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Abstract.

Regional estimates of the effects of ozone pollution on forest growth depend on the availability of reliable damage functions

that estimate a representative ecosystem response to ozone exposure. A number of such damage functions for forest tree

species and forest functional types have recently been published and subsequently applied in terrestrial biosphere models to

estimate regional or global effects of ozone on forest tree productivity and carbon storage in the living plant biomass. The5

resulting impacts estimated by these biosphere models show large uncertainty in the magnitude of ozone effects predicted. To

understand the role that these damage functions play in determining the variability of estimated ozone impacts, we use the

O-CN biosphere model to provide a standardised modelling framework. We test four published damage functions describing

the leaf-level, photosynthetic response to ozone exposure (targeting Vcmax or net photosynthesis) in terms of their simulated

whole-tree biomass responses against field data from 23 ozone filtration/fumigation experiments conducted with European tree10

species at sites across Europe with a range of climatic conditions. Our results show that none of these previously published

damage functions lead to simulated whole-tree biomass reductions in agreement with the observed dose-response relationships

derived from these field experiments, and instead lead to significant over- / or underestimations of the ozone effect. By re-

parameterising these photosynthetic based damage functions we develop linear, plant functional type specific dose-response

relationships, which provide accurate simulations of the observed whole-tree biomass response across these 23 experiments.15
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1 Introduction

Ozone is a phytotoxic air pollutant which enters plants mainly through the leaf stomata, where reactive oxygen species (ROS)

are formed that can damage essential leaf functioning (Ainsworth et al., 2012). Ozone induced declines in net photosynthesis

(Morgan et al., 2003; Wittig et al., 2007) have been observed as the result of damage of the photosynthetic apparatus, increased

respiration rates caused by investments in repair of injury, as well as the production of defence compounds (Wieser and5

Matyssek, 2007; Ainsworth et al., 2012). At the leaf-scale, ozone damage occurs and accumulates, when the instantaneous

stomatal ozone uptake of leaves surpasses the ability of the leaf to detoxify ozone (Wieser and Matyssek, 2007). These effects

are likely the primary cause for reduced rates of net photosynthesis and decreased supply of carbon and energy for growth and

net primary production (NPP), which contributes to the commonly observed ozone-induced reductions in leaf area and plant

biomass (Morgan et al., 2003; Lombardozzi et al., 2013; Wittig et al., 2009). Changes in tropospheric ozone abundance and10

associated changes in ozone-induced damage thus have the potential to affect the ability of the terrestrial biosphere to sequester

carbon (Harmens and Mills, 2012; Oliver et al., 2017). However, a quantitative understanding of the effect of ozone pollution

on forest growth and carbon sequestration at the regional scale is still lacking. Terrestrial biosphere models can be used to

obtain regional or global estimates of ozone damage based on an understanding of how ozone affects plant processes leading to

C assimilation and growth. Modelling algorithms to estimate regional or global impacts of ozone on gross primary production15

(GPP) have been developed for several of these terrestrial biosphere models (Sitch et al., 2007; Lombardozzi et al., 2012a,

2015; Franz et al., 2017; Oliver et al., 2017). However, simulated reductions in GPP due to ozone damage vary substantially

between models and model versions.

This uncertainty is predominantly due to the different approaches that these models use to relate ozone uptake (or ozone

exposure) to reductions in whole-tree biomass, and in the exact parameterisation of the dose-response relationship applied20

(Karlsson et al., 2004; Pleijel et al., 2004; Wittig et al., 2007; Lombardozzi et al., 2012a, 2013). The dose-response relationships

employed by current terrestrial biosphere models differ decidedly in their slope (i.e. the change in damage per unit of time-

integrated ozone uptake), intercept (ozone damage at zero time-integrated ozone uptake), and in their assumed threshold, below

which the ozone uptake rate is considered sufficiently low that ozone will be detoxified before any damage occurs (Karlsson

et al., 2004; Pleijel et al., 2004; Lombardozzi et al., 2012a). For example, Sitch et al. (2007) relates the instantaneous ozone25

uptake exceeding a flux threshold to net photosynthetic damage via an empirically derived factor. An alternative approach has

been to relate ozone damage to net photosynthesis in response to the accumulated ozone uptake rather than to the instantaneous

ozone uptake as in Sitch et al. (2007), e.g. by using the CUOY , which refers to the cumulative canopy O3 uptake above a flux

threshold of Y nmolm−2 s−1 (Wittig et al., 2007; Lombardozzi et al., 2012a, 2013).

The effect of ozone on plant growth has been investigated by ozone filtration/fumigation experiments either at the indi-30

vidual experimental level or by pooling data from multiple experiments that have been conducted according to standardised

experimental method. These experiments typically rely on small trees or saplings. A challenge in developing and testing

process-based models of ozone damage from these ozone fumigation experiments is that often only the difference in biomass

accumulation between plants grown in an ozone treatment and in ambient or charcoal-filtered air at the end of the experiment
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are reported. Data from these studies provide evidence for a linear, species-specific relationship between accumulated ozone

uptake and reductions in plant biomass (Pleijel et al., 2004; Mills et al., 2011; Nunn et al., 2006, e.g.). Sitch et al. (2007)

for instance calibrated their instantaneous leaf-level dose-response relationship between ozone uptake and photosynthesis by

relating simulated annual net primary production and accumulated ozone uptake to observed biomass dose-response relation-

ships developed by Karlsson et al. (2004) and Pleijel et al. (2004), where biomass/yield damage is related to the Phytotoxic5

Ozone Dose (PODy). The PODy refers to the accumulated ozone uptake above a flux threshold of y nmolm−2 s−1 by the

leaves representative of the upper canopy leaves of the plant. Such an approach applies biomass dose-response relationships

of young trees to mature trees. However, the effects of ozone on leaf physiology (e.g. net photosynthesis and stomatal conduc-

tance) or plant carbon allocation may differ between juvenile and adult trees (Hanson et al., 1994; Samuelson and Kelly, 1996;

Kolb and Matyssek, 2001; Paoletti et al., 2010). Whether or not biomass dose-response relationships can be used to calibrate10

dose-response functions for mature trees is uncertain.

An alternative approach is to directly simulate ozone damage to photosynthesis, which may have been a major cause for

the observed decline in plant biomass production (Ainsworth et al., 2012). Possible damage targets in the simulations can be

for example the net photosynthesis or leaf-specific photosynthetic activity (such as represented by the maximum carboxylation

capacity of Rubisco, Vcmax). For instance Lombardozzi et al. (2012a) based their dose-response relationships on an experi-15

mental study involving a single forest tree species, whereas more recent publications (e.g. Lombardozzi et al. (2015) and Franz

et al. (2017)) have used dose-response relationships from meta-analyses of a far larger-set of filtration/fumigation studies.

