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Abstract  

NIPA1 (non-imprinted in Prader-Willi/Angelman syndrome 1) mutations are known to cause 

Hereditary Spastic Paraplegia type 6, a neurodegenerative disease that phenotypically 

overlaps to some extent with Amyotrophic Lateral Sclerosis. Previously, a genome-wide 

screen for copy number variants found an association with rare deletions in NIPA1 and ALS, 

and subsequent genetic analyses revealed that long (or expanded) polyalanine repeats in 

NIPA1 convey increased ALS susceptibility. We set out to perform a large-scale replication 

study to further investigate the role of NIPA1 polyalanine expansions with ALS, in which we 

characterized NIPA1 repeat size in an independent international cohort of 3,955 ALS 

patients and 2,276 unaffected controls and combined our results with previous reports. 

Meta-analysis on a total of 6,245 ALS patients and 5,051 controls showed an overall 

increased risk of ALS in those with expanded (>8) GCG-repeat length (odds ratio = 1.50, P = 

3.8x10-5). Together with previous reports, these findings provide evidence for an association 

of an expanded polyalanine repeat in NIPA1 and ALS.  
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1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder 

characterized by the loss of both upper and lower motor neurons leading to progressive 

weakness, spasticity and ultimately respiratory failure (Hardiman et al., 2011; van Es et al., 

2017). The complex genetic architecture of ALS is characterized by 5-15% of patients with a 

positive family history, where it is assumed that there is a single causal mutation (Andersen 

and Al-Chalabi, 2011). However, even in the majority of seemingly sporadic patients a large 

genetic contribution is expected and causal mutations have been reported despite a 

negative family history (Al-Chalabi et al., 2016; McLaughlin et al., 2015). To date, mutations 

in more than 20 different genes have been implicated in ALS, one of the most prominent 

being an intronic repeat expansion in C9orf72 (Al-Chalabi et al., 2016).  

In addition to C9orf72, repeat expansions in other genes have been reported in ALS, 

including ATXN2 and NIPA1 (Blauw et al., 2012; Elden et al., 2010). NIPA1 (non-imprinted 

in Prader-Willi/Angelman syndrome 1) mutations are known to cause Hereditary Spastic 

Paraplegia type 6, a neurodegenerative disease characterized by slowly progressive upper 

motor neuron signs (predominantly in the lower limbs) and is a condition that to some extent 

has phenotypic overlap with ALS (Rainier et al., 2003). Interestingly, a genome-wide screen 

for copy number variants found an association with rare deletions in NIPA1 and ALS and 

subsequent genetic analyses revealed that long (or expanded) polyalanine repeats in NIPA1 

confer increased disease susceptibility (Blauw et al., 2012; 2010). In the majority of people 

(98%) the 5’-end of NIPA1 (NCBI: NM_144599.4) encodes for a stretch of 12 or 13 alanine 

residues of which 7 or 8 are encoded by a (GCG)n trinucleotide repeat (TNR), although both 

shorter and longer GCG stretches have been reported in non-affected individuals (Chai et 

al., 2003). In this previous study, an analysis of an international cohort of 2,292 ALS patients 

and 2,777 controls showed that “long” repeats (>8) in NIPA1 were enriched in ALS cases 

compared to controls (5.5% vs. 3.6%; OR 1.71; P = 1.6 x 10-4) (Blauw et al., 2012).  

Although interesting and potentially relevant, only a small fraction of initially positive 

results from candidate gene studies (such as that performed on NIPA1) replicated 
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consistently (Hirschhorn et al., 2002). Therefore, additional steps, such as replication of the 

findings and imposing a proper significance threshold (such as exome or genome-wide 

significance), are required to make any claims of causality (MacArthur et al., 2014). 

We therefore set out to perform a large-scale replication study to further investigate the 

role of NIPA1 polyalanine expansions with ALS, in which we characterized NIPA1 repeat 

size in a large international cohort of ALS patients and unaffected controls and then meta-

analyze our results with previous reports. 

 

2. Material and Methods 

 

2.1 Subjects 

All participants gave written informed consent and approval was obtained from the local, 

relevant ethical committees for medical research. Genotyping experiments were performed 

on 6,231 samples comprising 3,955 ALS patients and 2,276 healthy controls from 6 

populations. All patients were diagnosed according to the revised El Escorial criteria. Control 

subjects were from ongoing population-based studies on risk factors in ALS. All related 

individuals were excluded from further analysis. Baseline characteristics for available 

samples are provided in Supplementary Table 1. 

 

2.2 PCR, sequencing and genotyping 

Dutch samples obtained from 753 ALS and 603 unaffected individuals were analyzed 

using PCR according to protocols described previously and results were analyzed in a 

blinded and automated fashion with a call rate of 96.6% (Blauw, et al., 2012). Samples that 

failed genotyping, were additionally analyzed with Sanger sequencing to assess possible 

bias. An additional cohort of 767 unaffected controls and 764 ALS samples were genotyped 

using Sanger sequencing and automatically genotyped with a call rate of 99.1%. Primers: 5’-

GCCCCTCTTCCTGCTCCT-3’ (forward) and 5’-CGATGCCCTTCTTCTGTAGC -3’ (reverse). 
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A total of 847 samples were analyzed using both methods (PCR and Sanger), with manual 

review of discordant genotypes (n = 35, 4.1%).  

