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Research Highlights: 

• We demonstrate for the first time that children as young as four years are susceptible 

to temporal binding. 

• Temporal binding in children appears to be grounded in causal knowledge rather than 

intentional action. 

• The early-developing bidirectional relation between time and causation may be a 

useful heuristic that helps young children learn causal relationships. 

 

Abstract 

It is well-established that the temporal proximity of two events is a fundamental cue to 

causality. Recent research with adults has shown that this relation is bidirectional: events that 

are believed to be causally related are perceived as occurring closer together in time—the so-

called temporal binding effect. Here we examined the developmental origins of temporal 

binding. Participants predicted when an event that was either caused by a button press, or 

preceded by a non-causal signal, would occur. We demonstrate for the first time that children 

as young as four years are susceptible to temporal binding. Binding occurred both when the 

button press was executed via intentional action, and when a machine caused it. These results 

suggest binding is a fundamental, early developing property of perception and grounded in 

causal knowledge.  

 

Keywords: Causal binding, Causality, Intentional action, Temporal binding, Temporal 

contiguity, Time perception 

 

 

 



 

Introduction 

Causal beliefs ground our understanding of the world: they allow us to explain our 

observations and make predictions. Hume (1888) made temporal contiguity—the closeness of 

two events in time—part of his definition of causation, and psychologists showed that this is 

indeed a fundamental cue in causal inference (Dickinson, 2001; Shanks, Pearson & 

Dickinson, 1989; Buehner & May, 2002, 2003). However, recent research suggests that the 

relation between time and causation is more complex than the Humean view suggests. Not 

only does the timing of events influence causal beliefs, but causal beliefs themselves also 

affect our perception of the timing of events. Thus, events that we believe are causally related 

are perceived as occurring closer together in time (Buehner, 2012; Buehner & Humphreys, 

2009; Haggard, Clark, & Kalogeras, 2002; Moore & Obhi, 2012).  

 This temporal binding effect is robust and has been demonstrated in adults using a 

variety of paradigms (e.g., Desantis, Hughes & Waszak, 2012; Engbert & Wohlschläger, 

2007; Nolden, Haering & Kiesel, 2012). It is seen as a generalized consequence of causal 

beliefs, rather than as occurring only in the context of intentional actions: temporal binding 

occurs for voluntary and involuntary (Dogge, Schaap, Custers, Wegner, Aarts, 2012; 

Buehner, 2015) as well as mechanical causal actions (Buehner, 2012), and is moderated by 

the contingency between events (Moore, Lagnado, Deal, & Haggard, 2009).  

The phenomenon of temporal binding sheds new light on the relation between time 

and causation in adults, but we know very little about its developmental origins. Is children’s 

experience of time similarly influenced by their causal knowledge? Young children’s causal 

beliefs are strongly affected by temporal information, including temporal order (Bullock & 

Gelman, 1979; Rankin & McCormack, 2013; Rottman, Kominsky & Keil, 2013) and 

temporal contiguity (Mendelson & Schultz, 1976; Schlottmann, 1999). Perhaps the 



 

bidirectional relationship between time and causality is a fundamental invariant property of 

our perceptual and cognitive system, in which case we would expect binding to be present 

from early childhood. There appears to be a privileged relation between time and causation in 

children: children prioritize temporal information over other types of cues such as statistical 

information (McCormack, Frosch, Patrick, & Lagnado, 2015) and knowledge of causal 

mechanisms (Schlottmann, 1999), suggesting that the use of temporal information to infer 

causality may be automatic and developmentally basic (Schlottmann, Allen, Linderoth, & 

Hesketh, 2002). It is thus possible that the close relation between time and causation seen in 

childhood works both ways: that children not only rely heavily on temporal cues in forming 

causal beliefs, but that such beliefs also affect their perception of time. 

Despite the intuitive plausibility of the claim that children are susceptible to binding, 

the only two developmental studies that have investigated it seem to provide evidence against 

it. Cavazzana et al. (2014, 2017) found that 8- to 11-year-olds did not show temporal binding. 

This suggests a very different hypothesis: that binding emerges late. Perhaps temporal 

binding requires sustained experience of interacting with causal events, or perhaps this sort of 

top-down process requires late-developing cognitive resources. To decide between these 

hypotheses, we designed a new task that was much simpler than that used by Cavazzana et 

al., and thus could be used even with young children.  

