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Abstract: This letter presents an analytical cavity expansion thbasgd method for
predicting peak uplift resistance of shallow horizontapsrichors buried in sand. Based
on an analytical two-dimensional stress solution fading analysis around a cylindrical
cavity, the methodavas developed by assuming that the peak anchor uplift resistance c
be approximated by the cavity breakout pressure. In the ety expansion model, the
ultimate failure is reached once the plastic zone dpsetio the ground surface, and the
biaxial state of in-situ ground stresses is taken into atcAwatabase consisting of 75
model tests on shallow strip anchors in samas compiled to valid the new method. The
predicted results and measured data are in reasonablenagteevith a mean over-
prediction of the peak uplift resistance by 1.6%. The reiigitwf the new solutiorwas
also checked by comparing with other commonly used andlgdations It is shown
that the present solution can provide a simple analytcalfor predictions of the peak
uplift resistance of strip anchors in sand while a msfjeblock failure mechanism

dominates.
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INTRODUCTION

Horizontal plate anchors are commonly used for registiplift forces in many
engineering structures such as transmission towers, drydoosngeystems for ocean
surface or submerged platforms. As a principal tothe routine design of earth anchors

a number of analytical solutions for predicting the upéfistance have been proposed
based on theoretical approaches such as limit equilibfleyerhof and Adams, 1968
White et al., 2008)limit analysis (Murray and Geddes, 1987), and cavity expansion
theory (CET) (Vesic, 1971vu, 2000). Among them, solutions based on the former two
approaches have been developed fairly well over decades, babnbst solutions
based on cavity expansion theory received limited attenliaa necessary to further
check and improve the accuracy and the applicability ofGER&-based solutions
especially for applications to shallow plate anchors indsas discussed later. A

comprehensive overview of earth anchors refers to Das andaSR0KR 3).

In the cavity expansion approach, the breakout pressunarieanally pressurized cavity
is often used to predict the uplift capacity of a singleziomtal plate anchor. Previous
CET-based models mainly include Vesic’s method (1971) and Yu’s method (2000). The
failure criteria used to determine the peak resistandesgettwo methods both have been
expressed by a relationship between the relative radilre aflastic-plastic boundary in
the loading analysis around a cavity and the soil cdepth above the anchon. Vesic’s
method, the propagation of the plastic zone was determimedigh a quasi-static
expansion analysis considering soil compressibilityYu’s method, the radius of the
elastic-plastic boundanyas directly expressed by the soil cover depth multiplying an
empirical coefficientm. It has been demonstrated that, taking the moment at whiech t
plastic zone just reaches the ground surface as theatstifailure criterion (.em=1),
Yu’s method can give fairly accurate predictions of the maximum uplift resistance of
shallow anchors in undrained clays (Chen et al., 2PtE3ifield et al., 2001Yu, 2000)
Nevertheless, the accuracy of previous CET-based methodstighat generally
satisfactory for applications to plate anchors in sand.ekkample, although théesic’s
method may perform well for uplift resistance predictiofishallow plate anchors in
loose sand, a considerable underprediction would be mhide appliedto anchors in
dense sand (Das and Shukla, 20M8irray and Geddes, 1987n Yu’s method, an

approximate value around 0.5 of the introduced coeffiaenwas suggested for anchors
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in sand to match the results computed from upper bound dnatyses. However,

theoretical methods for determining the valuenohave not been obtained till now.

In both Vesic’s (1971) and Yu’s (2000) models, the adopted cavity expansion solutions
had been derived with the idealisation that the intexnd far-field stresses are uniform
(Vesic, 1972 Yu and Houlsby, 1991). Howevein-situ horizontal and vertical soil
stresses usually are tnequal (i.e. the earth pressure coefficient at kgsis not ideally
equal to unity) (Guo, 201Qee et al., 201L,3Mayne and Kulhawy, 1982Rowe and Davis
(19823 1982b) pointed out that the load-deformation charactesisfisoil around a plate
anchor depend on the valuekgf Likewise under biaxial far-field stresses, the plastic
zone developed around a cylindrical cavity may significantferdfrom that computed
by a simplified one-dimensional analysis (Bradford and Dyrb@88 Detournay, 1985
1986 Galin, 1946 Zhuang and Yu, 2018). It was introduced above that the crised
to determine the anchor uplift capacity in the CET-based m@delassociated with the
propagation of the plastic zone and its relative pasitiothe ground surfac&or these

reasons, it is believed that the possijeeffect should be taken into account in the cavity

expansion approach for anchor uplift capacity predictions.

In the light of above discussioran analytical CET-based solution is developed to predict
the uplift resistance of horizontal strip anchorsaindly additionally considering biaxial
in-situ stresses in the stress analysis around a cylihdeedy under loadingThe new
solution is validated by comparing with 75 pull-out model tests strip plate anchors

performed in sand and other commonly used analytical models.

