) is the upper-bound plasticity solution (Murray and 209 

Geddes, 1987), in which the normality is satisfied (i.e.    in Fig. 1). 210 

It has been reported that the upper-bound solution can give reasonable predictions of the 211 

uplift resistance of strip anchors (Merifield and Sloan, 2006) but may be unconservative 212 

for materials obeying a non-associated flow rule (Murray and Geddes, 1987). With the 213 

same inputs of sand properties, Fig. 5 (a) shows that the proposed method gives slightly 214 

lower predictions than the upper-bound plasticity solution. Meanwhile, it is shown in Fig. 215 

5 (a) that much higher values are predicted by the new CET-based solution than those by 216 

Vesic’s (1971) solution in dense sand while similar results in loose sand. By using the 217 

Bolton’s correlation, Fig. 5 (b) shows that the anchor break-out factors predicted by this 218 

method are generally higher than those by the limit equilibrium solution of White et al. 219 

(2008). White et al. (2008) also reported that their solution underpredicted the results of 220 

model tests on strip plate anchors by 14%. In addition, White et al. (2008) showed that 221 

their method overpredicted the results of model pipes with relatively smooth pipe surfaces 222 

by 11%. As the interface frictional behaviour is expected to be more significant for a pipe 223 

than a horizontal anchor, overpredictions are to be expected if the present solution was to 224 

be used for pipes with smooth surfaces. Overall, the above comparisons encouragingly 225 

suggested that the new CET-based solution can provide a simple and reliable analytical 226 

method for the peak uplift resistance predictions of strip anchors in addition to other 227 

commonly used methods. 228 

CONCLUSIONS 229 

By additionally considering the biaxial state of in-situ ground stresses in the loading 230 

analysis of a cylindrical cavity, a new theoretical method was developed for predicting 231 

the uplift resistance of strip plate anchors in sand. A database of 75 model tests on strip 232 

anchors in sands has been assembled to validate the new method. Good agreement was 233 

shown between the predicted and measured results, with a mean over-prediction of the 234 

peak uplift resistance by 1.6%. Although the level of agreement may vary with the scope 235 
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of the database, these encouraging agreements suggested that the peak uplift resistance of 236 

strip anchors that determined by a sliding-block mechanism can be well predicted by the 237 

new analytical CET-based method. And the accuracy and applicability of the new method 238 

were further demonstrated by comparing with other representative plasticity solutions and 239 

limit equilibrium solutions. 240 

APPENDIX: Plastic failure zone under biaxial in-situ ground stresses 241 

Under biaxial far-field stresses, the non-circular elastic-plastic boundary developed 242 

around an internally pressurised cylindrical cavity surround by Mohr-Coulomb materials 243 

can be described by the asymptotic mapping function in equation (A-1) (Detournay, 1985, 244 

Zhuang and Yu, 2018) while the plastic zone is statically determinate. 245 

(1 )
2

( ) (1 )   


    (A- 1) 246 

where ( )   conformally maps the elastic-plastic boundary in the physical plane to the 247 

unit circle in the phase plane (Muskhelishvili, 1963). R  . / 2R D . ie  .   is an 248 

argument of the complex variable  . 1i   . 

/( 1)
(1 1/ ) [( 1) ]

2 [(1 ) ]

p pK K

p p u

p

K K p

K P






     
  

. Note 249 

that equation (A-1) is obtained from the loading analysis of a cylindrical cavity in an 250 

infinite medium. Consequently, the free ground surface effect is not taken into account in 251 

the present approximate CET-based model. 252 
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Table 335 

Table 1 Model test database of horizontal strip anchor uplift resistance 336 

Authors Sand 
Number 
of tests 

Aspect ratio 
(L/D) 

Cover depth 
Ratio(H/D) 

Relative 
density 

(%) 

Sand friction angle 

  (o) crit  (o) 

Rowe and Davis (1982b) Sydney sand 36 8.75 1-8 17-37 32-33.3 31 
Murray and Geddes (1987) Medium grained sand  4 10 1-6 85.9 44 32 

Dickin (1988) * Erith sand 15 8 1-8 33-76 38-49 35† 
Ravichandran and 
Ilamparuthi (2008) 

Palar river sand 9 7 2-4 34-85 33-43 31 

Liu et al. (2013) Fujian standard sand 11 plane strain 1-7 30-80 34-43 31 
             * Centrifuge test at 40g, all other tests at 1g.  † Dickin and Laman (2007).337 
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Fig. 2 Predicted (using measured   summarised in Table 1) against measured anchor 360 
factors: (a) variation with relative density; (b) variation with embedment ratios 361 
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Fig. 4 Back-calculated (using measured anchor factors and equation (2)) and predicted 369 

(using equations (3) and (5)) values of m 370 
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Fig. 5 Comparison with other solutions: (a) with given effective friction angles; (b) with 375 

peak friction and dilation angles calculated by Bolton’s (1986) correlations 376 
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