Experiment 1 

Participants completed a stimulus anticipation task adapted from previous research 

with adults (Buehner, 2012). There were two conditions, causal and non-causal, which were 

each run with two target intervals (900 and 1300 ms, to give the impression of different tasks; 

Figure S1a). Children anticipated when a rocket or a jack-in-a-box would launch by trying to 

launch a matching stimulus at the same time (see Figures 1 and 2). In the causal condition, 



 

launching occurred at a fixed delay after participants’ button press; in the non-causal 

condition launching occurred after an arbitrary warning signal. Thus, while the interval 

between the initial event (button press or warning signal) and the stimulus launch was 

identical in both conditions, the events were causally linked in the causal condition only. If 

temporal binding is present, participants should underestimate the interval between the two 

events in the causal condition relative to the non-causal condition, reflecting their subjective 

impression that the stimulus launch occurred earlier when it was caused than when the two 

events were not causally related. 

Method  

Participants 

One-hundred and seventy-two children, recruited from schools (N = 92) and a science 

museum (N = 80) participated. We split these into four age groups: 36 four- to five-year-olds 

(Mage: 4.53 years; 21 females), 55 six- to seven-year-olds (Mage: 6.38 years; 26 females), 46 

eight- to nine-year-olds (Mage: 8.65 years; 25 females), and 34 ten- to eleven-year-olds (Mage: 

10.56 years; 19 females). An additional eleven children were excluded due to poor 

concentration (N = 4), because they did not understand the task instructions (N = 3), or due to 

technical issues (N = 4).  

Materials  

The experiment was conducted on a laptop with a screen refresh rate of 60 Hz running 

E-Prime 2.0 (Psychology software tools, Pittsburgh, PA). Participants responded using two 

buttons (green and yellow on the left/right) on a response box. The initial stimuli were an on-

screen depiction of a jack-in-a-box (JIAB) and a rocket standing in a gantry; the target stimuli 

were the jack popped from its box and the rocket launched from the gantry (see Figures 1 and 

2). In addition, there were matching stimuli on the right of the screen, used to elicit 



 

participants’ anticipation of the target outcome. These were mirrored versions of the jack or 

rocket in the initial training phase, but were obscured by an on-screen curtain or clouds in the 

experimental phase. In the causal condition, the target stimulus had a depiction of a green 

button attached to it. This illuminated when the participant pressed the green button on the 

response box and was accompanied by a 200ms tone. In the non-causal condition, the target 

had a blue light attached to the centre of the box or gantry which illuminated when the 

warning cue was initiated along with a 200ms tone. When the target stimulus launched this 

was also accompanied by a 200ms sound. The color of the stimuli changed when the time 

interval changed (from 2000ms in the practice phase to 900ms to 1300ms in the experimental 

phases; see below) to highlight that these were different versions of the stimulus and so could 

launch at different times.  

Design & Procedure 

Participants’ task was to launch an identical stimulus at exactly the same time as the 

target stimulus. Two factors were manipulated: 1) whether the target’s launch was preceded 

by a causal action (button press) or a non-causal signal; and 2) the delay between the causal 

action/non-causal signal and the target stimulus’ launch (900ms or 1300ms, following 

previous work with adults, e.g. Buehner, 2012).  Participants completed four 20 trial 

experimental blocks: one causal and one non-causal for each of the two delays (Figure S1a). 

On causal trials, participants had to press the green button to produce the target launch; on 

non-causal trials, participants had to monitor the screen for the warning cue preceding the 

target launch. In causal trials, participants pressed the green button when they were ready; in 

non-causal trials, the warning cue occurred at a variable interval between 2300ms and 

2800ms after trial intialization. On causal trials, participants’ button press immediately 

triggered a 200ms beep; in addition, the on-screen representation of a green button 

illuminated for 200ms. On non-causal trials, the warning cue consisted of a 200ms beep and 



 

an on-screen illumination of a blue light mounted on either the rocket gantry or the JIAB for 

200ms. This was done to keep the audio-visual experience of causal and non-causal trials as 

similar as possible.  Following a set interval of 900ms or 1300ms after the causal action or 

non-causal signal, the target stimulus launched accompanied by a 200ms sound (either a 

rocket launch sound or a “boing” sound). Participants’ task was to anticipate the target’s 

appearance by pressing the yellow button on the response box to launch a matching stimulus 

so that it appeared at exactly the same time. The matching stimulus always appeared 

immediately upon pressing the yellow button. The dependent variable was participant’s 

judgment error – the time they launched the matching stimulus relative to the actual 

appearance of the target stimulus.   