Meta-analyses have attempted to summarise the responses of plant performance to ozone exposure across a wider range of

experiments and vegetation types (Wittig et al., 2007; Lombardozzi et al., 2013; Feng and Kobayashi, 2009; Li et al., 2017;

Wittig et al., 2009) and to develop damage functions for plant groups that might provide an estimate of mean plant group20

responses to ozone. However, these meta-analyses suffer from a lack of consistency in the derivation of either plant damage or

ozone exposure, and generally report a large amount of unexplained variance. A further complication in the meta-analyses of

ozone damage (e.g. Wittig et al., 2007; Lombardozzi et al., 2013) is that they have to indirectly estimate the cumulative ozone

uptake underlying the observed ozone damage based on a restricted amount of data, which causes uncertainty in the derived

damage functions.25

Büker et al. (2015) provides an independent data set of whole-tree biomass plant responses to ozone uptake which is in-

dependent of data sets that were used to describe damage functions by Wittig et al. (2007) and Lombardozzi et al. (2013).

This data set has been collected from experiments that follow a more standardised methodology to assess dose-responses and

has associated meteorological and ozone data at a high time resolution that allow more accurate estimates of modelled ozone

uptake to be made. These dose-response relationships describe whole-tree biomass reductions in tree seedlings derived from30

standardised ozone filtration/fumigation methods for eight European tree species at ten locations across Europe (see Tab. A.2

for details Büker et al., 2015). These data thus provide an opportunity to evaluate simulations of biosphere models that use leaf

level damage functions (describing the effect of ozone uptake on photosynthetic variables) to estimate C assimilation, growth

and ultimately whole tree biomass against these robust empirical dose-response relationships that relate ozone exposure directly

to whole tree biomass response.35
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Here we test four alternative, previously published ozone damage functions that target either net photosynthesis or the leaf

carboxylation capacity (Vcmax), which have been included in state-of-the-art terrestrial biosphere models (Lombardozzi et al.,

2012a, 2015; Franz et al., 2017) against these new biomass dose-response relationships by Büker et al. (2015). We incorporate

these damage functions into a single modelling framework, the O-CN model (Zaehle and Friend, 2010; Franz et al., 2017).

To reduce model-data mismatch, we test the functions in simulations that mimic to the extend possible the conditions of5

each of the experiments in the Büker et al. (2015) data-set, in particular the young age, such that we can directly compare

the simulated to the observed whole-tree biomass reductions of the empirically derived dose-response relationships. This

allows us to identify the contribution of these alternative damage function formulations on the simulated whole-tree biomass

response. The simulated biomass dose-response relationships are then compared to the data from the experiments to evaluate

the capability of the different model versions to reproduce observed dose-response relationships. Based on these comparisons10

we use a similar approach to that of Sitch et al. (2007) and develop alternative parameterisations of the damage functions to

improve the capability of the O-CN model to simulate the whole-tree biomass responses observed in the field experiments,

with the notable exception that we explicitly simulate in-fumigation experiments and the approximate age of the trees. Finally,

we explore whether or not there is a substantial difference in the biomass response to ozone of young or mature trees by using

a sequence of model simulations and comparing the response both in terms of whole tree biomass as well as net primary15

production.

2 Methods

We use the O-CN terrestrial biosphere model (Zaehle and Friend, 2010), which is an extension of the ORCHIDEE model

(Krinner et al., 2005) to simulate conditions of the ozone fumigation experiments described in Büker et al. (2015). The O-CN

model simulates the terrestrial coupled carbon (C), nitrogen (N) and water cycles for up to twelve plant functional types and is20

driven by climate data and atmospheric composition.

O-CN simulates a multi-layer canopy with up to 20 layers with a thickness of up to 0.5 leaf area index each. Net photo-

synthesis is calculated according to a modified Farquhar-scheme for shaded and sun-lit leaves considering the light profiles of

diffuse and direct radiation (Zaehle and Friend, 2010). Leaf nitrogen concentration and leaf area determine the photosynthetic

capacity. Increases of the leaf nitrogen content increase Vcmax and Jmax (nitrogen specific rates of maximum light harvest-25

ing, electron transport) and hence maximum net photosynthesis and stomatal conductance per leaf area. The leaf N content is

highest at the top of the canopy and exponentially decreases with increasing canopy depth. Following this net photosynthesis,

stomatal conductance and ozone uptake are generally highest in the top canopy and decrease with increasing canopy depth.

Canopy-integrated assimilated carbon enters a labile non-structural carbon pool, which can either be used to fuel mainte-

nance respiration (a function of tissue nitrogen), storage (for seasonal leaf and fine root replacement and buffer of inter-annual30

variability of assimilation) or biomass growth. After accounting for reproductive production (flowers and fruits), biomass

growth is partitioned into leaves, fine roots, and sapwood according to a modified pipe-model (Zaehle and Friend, 2010), ac-

counting for the costs of biomass formation (growth respiration). In other words, changes in leaf-level productivity affect the
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build-up of plant pools and storage, and thereby feed back on the ability of plants to acquire C through photosynthesis, or

nutrients through fine root uptake.

2.1 Ozone damage calculation in O-CN

Leaf-level ozone uptake is determined by stomatal conductance and atmospheric O3 concentrations, as described in Franz

et al. (2017). To mimic the conditions of the fumigation experiments with plot-level controlled atmospheric O3 concentrations,5

simulations are conducted with a model version of O-CN, in which atmospheric O3 concentrations are directly used to calculate

ozone uptake into the leaves, and the transfer and destruction of ozone between the atmosphere and the surface is ignored (ATM

model version in Franz et al. (2017)). Deviating from Franz et al. (2017), stomatal conductance gst here is calculated based on

the Ball and Berry formulation (Ball et al., 1987) as

gst,l = g0 + g1 ×
An,l ×RH × f(heightl)

Ca

(1)10

where net photosynthesis (An,l) is calculated as described in Zaehle and Friend (2010) as a function of leaf nitrogen and

nitrogen specific rates of maximum light harvesting, electron transport (Jmax) and carboxylation rates (Vcmax). RH is the

atmospheric relative humidity, f(heightl) the water-transport limitation with canopy height, Ca the atmospheric CO2 concen-

tration, g0 is the residual conductance when An approaches zero, and g1 is the stomatal-slope parameter as in Krinner et al.

(2005). The index l indicates that gst is calculated separately for each canopy layer.15

The O3 stomatal flux (fst,l, nmolm−2(leaf area)s−1) is calculated from the atmospheric O3 concentration the plants in

the field experiments were fumigated with (χO3

atm) and gst,l as

fst,l = (χO3

atm −χO3

i )gO3

st,l. (2)

where the leaf internal O3 concentration (χO3

i ) is assumed to be zero (Laisk et al., 1989).