CAVITY EXPANSION APPROACH FOR ANCHOR UPLIFT CAPACITY PREDICTION
For a horizontal strip plate anchor pulling-@tta sufficiently slow rate, the peak uplift
resistance experienced is assumed to equal the sum wfithate radial pressurep()

needed to break out a cylindrical cavity underneath the grewnface and the weight of

the soil occupied by the volume of a half cavity abdweplate ancho,) as depicted

in{Fig. 1 (Vesic, 1971)or a plate anchor placedrelatively shallow depths, it has been

suggested by Vesic (1971) and Yu (2000) that the breakout of aptter occurs while
the outer boundary of the plastic zone predicted by ayc@axipansion analysis is
sufficiently close to orat the ground surfaceWhile elastic-perfectly-plastic cavity

expansion solutions derived under hydrostatic stress comsliire applied, Yu (2000)
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demonstrated that an empirical coefficienthas to be introduced to relate the maximum

radius of the plastic regiorr(

max) and the soil cover depth above the anchor, that is

lep

L =mH. Accordingly, based on a stress analysis around a cylindee#d/@dopting

m;

the Mohr-Coulomb yield criterion (Yu, 20Q0p, for an anchor in cohesionless materials

can be expressed as:

&Y
j 1)

F = g (2
= = m—
=R Q)K +1 D

p

where p, is the effective soil stress above the anchor, hamg=y'H . y' is the
effective unit weight of the soil. H is the embedmdepth of a plate anchor. D is the

anchor breadthK | = (1+sing) / (1- sinp .. ¢ represents the effective friction angle of soil.

Then the dimensionless anchor breakout faicteohesionless materials equals:

puD+VVS_F +7z D

N —u- s =
77sand ' HD 9 8H

(2)

By definition, the value ofm is influenced by the boundary conditions and load-
deformation characteristics of soil above the platghar. In reality, the coefficient of
earth pressure at rest in sands normally is less thap (Buo, 2010 Mayne and

Kulhawy, 1982). To additionally account for th&, effect in the loading analysis around

a cylindrical cavity, the asymptotic mapping functmrequation (A- 1)) in the appendix

is used to estimate the distribution of the plastic z&®durnay, 1985Zhuang and Yu,
2018) It gives that the range of the plastic zone in théicardirection is[A(1— 8)" ]

timesof that predicted by the corresponding solution derived uedeivalent uniform
initial stresses. Thus, with the same assumptionttiegpeak uplift resistands reached

once the plastic zone propagates to the free ground suafa@pproximate theoretical

expression of the coefficiemh in equation (1)) can be derived

1

m=———— 3
A(1-B)° ?

in which

2EV _ JFI(=5, —5);1;,32] =1+ 52,32 + O(ﬁ“) 4)



115 where 6=@1-K,)/(1+K,) ; B=1,1S, . P.=~(0,+0)/2 ; 7,=(0h-0,)/2 ,
, (@a(b), "
116 —[(1 K)P]/(K +1) 7'H. 0y,=Kio,- ,FRl(ab; ¢ 2= Z ©. n' (|Z|<1
n=0 -
117 )is a Gaussian or ordinary hypergeometric functiaris idpproximated by the commonly

118 used Jaky’s (1948) equation here, namel§, =1-sing_., . ¢., represents the critical state

119 friction angle of sand. Note th#t =0 and m=1 while Koequals unity.

120 Forastrip plate anchor placed in sand, the uplift responselynanies with the relative
121 embedment deptiH{ /D) and sand relative densit() (Ilamparuthi et al., 20Q2.iu et
122 al., 2011 Merifield and Sloan, 2006). At relatively shallow depthsjdirgg-block failure
123 mechanism (global shear failure) dominates. The peak ugiftaace is mobilised while
124  a pair of distributed shear zones stemming from the edgde afnchor extend to the

125 ground surface (e.g. Fig) Andincreases proportionally with increasestbfD . At

126 greater depths, the uplift resistance is primarily deterinoyethe localized compression
127 (local shear failure) and the failure plane may not lbgveo the ground surface. The
128 transition depth between the global shear failure modk tha local shear failure
129 mechanism varies with state and deformation charaiitersf the soil above (Chen et
130 al., 2013 Meyerhof and Adams, 1968). As it assumes that the ulirfalure occurs

131 while the plastic zone develops to the ground surface, gsepir solution (i.e. equations

132 |(2)|and (3) is designed for shallow strip anchors pulled out to failure avghding-block

133 mechanism.