Each condition had a demonstration phase (4 trials), a practice phase (to criterion of 3 

trials correct), and two experimental phases (20 trials for each time interval; Figure S1a). In 

the demonstration phase, the matching stimulus appeared on its own and participants 

launched it four times using the yellow button, demonstrating that the matching stimulus 

launched immediately upon button press. In the practice phase, participants were introduced 

to the target stimulus, and they practiced launching the matching stimulus at the same time as 

the target stimulus. In this phase, the target stimulus launched after 2000ms (so the intervals 

experienced in the test trials were novel) after the participants’ first button press (causal 

trials) or the warning cue (non-causal trials). Participants were told that their task was to 

ensure that the faster matching stimulus launched at the same time as the slower target 

stimulus; there was a cover story according to which the jacks wanted to jump out at the same 

time/the astronauts in the rockets wanted to launch at the same time because they were 

friends. In the causal condition they were then told: “You press the green button here to make 

this jack-in-a-box/rocket start to get ready to pop, wait just a little while, and then you press 

the yellow button here at exactly the time you think the first jack/rocket will appear. Try not 



 

to press the yellow button too early or too late, you want both jacks/rockets to pop out at the 

same time. If you manage to make them pop out at the same time, you will get a point and a 

smiley face will appear on the screen.”  Instructions for the non-causal condition were the 

same but participants were told that a light would come on and a sound play (the warning 

signal) when the jack/rocket on the left-hand side of the screen was getting ready to launch. 

Participants had to get three trials in a row correct (defined as launching the matching 

stimulus within a 1000ms window centred on the target launch time) to proceed to the 

experimental phase. A smiley face appeared each time they got a correct response; this 

feedback was only provided during practice.  

In the experimental phase, participants were told that there were different colored 

rockets/jacks in each block, and that these took slightly different amounts of time to launch. 

Also, the matching stimulus was covered up with either an on-screen curtain (for the JIAB) or 

a blue cloud (for the rocket). This was to ensure that participants had no visual feedback 

about whether their launch coincided with the target stimulus. Three factors were 

counterbalanced between participants: 1) condition order; 2) assignment of rocket and JIAB 

to the two conditions; and 3) order of intervals within each condition.  

Results  

Judgment errors (JEs) were calculated by subtracting the time the target occurred 

from the prediction response time; negative and positive scores reflect early and late 

prediction of the target event, respectively.  Each participant contributed one median JE per 

condition to the analysis (see Buehner 2012 for a similar approach), calculated from their last 

10 trials in a block. Response times that were <200ms or >2000ms were removed, resulting 

in the loss of 3.7% of trials (the number of trials excluded did not differ significantly between 

conditions, see Table S1 and accompanying text). Preliminary analyses of JEs found no 



 

effects of gender, condition order or stimulus assignment and no significant interactions; 

these factors were not analysed further. 

A 4 (age group) x 2 (time interval) x 2 (causality: causal or non-causal) mixed 

ANOVA showed that JEs were more anticipatory in the causal (M = -154.2ms) than the non-

causal condition (M = -66.8ms), F(1, 167) = 31.43, p < .001, = .16 (Mdiff = 87.44; 95% CI 

[56.65, 118.24], Figure 3). JEs were also more anticipatory at 1300ms (M = -156.0ms) than at 

900ms (M = -64.9ms), F(1, 167) = 58.29, p < .001, = .26 (Mdiff = 91.08; 95% CI [67.53, 

114.64]). There was also a main effect of age group (F(3, 167) = 5.12, p = .002, = .08), 

with 4- to 5-year-olds showing more anticipatory responses than all other age groups 

(posthoc pairwise comparisons, ps < 0.005). These main effects were qualified by an interval 

by age group interaction, (F(3, 167) = 11.07, p <. 001, =.17). Simple effect analyses 

revealed that JEs were significantly more anticipatory at 1300ms than 900ms for the three 

youngest age groups (ps < .017) but not 10- to 11-year-olds (p = .147). 