The accumulation of ozone fluxes above a threshold of Y nmolm−2(leaf area)s−1 (fst,l,Y , nmolm−2(leaf area)s−1)20

with

fst,l,Y = MAX(0,fst,l −Y ) (3)

gives the CUOYl. The canopy value of CUOY is calculated by summing CUOYl over all canopy layers (see Franz et al.

(2017) for details).

For comparison to observations, the Phytotoxic Ozone Dose (POD, mmolm−2) can be diagnosed by the accumulation25

of fst,l for the top canopy layer (l = 1). The accumulation of ozone fluxes of the top canopy layer above a threshold of y

nmolm−2(leaf area)s−1 gives the PODy. The estimates of PODy (both POD2 and POD3) can be used off-line to re-
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construct dose-response relationships equivalent to those described in Büker et al. (2015). These modelled dose-response

relationships can then be compared with the empirically derived dose-response relationships to assess the ability of the

model to estimate damage. As such, the POD2 and POD3 used for the formation of these modelled dose-response rela-

tionships are purely diagnostic variables and not involved in the damage calculation of the model. The flux thresholds (2

and 3 nmolm−2(leaf area)s−1) are not the flux thresholds that are used to estimate biomass response in the O-CN model5

simulations.

Ozone damage, i.e. the fractional loss of carbon uptake associated with ozone uptake dO3

l , is calculated as a linear function

of the cumulative leaf-level uptake of ozone above a threshold of Y nmolm−2(leaf area)s−1 (CUOYl)

dO3

l = a− b×CUOYl (4)

where a is the intercept and b is the slope of the damage function. The damage fraction (dO3

l ) is calculated separately10

for each canopy layer l based on the specific accumulated ozone uptake of the respective canopy layer (CUOYl), and takes

values between 0 and 1. The magnitude of dO3

l in Eq. 4 varies between the canopy layers because CUOYl varies driven by

within-canopy gradients in stomatal conductance and photosynthetic capacity.

The effect of ozone damage on plant carbon uptake is calculated by

xO3

n,l = xn,l(1− dO3

l ). (5)15

where x is either leaf-level net photosynthesis An,l or the maximum photosynthetic capacity (Jmax,l and Vcmax,l), which is

used in the calculation of An,l. Jmax,l and Vcmax,l are reduced in proportion such that the ratio between the two is not altered.

While there is some evidence that ozone can affect the ration between Jmax and Vcmax, we believe that for the purpose of this

paper is is justifiable to assume a fixed ratio between them.

Reductions in An, l cause a decline in stomatal conductance (gst,l) due to the tight coupling between both. Other stress20

factors that impact gst,l are accounted for in the preceding calculation of the gst,l undamaged by ozone (see Eq. 1). Reductions

in gst,l decrease the O3 uptake into the plant (fst,l) and slow the increase in CUOYl and thus ozone damage.

2.2 Model set-up

Four published damage functions were applied within the O-CN model (see Tab. 1 for the respective slopes, intercepts and

flux thresholds). As these did not match well with the observed biomass dose-response relationships by Büker et al. (2015),25

we calibrated two additional damage relationships, one each for An or Vcmax, based on the data presented in Büker et al.

(2015) (see Tab. 1 for slopes and intercepts). For these calibrated damage functions, we chose a flux threshold value of 1

nmolm−2(leaf area)s−1, as suggested by LRTAP-Convention (2017). We forced the intercept (a) of these relationships to

one to simulate zero ozone damage at zero accumulated O3 (for ozone levels that cause less then 1 nmolm−2(leaf area)s−1
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instantaneous ozone uptake). As described above, in all model versions, ozone damage is calculated independently for each

canopy layer based on the accumulated O3 uptake (CUOYl) in that layer, above a specific flux threshold of Y nmolm−2(leaf area)s−1

for the respective damage function (see Tab. 1).

Table 1. Slopes and intercepts, partly PFT specific, of all four published (W07PS , L12PS , L12V C , L13PS) and two tuned (tunPS ,
tunV C ) damage functions included in O-CN. Targets of ozone damage are net photosynthesis (PS) or Vcmax. Damage calculations
base on the CUOY with a specific flux threshold for each damage function.

ID Target Slope Intercept Plant group Flux threshold Reference

(b) (a) [nmolm−2(leaf area)s−1]

W07PS PS 0.0022 0.9384 All 0 Wittig et al. (2007)

L12PS PS 0.2399 1.0421 All 0.8 Lombardozzi et al. (2012a)

L12V C Vcmax 0.1976 0.9888 All 0.8 Lombardozzi et al. (2012a)

L13PS PS 0 0.8752 Broadleaf 0.8 Lombardozzi et al. (2013)

L13PS PS 0 0.839 Needleleaf 0.8 Lombardozzi et al. (2013)

tunPS PS 0.065 1 Broadleaf 1 tuned here

tunPS PS 0.021 1 Needleleaf 1 tuned here

tunV C Vcmax 0.075 1 Broadleaf 1 tuned here

tunV C Vcmax 0.025 1 Needleleaf 1 tuned here

2.3 Model and protocol5

Simulations were run for each fumigation experiment using meteorological input from the daily CRU-NCEP climate data set

(CRU-NCEP version 5; LSCE (http://dods.extra.cea.fr/store/p529viov/cruncep/V5_1901_2013/) at the nearest grid cell to the

coordinates of the experiment sites. The meteorological data provided by the experiments were incompletely describing the

atmospheric boundary conditions required to drive the O-CN model. Atmospheric CO2 concentrations were taken from Sitch

et al. (2015), and reduced as well as oxidised nitrogen deposition in wet and dry forms were provided by the EMEP model10

(Simpson et al., 2014). Hourly O3 concentrations were obtained from the experiments, as in Büker et al. (2015).

Büker et al. (2015) report data for eight tree species at 11 sites across Europe (see Tab. A.2 for experiment and simulation

details). The O-CN model simulates twelve plant functional types (PFT’s) rather than explicit species, therefore the species

from the experiments were assigned to the corresponding PFT: All broadleaved species except Quercus ilex were assigned

to the temperate broadleaved summergreen PFT. Quercus ilex was classified as temperate broadleaved evergreen PFT. All15

needle-leaved species were assigned to the temperate needle-leaved evergreen PFT.

The field experiments were conducted on young trees or cuttings. Prior to the simulation of the experiment, the model

was run in an initialisation phase from bare ground until the simulated stand-scale tree age was stable and representative of

1-2 year old seedlings. During this initialisation, O-CN was run with the climate of the years preceding the experiment and

zero atmospheric O3 concentrations. Using ambient ozone concentrations during the initialisation phase would have resulted20
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in different initial biomass values for the different response functions, which would have reduced the comparability of the

different model runs. The impact of the ozone concentrations in the initialisation phase on our results here can be considered

negligible since we only evaluate the simulated biomass from different treatments in relation to each other and do not evaluate

it in absolute terms.

The duration of the initialisation phase depends on the site and PFT and averages 7.8 years (mean over all simulated exper-5

iments). Some of the published damage functions and/or parameterisations applied have intercepts unequal to one (a in Eq.