134 The mobilised friction angle can be measured in tests under similar sand state and

135 stress level of sand above the plate anchor at faihlternatively,the Bolton’s (1986

136 1987) empirical equation (i.e. Eq.[5)) is employed to esem which might be stress-

137 and state-dependent (Bradshaw et al., 2Qd@@pnjunction with the Bolton’s correlation,

138 the present solution can be recast in termg_.Qf D, , p,, andH/D that can be easily

139 determined during a site investigation.
140 q)peak_(ocrit: A;/I R (5)

141 wherel, is a dilation indicator, spanning the range of 0 td.4 D, (Q —In p,) -1 while
142  p;,>150kPa (Bolton, 1986) I, =5D, —1 while p;, <150kPa (Bolton, 1987) A, is taken
143 asb5 for the strip anchor uplift problem (plane stra)is the natural logarithm of the

144  grain crushing strength (in kPa) (Randolph et al., 2004), whisdind-specific and stress-
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level degpendent (Chakraborty and Salgado, 20I@)pical values ofQ and ¢, for a

variety of sands have been summarized by Randolph €2G04) p, is the mean
confining stress at failure, kPa. For simplicity, it is talkes the effective overburden soil

pressure at the depthldfhere, thatp, =»'H (White et al., 2008).

COMPARISON WITH MODEL TEST RESULTS AND DISCUSSION

Inorder to assess the new solution thoroughly, a databaggismm 75 pull-out tests on
model plate anchors in sands has been assenlesiimulate the plee strain condition,
only tests on plate anchors with an aspect ratio ofleigth/breadth) greater than 7 have
been included as suggestadesults reported by Murray and Geddes (1987) and Rowe
and Davis (1982b)To roughly meet the requirement of the sliding-block failure
mechanism, only tests with an embedment ratiHéD <8 (White et al., 2008) are
collected. The database spans a wide range of relatiggylD=17~86%, mean 37.8%)
and embedment depths (H/D=1~8, mean 4 B3B)ails of each test series are summarised
in Table 1.

Taking the measured parameters given in Table 1, anchakdut factors of the test

database have been back-calculated using equlatic ns (2) padd3hey are compared

with the test data |n

Fig. 2} plotted against relative density and embedment rat®shdawn thah mean over-

prediction of the peak uplift resistance by 1.6% is madéhbynew solution, and the
coefficient of variation (COV) is 0.13Relatively significant outliners (overpredictions)
appear in tests of Dickin (1988) with loose sand at relbtideep depths as marked in
the graphs. As reasonable predictions are shown forag®&kin (1988) that were
performed in dense saatiH/D=1-8 and in loose sarat H/D=1-4, it is believed that the
overpredictions are because a local failure mechanismdtesin loose sanét H/D>4
rather than the sliding-block failure mechanism assatiatih the current method
(Meyerhof and Adams, 1968).

Alternatively, ¢ in the new solution may be approximated by the peak plane-stra

friction angle calculated using equatjon|((5) (ike= ¢,...)- As the tests of this database

are all performed in silica sand3,in equatioh (5) is taken as 10 (Bolton, 1988)other

input parameters are taken from the sources referensamasarised in Table 1 without
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any optimisatior]. Fig.|3 shows that the calculated rebyltbe alternative method also

compare favourably with the test results of the database.

It has been stated that the propagation of the plaste Banfluenced by the boundary
conditions and soil deformation above the plate anckaperimental investigations
(lamparuthi et al., 20QZ.iu et al., 2011 Merifield and Sloan, 20Q6/Nhite et al., 2008)
showed that increasing dilation may occur above théanat failure in denser sand
which accompanied by more lateral volume expansions. Assult,reextra lateral

confining pressure would be mobilised. This can be confirmed by-dmlculating the

far-field earth pressure coefficient using equationg((t]) (3) In the present solution, the

earth pressure coefficient is conservatively takerhadrt-situ value for simplicity. As
sand dilation is strong state-dependent (Bolton, 108&nd Dafalias, 2000), both stress

level and initial density could affect the valueraf Values of the coefficienin defined

in equation (1) have been back-calculated with the measuneldbr factors and are

plotted in Fig. 4. In the present database of testslgpendency o on the sand relative

density is more significant, and a linear relationship betwa and D, was fitted i Fig

190 Meanwhile, example results calculated using equationan@)5) are also plotted,
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taking p,,=40kPa, H /D=5 for illustration purpose. The theoretical solution pcesli
that m increases with relative density and earth pressurdiadeat. Although the
mobilised lateral confining pressure might be slightly gnetitan that at rest, the back-

calculatedm of this database mostly distribute in the range caledldy equation (3)

incorporatingthe Bolton’s equation (i.e. equatipn (Byvith typical in-situ values oK, .