To examine whether binding magnitude changed developmentally, we calculated 

binding scores by subtracting participants’ JEs in the causal from JEs in the non-causal 

condition for each interval (Figure 4). A 4 (age group) x 2 (interval) mixed ANOVA revealed 

no significant effects of age group (F(3, 167) = 1.60, p = .192,  = .03) or interval (F(1, 

167) = 0.70, p = .792,  = .00)  on binding score, and no interaction (p = .937).  

Discussion 

The results suggest that causal beliefs do shape children’s experience of time: 4- to 

11-year-olds predicted an event would occur earlier when it resulted from a prior causal 

action (button press) compared to when it merely followed a predictive signal. This is the first 

evidence that temporal binding is present in children as young as four years. Our findings 
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contrast with those of Cavazzana et al. (2014, 2017) in suggesting that the relation between 

time and causality is bidirectional early in development.  

While we aimed to make the conditions of Experiment 1 as similar as possible in 

terms of surface-level features, the fact that participants executed the initial button press in 

the causal condition introduced some potential confounds. First, the two conditions differed 

with respect to the attentional and motor demands: specifically, the causal condition required 

participants to plan and execute two motor actions rather than one, and the fact that only the 

causal trials were self-initiated could have meant that children were more attentive in this 

condition. In addition, the results of Experiment 1 do not allow us to establish whether 

temporal binding in children is driven by the causal relation between events (as has been in 

adults, Buehner, 2012; Buehner & Humpreys, 2009), or whether intentional action is critical, 

as these factors were confounded in the causal condition. It is also possible that causality is 

sufficient for binding to occur in children but intentionality modulates the effect: there is 

some evidence that binding in adults is stronger when the cause is one’s own intentional 

action (Buehner, 2012) although this has not been consistently demonstrated (Poonian, 

McFadyen, Ogden, & Cunnington, 2015). There is also evidence to suggest that children’s 

actions have a special status in causal learning (Kushnir & Gopnik, 2005; Meltzoff, 

Waismeyer & Gopnik, 2012), though there are also cases that suggest no advantage for 

learning on the basis of one’s own actions (McCormack et al., 2016). Thus, while we predict 

that causality will be sufficient for binding to occur in children, it is unclear whether temporal 

binding is expected to be stronger in children when the cause is their own action.  

Experiment 2 aimed to (1) replicate the binding effect in children; (2) rule out that 

differences in attention and motor demands might explain our Experiment 1 results; and (3) 

tease apart the relative contributions of causality and intentional action to the temporal 

binding effect. 



 

Experiment 2 

We used the same task, but introduced a third machine-causal condition, where a non-

intentional machine pressed the button to launch the stimulus. Thus, there were three 

conditions (non-causal, self-causal and machine-causal), each run with a single target 

interval of 900 ms (Figure S1b).  If attention and motor demands drove what looked like a 

binding effect in Experiment 1, then in Experiment 2 JEs should be comparable in the non-

causal and machine-causal conditions, given that both conditions only involve performing a 

single action and neither of these trial-types is self-initiated. With regards to disentangling the 

contributions of causality and intentionality: if binding results from a causal connection 

between action and outcome, it should persist when the initiating action (button press) is not 

intentional in nature, and this would be reflected by more anticipatory JEs in the machine-

causal and self-causal conditions than the non-causal condition. If, on the other hand, 

intentionality is the critical component, binding should only be seen in the self-causal 

condition. Finally, if causality is sufficient for binding but intentionality modulates the effect, 

then we should find binding in both conditions, but it should be stronger in the self-causal 

than in the machine-causal condition. 

Method  

Participants 

Ninety-six children from schools (N =77) and a science museum (N = 19) 

participated: 29 four- to five-year-olds (Mage: 5.00 years; 16 females), 34 six- to seven-year-

olds (Mage: 6.86 years; 23 females) and 33 eight- to nine-year-olds (Mage: 8.99 years; 22 

females). An additional eight children were excluded due to poor concentration (N = 2), 

because they did not understand the task instructions (N = 4), or due to technical issues (N = 

2).  