4; see Tab. 1), which induces reductions (a < 1) or increases (a > 1) in photosynthesis at zero ozone concentration and thus

causes a bias in biomass and in particular foliage area at the end of the initialisation phase. To eliminate this bias, the nitrogen-

specific photosynthetic capacity of a leaf was adjusted for each of the six parameterisations of the model to obtain comparable

LAI values at the beginning of the experiment (see Tab. A.1). This adaption of the nitrogen-specific photosynthetic capacity10

of a leaf only counterbalances the fixed increases or decreases in the calculation of photosynthesis implied by the intercepts

unequal to 1 and has no further impact on ozone uptake and damage calculations.

The simulations of the experiments relied on the meteorological and atmospheric forcing of the experiment years. Simula-

tions were made for all reported O3 treatments of the specific experiment, including the respective control treatments. Büker

et al. (2015) obtained estimates of biomass reductions due to ozone by calculating the hypothetical biomass at zero ozone up-15

take for all experiments that reported ozone concentrations greater than zero for the control group (e.g. for charcoal filtered or

non-filtered air) and calculated the biomass damage from the treatments against a completely undamaged biomass. Our model

allows us to run simulations with zero ozone concentrations and skip the calculation of the hypothetical biomass at zero ozone

concentrations as done by Büker et al. (2015). Following this, we ran additional reference simulations with zero O3 and based

our biomass damage calculations upon them.20

To test whether biomass dose-response relationships of mature forests will show a similar relationship as observed in the

simulations of young trees, we ran additional simulations with mature trees. To allow the development of a mature forest where

biomass accumulation reached a maximum, and high, and medium turnover soil pools reached an equilibrium, the model

was run for 300 years in the initialisation phase. The simulations were conducted with the respective climate previous to the

experiment period and zero atmospheric O3 concentration. For the simulation years previous to 1901 the yearly climate is25

randomly chosen from the years 1901-1930. Constant values of atmospheric CO2 concentrations are used in simulated years

previous to 1750 followed by increasing concentrations up to the experiment years. The subsequent experiment years are

simulated identical as in the simulations with the young trees.

2.4 Calculation of the biomass damage relationships

At each experiment site and for all treatments the annual reduction in biomass due to ozone (RB) is calculated as in Büker30

et al. (2015):

RB =

(

BMtreat

BMzero

)
1

n

, (6)

8
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where BMtreat represents the biomass of a simulation, which experienced an O3 treatment and BMzero the biomass of the

control simulation with zero atmospheric O3 concentration. The exponent imposes an equal fractional biomass reduction across

all simulation years for experiments lasting longer than one year.

Büker et al. (2015) report the dose-response relationships for biomass reduction with reference to the Phytotoxic Ozone Dose

(PODy) with flux thresholds y of 2 and 3 nmolm−2(leaf area)s−1 (POD2 and POD3) for the needleleaf and broadleaf cat-5

egory respectively. To be able to compare the simulated biomass reduction by O-CN with these estimates, we diagnosed these

PODy values for each simulation from the accumulated ozone uptake of the top canopy layer (PODyO−CN = CUOYl=1).

Note that the PODyO−CN is purely diagnostic, and not used in the damage calculations, which are based on the CUOYl

(see Eq. 4). As O-CN computes continuous, half-hourly values of ozone uptake (see Franz et al. (2017) for details), the

PODyO−CN values have to be transformed to be comparable to the mean annual PODy values reported in Büker et al. (2015).10

For deciduous species, the yearly maximum of PODyO−CN was taken as yearly increment PODyO−CN,i. The PODyO−CN

of evergreen species was continuously accumulated over several years. To obtain the yearly increment PODyO−CN,i, the

PODyO−CN at the beginning of the year i is subtracted from the PODyO−CN at the end of the year i.

The selected yearly PODyO−CN,i were used to calculate mean annual values necessary for the formation of the dose-

response relationships integrating all simulation years (PODydr) as15

PODydr
i =

∑i

k=1
PODyO−CN,i

i
(7)

where PODyO−CN,i is the PODy of the i-th year calculated by O-CN. The PODydr values are used to derive biomass

dose-response relationships.

Separate biomass dose-response relationships were estimated by grouping site data for broadleaved and needleleaved species.

The biomass dose-response relationships are obtained from the simulation output by fitting a linear model to the simulated val-20

ues of RB and PODydr (with flux thresholds of 2 and 3 nmolm−2(leaf area)s−1 for needleleaved and broadleaved species,

respectively), where the regression line is forced through one at zero PODydr. Büker et al. (2015) report two alternative dose-

response relationships for their data set, the simple and the standard model, BSI and BST respectively. We evaluate our differ-

ent model versions regarding their ability to reach, with the biomass-dose-response relationships computed from their output,

the area between those two functions (target area). The tuned damage relationships tunPS and tunV C were obtained by adjust-25

ing the slope b in Eq. 4 such that the corresponding biomass dose-response relationships fits the target area. The intercept of the

damage relationships are forced to 1 to simulate zero ozone damage at ozone fluxes lower than 1 nmolm−2(leaf area)s−1.
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3 Results

3.1 Testing published damage functions

None of the versions where ozone damage is calculated based on previously published damage functions fit the observations

well. Some versions strongly overestimate the simulated biomass dose-response relationship and others strongly underestimate

it (see Fig. 1) compared to the dose-response relationships developed by Büker et al. (2015).5
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Figure 1. Biomass dose-response relationships for simulations based on published damage relationships, separate for a) broadleaved species,
and b) needle-leaved species. The dose-response relationships by Büker et al. (2015), BSI and BST , define the target area (orange). The
displayed dose-response relationships are simulated by model versions which base damage calculations either on net photosynthesis W07PS

(Wittig et al., 2007), L12PS(Lombardozzi et al., 2012a), and L13PS (Lombardozzi et al., 2013), or on Vcmax L12V C (Lombardozzi et al.,
2012a) (see Tab. 1 for more details). See Tab. A.3 and A.4 for slopes, intercepts, R2 and p-values of the displayed regression lines. Damage
calculation in the simulations bases on CUOY (see Tab. 1) and not on POD2 or POD3 (see Sec. 2.4 for more details).

In the W07PS simulations, where damage is calculated based on the damage function by Wittig et al. (2007), biomass

damage is strongly underestimated compared to the estimates from Büker et al. (2015). Ozone damage estimates are mainly

driven by the intercept of the relationship, which assumes a reduction of net photosynthesis by 6.16% at zero ozone uptake.