COMPARISON WITH ANALYTICAL METHODS

The new solution is also compared with the commonly uiseitl équilibrium methods

and upper-bound plasticity solutionf in Fig. 5. In these nuththe break-out factaf

strip plate anchors in sand can be expressed in a urofiedof

H
1+f — 6
5 ©)

y—anchor = up

N

where

1+ K, (@-K,)cos¥
2 2

fupa =tany + (tanp,., — tany @ } (White et al., 2008) (6 a)

fpo =K, tane (Meyerhof and Adams, 1968) (6 b)
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fps=tang (Murray and Geddes, 1987) (6 c)

By assuming that the inclination angle of shear plaagsan each side of the inverted

trapezoidal block equals the angle of dilatign)((i.e. =y in|Fig. 1)), a simple limit

equilibrium solution as Eq.(6 a) was derived by White et28108). Eq.(6 b) gives the
limit equilibrium solutionof Meyerhof and Adams (1968K, was suggested equal 0.95

for strip anchors. Equation (6 c) is the upper-bound plastgolution (Murray and
Geddes, 1987), in which the normality is satisfied @e- ¢ in|Fig. J).

It has been reported that the upper-bound solutmgive reasonable predictions of the
uplift resistance of strip anchors (Merifield and Slo2006) but may be unconservative
for materials obeying a non-associated flow rule (Muamag Geddes, 1987\Vith the

same inputs of sand propertles, Fig. 5 (a) shows that dipeged method gives slightly

lower predictions than the upper-bound plasticity solutidéeanwhile, it is shown |n Fig.
(a) that much higher values are predicted by the new @&&dsolution than those by

Vesic’s (1971) solution in dense sand while similar results in loose sand. Bygusie

Bolton’s correlation|Fig. § (b) shows that the anchor break-out factordigied by this

method are generally higher than those by the limit equihibisolutionof White et al.
(2008). White et al. (2008) also reported that their solutimaerpredicted the results of
model tests on strip plate anchors by 14%. In additiontéAdtial. (2008) showed that
their method overpredicted the results of model pigdsrelatively smooth pipe surfaces
by 11%. As the interface frictional behaviour is expéttebe more significant for a pipe
than a horizontal anchor, overpredictions are to be ¢xgdfthe present solution was to
be used for pipes with smooth surfac®serall, the above comparisbancouragingly
suggested thahe new CET-based solution can provide a simple and reliablgteal
method for the peak uplift resistance predictions of striphors in addition to other

commonly used methods.

CONCLUSIONS

By additionally considering the biaxial state of in-situ grbwtresses in the loading
analysis of a cylindrical cavity, a new theoretical metih@s developed for predicting
the uplift resistance of strip plate anchors in sand. tAldese of 75 model tests on strip
anchors in sands has been assembled to validate thenethwd. Good agreemewts
shown between the predicted and measured results, widaa aver-prediction of the

peak uplift resistance by 1.6%. Although the level of agreemeamtvary with the scope
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of the database, these encouraging agreements sugdestibe peak uplift resistance of
strip anchors that determined by a sliding-block mechanisrbeavell predicted by &
new analytical CET-based method. And the accuracy anatabpiity of the new method
were further demonstrated by comparing with other reptatee plasticity solutions and

limit equilibrium solutions.

APPENDIX: Plastic failure zone under biaxial in-situ ground stresses

Under biaxial &r-field stresses, the non-circular elastic-plasticrutary developed
around an internally pressurised cylindrical cavity surround blgriMCoulomb materials
can be described by the asymptotic mapping function in equ@tid) (Detournay, 1985
Zhuang and Yu, 2018) while the plastic zone is staticallyroenate.

Loy (A1)

(o) =aoc(l+-—=
o

where w(c) conformally maps the elastic-plastic boundary in the gayglane to the

unit circle in the phase plane (Muskhelishvili, 1963} 1yR. R=D/2. c=€*. ¢ is an

(1+1/Kp)[(Kp—1>pu]}“’“””
. Note

argument of the complex variabée. i =+/~1. ZZ{ 2 [A-K.)P]
~K,)P,

that equation (A-1) is obtained from the loading analg$ia cylindrical cavity in an

infinite medium. Consequently, the free ground surfdieeieis not taken into account in

the present approximate CET-based model.
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335 Table

336 Table 1 Model test database of horizontal strip anchaft vggistance

Number Aspect ratio Cover depth Relative  Sand friction angle

Authors Sand of tests (L/D) Ratio(H/D) d?&g'ty o © O O

Rowe and Davis (1982b) Sydney sand 36 8.75 1-8 17-37  32-33.3 31
Murray and Geddes (198 Medium grained sant 4 10 1-6 85.9 44 32
Dickin (1988)" Erith sand 15 8 1-8 33-76 38-49 35

Ravichandran and :
llamparuthi (2008) Palar river sand 9 7 2-4 34-85 33-43 31
Liu et al. (2013) Fujian standard sanc 11 plane strain 1-7 30-80 34-43 31

337 “Centrifuge test at 40g, all other tests at 1Dickin and Laman (2007).
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