Materials 



 

The materials used were identical to those in Experiment 1, with the following 

exceptions. The stimuli consisted only of different colored rockets and the interval in the 

experimental phases was always 900ms. A custom-built machine with a timer, red button, 

and protruding lever (see Buehner, 2012, for details) was used in the machine-causal 

condition. 

Design and procedure 

The design and procedure were similar to that used in Experiment 1, with the 

following exceptions. As the interval was always 900ms, the only factor manipulated was the 

event that preceded the rocket launch. There was an additional machine-causal condition, in 

which the button was pressed by a machine that was physically separate from the rest of the 

apparatus. Participants completed three blocks of 20 trials (in a counterbalanced order): one 

self-causal, one machine-causal and one non-causal. At the start of the machine-causal block, 

participants were introduced to the machine. They were told that once the machine was 

started by the experimenter pressing the red button, this started the timer running, and every 

2-5s the lever would drop down. This was demonstrated to the participant before aligning the 

machine with the response box. During the machine-causal trials, the machine was positioned 

adjacent to the left-hand-side of the response box, and every 2-5s the lever dropped down, 

which pressed the green button to produce the target launch. As in Buehner (2012) the lever 

was actually triggered via the experimenter surreptitiously pressing a remote hidden in her 

pocket. In all conditions, participants had to anticipate the target’s appearance by pressing the 

yellow button to launch the matching stimulus at exactly the same time. 

Results  

2.8% of trials were removed as outliers from the last 10 trials of the block. The 

number of trials excluded did not differ significantly between conditions (see Table S1 and 

accompanying text). Preliminary analyses showed that there were no significant effects of 



 

gender or condition order on JEs. There was however a significant interaction between 

condition order and condition (F(4, 156) = 5.0, p = .001,  = .114; Figure S2), so condition 

order was included in subsequent analyses. 

A 3 (age group) x 2 (causality: self-causal, machine-causal, or non-causal) x 3 

(condition order) mixed ANOVA revealed a significant effect of causality on participants’ 

JEs (F(2, 174) = 10.00, p < .001,  = .10). Participants were most anticipatory in the self-

causal condition (M = -69.52ms), least anticipatory in the non-causal condition (M = 

11.49ms), with JEs for the machine-causal condition falling in between (M = -43.45ms; 

Figure 5).  

Posthoc pairwise comparisons revealed a significant difference between JEs in the 

self-causal and non-causal conditions (p < .001; Mdiff = 81.01; 95% CI [47.35, 114.67]), as 

well as between the machine-causal and non-causal conditions (p = .006; Mdiff = 54.94; 95% 

CI [16.10, 93.78]). JEs did not differ significantly between the two causal conditions (self-

causal and machine-causal; p = 0.171). The ANOVA also revealed a significant main effect 

of age group (F(1, 87) = 9.07, p < .001, = .17), with 4- to 5-year olds being significantly 

more anticipatory than the other age groups (ps < .005). The interaction between age group 

and causality was not significant (p = .706). 

To examine whether the magnitude of binding varied developmentally, we ran a 3 

(age group) x 2 (binding type: self or machine) x 3 (condition order) mixed ANOVA on 

participants’ binding scores (Figure 4b). We found no significant effect of age group (F(1, 

87) = .62, p = .539, = .01) or binding type (F(1, 87) = 1.90, p = .171, = .02; Figure 4).   

Discussion 

Experiment 2 replicated the temporal binding effect in children, as well as the lack of 

any developmental change in strength of binding. The results also rule out the possibility that 
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differences in attention and motor demands alone could have driven binding in Experiment 1. 

If this were the case we would have expected comparable JEs for the non-causal and 

machine-causal conditions of Experiment 2, as both conditions required children to execute a 

single key press. But JEs were significantly more anticipatory in the latter condition. 

The fact that children show temporal binding when the cause was a non-intentional 

machine supports the notion that it is a causal connection rather than intentional action that is 

necessary for binding to occur in children, as has been shown for adults (Buehner, 2012). 