Little additional ozone damage occurs due to the accumulation of ozone uptake. As a consequence, the ozone treatments and

reference simulations differ little in their simulated biomass. Similarly, the Lombardozzi et al. (2013) damage function (L13PS)10

calculates ozone damage as a fixed reduction of net photosynthesis independent of the actual accumulated ozone uptake. The

reference simulations with zero atmospheric ozone thus equals the simulations with ozone treatments and results in an identical

simulated biomass. We tested accounting for effects of ozone on stomatal conductance besides net photosynthesis as suggested

by Lombardozzi et al. (2013). However, this additional direct damage to stomatal conductance yielded a minimal decrease in

simulated biomass accumulation in needle-leaved trees, but did not qualitatively change the results (results not shown). These15

results indicate that damage functions, with a large intercept and a very shallow (or non-existing) slope cannot simulate the

impact of spatially varying O3 concentrations or altered atmospheric O3 concentrations.
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The simulations L12PS and L12V C (net photosynthesis and Vcmax damage according to Lombardozzi et al. (2012a) respec-

tively) strongly overestimate biomass damage compared to Büker et al. (2015). Both damage functions assume an extensive

damage to carbon fixation at low ozone accumulation values (CUOY ) of about 5 mmol O3. This results in a very steep de-

cline in relative biomass at low values of POD3. Notably, despite a linear damage relationship, the very steep initial decline

in biomass of broadleaved trees at low values of POD3 is not continued at higher exposure, resulting in a non-linear biomass5

dose-response relationships. Higher accumulation of ozone doses does not result in higher damage rates beyond a threshold of

about 5 mmol O3 m−2 leaf area, and relative biomass declines remain 50 to 70 %. Whereas non-linear dose-response rela-

tionships are observed in experiments e.g. for leaf injury (Marzuoli et al., 2009), such a non-linear relationship is not produced

in the biomass dose-response relationship by Büker et al. (2015).
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Figure 2. Cumulative ozone uptake above a threshold of 0.8 nmolm−2(leaf area)s−1 (CUOY ), canopy integrated net photosynthesis
(Acan

n ), leaf carbon content (Leaf C), total carbon in biomass (Biomass C) and relative Biomass (RB) of Pinus halepensis at the Ebro
Delta fumigated with the NF+ ozone treatment. Simulations are conducted with the L12PS model version. Panels a-d display the entire
simulation period. The red line indicates the onset of O3 fumigation (NF+) in the 5th of 8 simulations years. The relative biomass compared
to a control simulation with zero O3 concentration (panel e) is displayed for the O3 fumigation years.

We investigated the cause for this at the example of the Pinus halepensis stand in the Ebro Delta with a high ozone treatment10

as shown in Fig. 2. The CUOY quickly increases after the onset of fumigation (Fig. 2a) and is paralleled by a rapid decline

in canopy integrated net photosynthesis (Acan
n , see Fig. 2b). Once all canopy layers accumulated more than 5 mmol O3

m−2, the canopy photosynthesis is fully reduced, and Acan
n becomes negative as a consequence of ongoing leaf maintenance

respiration. Thereafter, leaf and total biomass steadily decline (Fig. 2c,d), and the plants are kept alive only by the consumption

of stored non-structural carbon reserves. Despite the 100 % reduction in gross photosynthesis, the biomass compared to a15

control simulation (relative biomass, RB) reaches only values of approximately 0.7 (Fig. 2e), because of the remaining woody

and root tissues (see Eq. 6 for the calculation of RB).
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3.2 Tuned damage relationships

We next tested whether a linear damage function is in principle able to reproduce the observed biomass dose-response rela-

tionships. Simulations conducted with our tuned damage relationships produce biomass dose-response relationships which fit

the target area defined by the BSI and BST dose-response relationships by Büker et al. (2015) (see Fig. 3 and Tab. A.5, A.6).

For the calibrated relationships used in these simulations, we chose a flux threshold value of 1 nmolm−2(leaf area)s−1, as5

suggested by LRTAP-Convention (2017). We forced the intercept (a) of these relationships through 1, to simulate zero ozone

damage at ozone fluxes lower than 1 nmolm−2(leaf area)s−1. The resulting slope of the tunPS function for broadleaved

PFTs is approximately 30 times higher compared to the slope suggested by Wittig et al. (2007) and a fourth of the slope by

Lombardozzi et al. (2012a). For the needle-leaved PFT, the tuned slope (tunPS) is approximately 10 times higher (lower) than

the slopes by Wittig et al. (2007) and Lombardozzi et al. (2012a), respectively. Notably, we did not observe any difference in10

the model performance irrespective of whether net photosynthesis or photosynthetic capacity (Vcmax) was reduced.
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Figure 3. Biomass dose-response relationships for simulations based on tuned damage functions (see Tab. 1 for abbreviations), separate
for a) broadleaved species, and b) needle-leaved species. The dose-response relationships by Büker et al. (2015), BSI and BST , define the
target area (orange). See Tab. A.5 and A.6 for slopes, intercepts, R2 and p-values of the displayed regression lines. Damage calculation in
the simulations base on CUO1 (see Tab. 1) and not on POD2 or POD3 (see Sec. 2.4 for more details).

3.3 Ozone damage to mature trees

The simulation of young trees (simulated as in the previous section) compared to adult trees with the same model version

reveals a distinct difference between the simulated versus observed dose-response relationship when expressed as reduction of

biomass. Ozone damage causes a much shallower simulated biomass dose-response relationship for adult trees (tunmature
V C in15

Fig. 4a,b) compared to young trees (tunyoung
V C in Fig. 4a,b), both for broadleaved and needle-leaved species. It is worth noting

that this is primarily the consequence of the higher initial biomass of the adult trees before ozone fumigation starts (tunmature
V C ).

Comparing the dose-response relationship of young and mature trees based on the annual net biomass production (NPP) shows

nearly identical slopes for needle-leaved species (Fig. 4d and Tab. 3), whereas the slopes for broadleaved tree species (Fig. 4c
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and Tab. 2) suggests only a slightly lower reduction in NPP in mature compared to young trees, likely related to the larger

amount of non-structural reserves that increases the resilience of mature versus young trees.

Table 2. Slopes and intercepts of biomass (RB) and NPP (RN) dose-
response relationships (DRR) for broadleaved species simulated by the
tunV C model version (see Tab. 1). The fumigation of young trees
(tunyoung

V C ) with O3 is compared to the fumigation of mature trees
(tunmature

V C ).

DRR ID Intercept (a) Slope (b) R2 p-value

RB tunyoung
V C 1 0.0091 0.93 5e-25

RB tunmature
V C 1 0.00142 0.91 9.8e-23

RN tunyoung
V C 1 0.0167 0.96 6.2e-30

RN tunmature
V C 1 0.0144 0.93 1.4e-24

Table 3. Slopes and intercepts of biomass (RB) and NPP (RN) dose-
response relationships (DRR) for needle-leaved species simulated by
the tunV C model version (see Tab. 1). The fumigation of young trees
(tunyoung

V C ) with O3 is compared to the fumigation of mature trees
(tunmature

V C ).

DRR ID Intercept (a) Slope (b) R2 p-value

RB tunyoung
V C 1 0.0042 0.93 2.2e-09

RB tunmature
V C 1 0.000785 0.79 4.2e-06

RN tunyoung
V C 1 0.00858 0.97 2.3e-12

RN tunmature
V C 1 0.00808 0.99 3 .7e-16

4 Discussion5

Damage functions that relate accumulated ozone uptake to fundamental plant processes such as photosynthesis are a key com-

ponent for models that aim to estimate the potential impacts of ozone pollution on forest productivity, growth and carbon

sequestration. We tested four published damage functions for net photosynthesis and Vcmax within the framework of the O-CN

model to assess their ability to reproduce the empirical whole tree biomass dose-response relationships derived by Büker et al.

(2015). The biomass dose-response relationships calculated from the O-CN simulations show that the parameterisation of the10

damage functions included in the model have a large impact on the simulated whole tree biomass: the published damage func-

tions either substantially over- or substantially under-estimated whole tree biomass reduction compared to the data presented

by Büker et al. (2015).

The simulation results from the O-CN version applying a damage function based on a single, ozone-sensitive species (Lom-

bardozzi et al., 2012a) to a range of European tree species leads to a strong overestimation of the simulated biomass damage15
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Figure 4. Biomass (RB) and NPP (RN) dose-response relationships of simulations with young (tunyoung
V C ) and mature trees (tunmature

V C )
separate for a,c) Broadleaf species, and b,d) Needleleaf species.

compared to the observations used in this study. The problem of using such damage parameterisations based on short-term

experiments of ozone-sensitive species is further highlighted when applying them in simulations of multiple season fumiga-

tion experiments and/or high ozone concentrations. Under such conditions, fumigation with high O3 concentrations can lead

to lethal doses, which might not be observed in field experiments due to restricted experiment lengths. Previous studies have

suggested that in large areas of Europe, the Eastern US and South-East Asia average growing season values of CUOY for5

recent years range between 10-100 mmol O3 m−2 (Lombardozzi et al., 2015; Franz et al., 2017). The damage relationships

L12PS and L12V C by Lombardozzi et al. (2012a) assume a 100% damage to net photosynthesis or Vcmax at accumulation

values of about 5 mmol O3 m−2. This would imply that in these large geographic regions, photosynthesis would have been

completely impaired by ozone, which is clearly not the case. This result highlights the need for a representative set of species

for the development of damage functions for large-scale biosphere models. Overall, our results suggests that the estimates of10

global GPP reduction as a result of ozone pollution by Lombardozzi et al. (2012a) are strongly overestimated.

Meta-analyses (Wittig et al., 2007; Lombardozzi et al., 2013) are designed to minimise the effect of species-specific ozone

sensitivities and provide estimates of the average species response. However, we found that the relationships derived by these

meta-analyses substantially underestimate biomass damage. Technically, the reasons for this are a weak or non-existent in-

crease of the ozone damage with increased ozone uptake (shallow or non-existent slopes) and/or high ozone damage at zero15
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accumulated ozone uptake (intercept lower than one). Apparently, the diversity of species responses and experimental settings

that are assembled in the meta-analyses by Wittig et al. (2007) and Lombardozzi et al. (2013), together with uncertainties

in precisely estimating accumulated ozone uptake in these databases preclude the identification of damage functions that are

consistent with the damage estimates by Büker et al. (2015). The high intercepts in the meta-analyses by Wittig et al. (2007)

and Lombardozzi et al. (2013), which assume a considerable damage fraction even when no ozone is taken up at all, seem to5

be ecologically illogical and suggest that an alternative approach is necessary to simulate ozone damage. As a consequence of

these points, the Europe-wide GPP reduction estimates by Franz et al. (2017), which has been based on the damage function by

Wittig et al. (2007), may substantially underestimate actual GPP reduction. Similarly, global estimates as well as spatial vari-

ability of ozone damage to GPP by Lombardozzi et al. (2015), based on Lombardozzi et al. (2013), are virtually independent

of actual ozone concentrations or uptake for all tree plant functional types and should be interpreted with caution.10

A crucial aspect in forming dose-response relationships is the calculation of the accumulated ozone uptake (e.g. PODy or

CUOY ). The calculation of accumulated ozone uptake is realised in different ways in the meta-analyses and the study by Büker

et al. (2015) as well as in our approach here. Experiments synthesised in the meta-analyses generally do not have access to

stomatal conductance values at high resolution measured throughout the experiment, which impedes precise determination of

O3 uptake. The uncertainty in the necessary approximations of accumulated ozone uptake can be assumed to be considerable,15

and it is thus highly recommendable to measure and report required observations in future ozone fumigation experiments.

Büker et al. (2015) use the DO3SE model to simulate ozone uptake and accumulation similar as done in our model here. These

modelled values for ozone uptake and accumulation can assumed to be more reliable since both models simulate processes that

determine ozone uptake continuously for the entire experiment length at high temporal resolution. They account for diurnal

changes in stomatal conductance as well as climate factors restricting stomatal conductance and hence ozone uptake. However,20

both models vary in their complexity of the simulated plants, carbon assimilation, and growth processes, which will also impact

the estimate of ozone accumulation.

The meta-analyses do not account for non-stomatal ozone deposition (e.g. to the leaf cuticle or soil), which imposes a bias

towards overestimating ozone uptake and accumulation contrary to the DO3SE model used by Büker et al. (2015), which

accounts for this. The O-CN model in principle can simulate non-stomatal ozone deposition from the free atmosphere to25

ground level (see Franz et al. (2017)). The leaf boundary layer is implicitly included into the calculation of the aerodynamic

resistance of O-CN and included in Franz et al. (2017). However, for the simulation of the chamber experiments we used the

observed chamber O3 concentrations, rather than estimating the canopy-level O3 concentration based on the free atmosphere

(approximately 45 m above the surface) and atmospheric turbulence. This required not accounting for aerodynamic resistance

and therefore the leaf-boundary layer resistance as well as it prevented the calculation of the non-stomatal deposition, which30

may lead to a slight overestimation of ozone uptake and accumulation in our simulations.

The calibration of damage functions to net photosynthesis and Vcmax shows that in principle, the linear structure of Eq.