This conclusion is corroborated by the fact that binding magnitude did not differ significantly 

if the button was pressed by the participant or by the machine. However, given that machine-

causal JEs were intermediate between non-causal and self-causal JEs, further exploration of 

the possibility that binding in children is modulated by intentional action is warranted. 

General Discussion 

We examined whether children’s causal beliefs shape their temporal experience. In 

contrast to Cavazanna et al. (2014, 2017), who argued that binding is late-developing and not 

present in 8- to 11-year-olds, the two experiments reported here provide evidence of temporal 

binding in children from four years of age. Specifically, young children predicted that a target 

event would occur earlier if it was causally connected to a preceding event, compared to 

when it was preceded by an arbitrary predictive signal. Furthermore, our results suggest that 

binding occurs both if the cause is intentional or mechanical in nature. This demonstrates 

that, as is the case for adults, binding for children is grounded in causal knowledge rather 

than intentionality.  

Our findings support an emerging body of research showing that top-down causal 

representations exert an influence on temporal perception (Bechlivanidis & Lagnado, 2013; 

2016). The results suggest that even for young children, temporal perception involves active 



 

interpretation of bottom-up information based on available causal knowledge. Thus, time and 

causality appear to mutually constrain each other already early in development: prior work 

shows that temporal contiguity is instrumental in forming children’s causal beliefs (e.g., 

Schlottmann, 1999), and the present study demonstrates that once such beliefs are 

established, events in a causal sequence are perceived as more contiguous with each other 

than events in a non-causal one. While there was no overall effect of age on temporal 

binding, inspection of the graphs across both experiments shows that binding magnitudes 

were generally larger in younger children and this warrants further investigation. 

Speculatively, enhanced binding early in development would yield experiences in which the 

temporal contiguity between cause and effect is enhanced, which could help to preserve a 

default assumption (that events that occur close together in time are causally related), thus 

facilitating causal learning in young children. 

In conclusion, our findings support the idea of an early-developing relation between 

time and causation and extend its scope by indicating that this relation is bidirectional. Thus, 

our study is an important step in further elucidating how time and causation are related by 

shedding new light on the developmental origins of this relation.  
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Figure Captions 

Figure 1. The stimuli used in the Causal Condition of the Stimulus Anticipation task for the 

rocket and JIAB versions. Each of the three segments depicts a section of the trial. The target 

stimulus is the one on the left in each segment; and the matching stimulus is on the right 

covered by either a curtain or a cloud. Note that the curtain/cloud are depicted smaller than 

they actually were; on screen they were large enough to cover the matching stimulus. In the 

causal condition, the participant presses the green button on the response box (not depicted) 

to initiate the launch of the target stimulus. The button on the screen lights up to show it had 

been pressed and a tone is sounded – both lasting 200ms. After the set interval the test 

stimulus appears. The task was for participants to press the yellow button to launch the 

matching stimulus (under the curtain or cloud) at exactly the same time.  

 

Figure 2. The stimuli used in the Non-Causal Condition of the Stimulus Anticipation task for 

the rocket and JIAB. Each of the three segments depicts a section of the trial. The target 

stimulus is the one on the left in each segment; and the matching stimulus is on the right 

covered by either a curtain or a cloud. Note that the curtain/cloud are depicted smaller than 

they actually were; on screen they were large enough to cover the matching stimulus. In the 

non-causal condition, the task was the same as the causal condition, except that participants 

waited for the warning cue on the rocket gantry. The warning cue was a 200ms audio-visual 

signal. As in the causal condition, after the set interval the test stimulus appeared, and the 

task was for participants to press the yellow button to launch the matching stimulus at exactly 

the same time.  

 



 

Figure 3. Mean judgement error for each causal condition (causal, non-causal) and interval 

(top: 900ms; bottom: 1300ms) across age groups in Experiment 1 (error bars are ± SEM). 

 

Figure 4. The magnitude of binding (in ms) ± SEM for each age group (a) in Experiment 1 for 

900ms (top) and 1300ms (bottom) trials; and (b) in Experiment 2 for the self-causal (top) and 

machine-causal (bottom) conditions (both at 900 ms).   

 

Figure 5. Mean judgement error for each causal condition (self-causal, machine-causal, non-causal) and 

age group in Experiment 2 (error bars are ± SEM). 

 

 

 