4 is sufficient to simulate biomass dose-response relationships comparable to Büker et al. (2015) in O-CN. An advantage

of the damage functions derived here compared to previously published damage functions (Wittig et al., 2007; Lombardozzi

et al., 2012a, 2013) is the intercept of one, implying that simulated ozone damage is zero at zero accumulated O3 and steadily35
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increases with increased ozone accumulation. The flux threshold used in the simulations is 1 nmolm−2(leaf area)s−1 as sug-

gested by the LRTAP-Convention (2017). Since the tuned damage functions are structurally identical to previously published

damage functions based on accumulated ozone uptake they can be directly compared to them. Slopes of the tuned damage

functions lie in between the values proposed by Wittig et al. (2007) and Lombardozzi et al. (2012a) and thus take values in an

expected range. We did not find any significant difference in simulated biomass responses between the use of net photosynthesis5

or leaf-specific photosynthetic capacity (Vcmax) as a target for the ozone damage function, although we do note that the slopes

were slightly lower for the net photosynthesis based functions. The simulation of ozone effects on leaf-specific photosynthetic

capacity (Vcmax) seems preferable over the adjustment of net photosynthesis, because Vcmax and Jmax are parameters in the

calculation of net photosynthesis, and thus are likely easier transferable between models. Models with different approaches to

simulate net photosynthesis might obtain better comparable results by using damage relationships that target Vcmax instead of10

net photosynthesis.

All damage functions included into the O-CN model base damage calculations on the damage index CUOY (canopy value)

rather than PODy, as used by some other models, e.g. the DO3SE model (Emberson et al., 2000). We tested the effect of basing

the damage calculation on POD1 rather than CUO1, and found that these produced comparable biomass dose-response

relationships as the damage relationships based on CUO1 presented in Fig. 3 (results not shown). The slopes of damage15

functions based on POD1 are approximately two thirds and half compared to the slopes based on CUO1 for broadleaved

and needle-leaved species respectively. The difference in the slope values associated with POD1 and CUO1 results from

the different calculation and application of them. The POD1 is calculated in the top canopy layer and the respective damage

fraction is applied for all canopy layers, the CUOY though is calculated separately in each canopy layer as well as the

respective damage fraction. Higher frequency data on the ozone damage incurred by plants are required to disentangle whether20

an ozone damage parameterisation based on instantaneous or accumulated ozone uptake results in more accurate simulation of

the seasonal effects and more analysis of the differential effect of ozone damage within deep canopies are required to evaluate

whether the scaling of top-of-the-canopy damage to whole canopy damage is appropriate.

Further aspects that determine ozone sensitivity and damage to carbon gain of plants like leaf morphology (Calatayud

et al., 2011; Bussotti, 2008), different sensitivity of sunlit and shaded leafs (Tjoelker et al., 1995; Wieser et al., 2002), early25

senescence (Gielen et al., 2007; Ainsworth et al., 2012) and costs for detoxification of ozone and/or repair of ozone damage

that likely increases the plant’s respiration costs (Dizengremel, 2001; Wieser and Matyssek, 2007) are not considered by either

approach. Marzuoli et al. (2016) observed an ozone induced reduction of biomass but no significant reduction in physiological

parameters like Vcmax. They suggest that the reduced growth is caused by higher energy investments and reducing power for

the detoxification of ozone whereas the photosynthetic apparatus remained undamaged (Marzuoli et al., 2016).30

Some studies have found that ozone-affected stomata respond much slower to environmental stimuli than unaffected cells

(Paoletti and Grulke, 2005), which can delay closure and trigger, stomatal sluggishness, an uncoupling of stomatal conductance

and photosynthesis (Reich, 1987; Tjoelker et al., 1995; Lombardozzi et al., 2012b) and thus impact transpiration rates (Mills

et al., 2009; Paoletti and Grulke, 2010; Lombardozzi et al., 2012b) and the plant’s water use efficiency (Wittig et al., 2007;

Mills et al., 2009; Lombardozzi et al., 2012b). The O-CN model is able to directly impair stomatal conductance, by uncoupling35
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damage to net photosynthesis from the subsequent damage to stomatal conductance. In this version of the O-CN model both

net photosynthesis and stomatal conductance can directly be damaged by individual damage functions. The simulation of this

kind of direct damage to stomatal conductance additional to the damage of net photosynthesis, both according to the damage

functions by (Lombardozzi et al., 2013), have a negligible impact on biomass production compared to not accounting for direct

damage to the stomata (results not shown). However, our above mentioned concerns regarding the structure of the damage5

relationships by Lombardozzi et al. (2013) should be taken into account when considering this result.

A key challenge for the use of fumigation experiments to parameterise ozone-damage in models is that trees (as opposed to

grasses fumigated from seeds) typically possess a certain amount of biomass at the beginning of the fumigation experiment.

Even at lethal ozone doses, the relative biomass thus can not decline to zero, and tree death may occur at values of a relative

biomass greater than zero. The relative biomass is positive even if carbon fixation is fully reduced and the plants survive due to10

the use of stored carbon. The higher the initial biomass and the slower the annual biomass growth rate of the tree is, the harder

it is to obtain low values of RB. When comparing RB values obtained from trees with substantial different initial biomass

and tree species with different growth rates proportionate damage rates thus can not directly be inferred. This indicates that

the explanatory value of the relative biomass between a control and a treatment to estimate long-term plant damage at a given

O3 concentration is limited. This is particularly the case when evaluating the damage of more mature forests. The simulated15

biomass dose-response relationships of adult trees are much more shallow than dose-response relationships of young trees

(see Fig. 4), because of the high initial biomass prior to fumigation. This suggests that the use of biomass damage functions

derived from experiments with young trees to parameterise the biomass loss of adult trees, as done in Sitch et al. (2007), will

likely lead to an overestimation of plant damage and loss of carbon storage. Dose-response relationships based on biomass

increments or growth rates might be better transferable between saplings and mature trees and hence better suitable to be used20

for parameterising global terrestrial biosphere models.

Our approach to overcome this challenge was to alter the vegetation model to simulate the ozone damage of small trees,

where we could directly compare simulated biomass reductions to observations. Since we used damage relationships that are

based on the calculation of leaf-level photosynthesis, we are able to apply the calibrated model also for mature stands. Our

simulations have demonstrated that despite the different sizes of young and mature trees, and associated changes in the wood25

growth rate and the available amount of non-structural carbon reserves to repair incurred damage, the simulated effect of

ozone on the net annual biomass production (NPP) was very similar, when using a damage function associated with leaf-level

photosynthesis. Overall our findings support the idea that the photosynthesis-based damage relationships developed here and

evaluated against fumigation experiments of young trees, might be useful to estimate effect on forest production of older trees.

Monitoring approaches that are either capable of measuring the actual increment of biomass, or quantify at the leaf and canopy30

level the change in net photosynthesis over the growing season, would allow to develop damage estimates that could be more

readily translated into modelling frameworks.

Terrestrial biosphere models in general assume that plant growth is primarily determined by carbon uptake. However, an

alternative concept proposes that plant growth is more limited by direct environmental controls (temperature, water and nutrient

availability) than by carbon uptake and photosynthesis (Fatichi et al., 2014). The O-CN model provides a first step into this35
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direction because it separates the step of carbon acquisition from biomass production, both in terms of a non-structural carbon

buffer, as well as a stoichiometric nutrient limitation on growth independent of the current photosynthetic rate. This would in

principle allow to account for ozone effects on the carbon sink dynamics within plants. However, it is not clear that data readily

exist to parameterise such effects. Given the availability of suitable data to parameterise a large scale model, ozone damage

might be better simulated by targeting biomass growth rates or processes that limit these e.g. stomatal conductance, which5

impacts the plants water balance compared to our approach here, which targets net photosynthesis.

All in all a multitude of aspects that impact ozone damage to plants is not yet incorporated into global terrestrial biosphere

models. The ongoing discussion which processes are major drivers for observed damages, how they interact and impact differ-

ent species and plant types plus the lack of suitable data needed to parameterise a global model are reasons why the simulation

of ozone damage up to now focuses only on a few aspects where suitable data are available as presented in our study.10

5 Conclusion

The inclusion of previously published dose-response relationships into the terrestrial biosphere model O-CN led to a strong

over- or underestimation of simulated biomass damage compared to the biomass dose-response relationship by Büker et al.

(2015). Dose-response relationships which are used as damage functions in terrestrial biosphere models are a key aspect in the

simulation of ozone damage and have a great impact on the estimated damage. The calibration of damage functions performed15

in this study provide the advantage to calculate ozone damage close to where the actual physiological damage might occur

(photosynthetic apparatus) and simultaneously reproduce observed biomass damage relationships for a range of European

forest species used by Büker et al. (2015). The inclusion of these damage functions into models that estimate regional or global

ozone damage might improve damage estimates compared to previously published damage functions and might lead to better

estimates of terrestrial carbon sequestration. The comparison of simulated biomass dose-response relationships of young and20

mature trees shows strongly different slopes. This suggests that observed biomass damage relationships from young trees might

not be suitable to estimate biomass damage of mature trees. The comparison of simulated NPP dose-response relationships of

young and mature trees show similar relationships and suggests that they might more readily be transferred between trees

differing in age.
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Table A.1. Original and adapted values of the nitrogen spe-
cific photosynthetic capacity of a leaf (npl) for three out
of four different O-CN versions (ID) including published
damage functions. The intercept of the fourth O-CN version
(L12V C ) is very close to one and simulations produce com-
parable LAI values without an adaption of npl.

ID PFT npl original npl adapted

W07PS Broadleaf 1.50 1.60

W07PS Needleleaf 0.75 0.80

L12PS Broadleaf 1.50 1.45

L12PS Needleleaf 0.75 0.70

L13PS Broadleaf 1.50 1.75

L13PS Needleleaf 0.75 0.90
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Table A.2. List of fumigation experiments used by Büker et al. (2015) and simulated here.

Site Longitude Latitude Species O3 treatment Fumigation

[◦E] [◦N] start year [yrs]

Östad (S) 12.4 57.9 Betula pendula 1997 2

Birmensdorf (CH) 8.45 47.36 Betula pendula 1989 1

Birmensdorf (CH) 8.45 47.36 Betula pendula 1990 1

Birmensdorf (CH) 8.45 47.36 Betula pendula 1992 1

Birmensdorf (CH) 8.45 47.36 Betula pendula 1993 1

Kuopio (FIN) 27.58 62.21 Betula pendula 1994 2

Kuopio (FIN) 27.58 62.21 Betula pendula 1996 3

Kuopio (FIN) 27.58 62.21 Betula pendula 1994 5

Schönenbuch (CH) 7.5 47.54 Fagus sylvatica 1991 2

Zugerberg (CH) 8.54 47.15 Fagus sylvatica 1987 2

Zugerberg (CH) 8.54 47.15 Fagus sylvatica 1989 3

Zugerberg (CH) 8.54 47.15 Fagus sylvatica 1991 2

Curno (I) 9.03 46.17 Populus spec. 2005 1

Grignon (F) 1.95 48.83 Populus spec. 2008 1

Ebro Delta (SP) 0.5 40.75 Quercus ilex 1998 3

Col-du-Donon (F) 7.08 48.48 Quercus robur or petraea 1999 2

Headley (U.K.) -0.75 52.13 Quercus robur or petraea 1997 2

Ebro Delta (SP) 0.5 40.75 Pinus halepensis 1993 4

Col-du-Donon (F) 7.08 48.48 Pinus halepensis 1997 2

Schönenbuch (CH) 7.5 47.54 Picea abies 1991 2

Zugerberg (CH) 8.54 47.15 Picea abies 1991 2

Östad (S) 12.4 57.9 Picea abies 1992 5

Headley (U.K.) -0.75 52.13 Pinus sylvestris 1995 2
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Table A.3. Slopes and intercepts of biomass dose-response re-
lationships for broadleaved species simulated by O-CN ver-
sions based on published damage functions to net photosyn-
thesis or Vcmax (see Tab. 1). BSI and BST represent the simple
and standard model of Büker et al. (2015).

ID Intercept (a) Slope (b) R2 p-value

BSI 0.99 0.0082 0.34 <0.001

BST 0.99 0.0098 0.38 <0.001

W07PS 1 0.00045 0.93 1e-24

L12PS 1 0.0142 0.77 2e-14

L15PS 1 0.0000 NaN NaN

L12V C 1 0.0120 0.80 1.9e-15
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Table A.4. Slopes and intercepts of biomass dose-response re-
lationships for needle-leaved species simulated by O-CN ver-
sions based on published damage functions to net photosynthe-
sis or Vcmax (see Tab. 1). BSI and BST represent the simple
and standard model by Büker et al. (2015).

ID Intercept (a) Slope (b) R2 p-value

BSI 1 0.0038 0.46 <0.001

BST 1 0.0042 0.52 <0.001

W07PS 1 0.00058 0.93 1.5e-09

L12PS 1 0.0119 0.83 9.4e-07

L15PS 1 0.0000 NaN NaN

L12V C 1 0.0096 0.85 3.5e-07
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Table A.5. Slopes and intercepts of biomass dose-response
relationships for broadleaved species simulated by O-CN ver-
sions based on tuned damage functions to net photosynthesis
or Vcmax (see Tab. 1). BSI and BST represent the simple and
standard model by Büker et al. (2015).

ID Intercept (a) Slope (b) R2 p-value

BSI 0.99 0.0082 0.34 <0.001

BST 0.99 0.0098 0.38 <0.001

tunPS 1 0.0093 0.94 1.4e-26

tunV C 1 0.0091 0.93 5e-25
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Table A.6. Slopes and intercepts of biomass dose-response
relationships for needle-leaved species simulated by O-CN
versions based on tuned damage functions to net photosynthe-
sis or Vcmax (see Tab. 1). BSI and BST represent the simple
and standard model by Büker et al. (2015).

ID Intercept (a) Slope (b) R2 p-value

BSI 1 0.0038 0.46 <0.001

BST 1 0.0042 0.52 <0.001

tunPS 1 0.0039 0.94 4.8e-10

tunV C 1 0.0042 0.93 2.2e-09
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