We analyzed NIPA1 repeat size in whole-genome sequencing (WGS) data of 3,344 

samples (2,438 cases and 906 controls) from the HiSeq X Sequencing platform, available to 

us through Project MinE (Project MinE ALS Sequencing Consortium, 2018), using the 

Illumina ExpansionHunter tool (Dolzhenko et al., 2017). There was a 691 sample overlap 

genotyped using both ExpansionHunter and Sanger sequencing, showing a 99% 

concordance (n = 684). Considering this 99% concordance between ExpansionHunter and 

Sanger results in the Dutch dataset, we did not perform additional validation experiments on 

the WGS samples and proceeded with the ExpansionHunter calls. C9orf72 status had been 

determined for 3,907 ALS samples from the PCR, Sanger and ExpansionHunter cohorts. 

Additionally, the presence of rare non-synonymous and loss-of-function variants in the 

established ALS-associated genes SOD1, FUS and TARDBP was known for 5,030 cases 

and controls from all cohorts as described previously (Dekker et al., 2016; Project MinE ALS 

Sequencing Consortium, 2018). 

 

2.3 Statistical analysis 

All statistical procedures were carried out in R 3.3.0 (http://www.r-project.org). For 

association analyses we applied a logistic regression analysis to all subgroups, the effect of 

the expanded (>8) versus non-expanded polyalanine repeat length on the disease status, 

adjusting for sex at birth, method of genotyping and country of origin. Samples with missing 

sex at birth status (n = 108, 1%) were imputed using multivariate multiple imputation with the 

‘mice’ 2.46.0 package.  

Subgroup effects were meta-analyzed using both fixed and random effects modelling 

using the ‘metafor’ 2.0 package. For the joint analysis on individual data, we used a 

generalized linear model (GLM) with fixed-effects covariates: sex, method of genotyping and 

country of origin. We additionally applied generalized linear mixed model (GLMM) on non-

imputed data to account for possible random effects.  
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The survival after onset and age at onset analyses were performed using multivariate 

Cox regression with sex at birth, site of onset, age at onset (for survival only) and C9orf72 

status as covariates.  

To assess whether the observed frequency of co-occurring genetic risk variants for ALS 

was in excess of what would be expected on the basis of chance, we used a method 

described previously by (Dekker et al., 2016). The expected frequency of co-occurring 

variants was calculated using the following formula: (the observed number of patients 

carrying a variant / the total number of patients) * (the observed number of controls carrying 

a variant / the total number of controls). This formula was used in order to take into account 

the higher frequency of just one variant in ALS patients (= frequency of variants in patients), 

multiplied by the chance probability of a second variant (= frequency of variants in controls). 

Then, a binomial test was performed to compare the observed frequency of co-occurring 

variants in ALS patients with the calculated expected frequency. 

We specified a formal null model for an increase in repeat expansion with consideration 

of repeat confounding variables such as the genomic frequency and repeat size. Previous 

studies have shown that there are a total of 878 genes in the genome that contain a coding 

trinucleotide repeat (TNR) with a repeat size of 6 repeats or greater, 90 of which contain a 

polyalanine tract (Kozlowski et al., 2010). We therefore set two thresholds for significance in 

this study; 1) a relatively loose threshold, in which we correct for the number of genes that 

contain a polyalanine tract of 6 or larger resulting in P = 0.05/90 = 5.6x10-4 and 2) a more 

conservative threshold, in which we correct for the total number of genes in the genome that 

contain a coding TNR with a size of 6 or larger which gives P = 0.05/878 = 5.7x10-5. 

 

3. Results 

 

3.1 Replication 

We first tried to replicate the initial findings in an independent Dutch cohort comprising 

1,517 ALS cases and 1,370 unaffected controls by genotyping the GCG repeat length in 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 8

NIPA1 using repeat PCR and/or Sanger sequencing. As was reported previously, we found 

the most frequent alleles to consist of either 7 or 8 (GCG)n repeats (25% and 72% 

respectively) (Figure 1). Our analysis showed a similar allele frequency difference of 

expanded or “long” alleles (repeat length of 9 or longer) between ALS (n = 85, 2.80%) and 

controls (n = 51, 1.86%). Both ALS and control subgroups had only one single case with a 

homozygous expansion, indicating a dominant model for further analysis. This resulted in 84 

individuals with ALS (5.54%) and 50 unaffected individuals (3.65%) as carriers of an 

expanded NIPA1 polyalanine repeat length. Logistic regression analysis, corrected for sex at 

birth and method of genotyping (PCR or Sanger), revealed an effect of expanded NIPA1 

repeat length on disease susceptibility (OR = 1.54, P = 0.018). 

 

3.2 Project MinE 

To further increase sample size and investigate cohorts other than the Dutch population, 

we then analyzed NIPA1 repeat expansion genotypes that were called using the Illumina 

ExpansionHunter tool in 2,438 independent ALS cases and 906 controls whole-genome 

sequenced (WGS) as part of the Project MinE ALS Sequencing Consortium (Project MinE 

ALS Sequencing Consortium, 2018). This multi-cohort WGS data showed a more equal 

distribution of expanded NIPA1 carriers in ALS (114/2,438, 4.67%) and controls (40/906, 

4.42%). A logistic regression analysis, corrected for country of origin and sex, showed no 

significant difference. 

 

3.3 Meta-analysis  

Finally, we sought to perform an analysis of all available NIPA1 polyalanine expansion 

data, combining our data with the original data published previously (Blauw et al., 2012). 

After exclusion of duplicate samples; individual level data was available for a total of 5,056 

samples (2,290 cases and 2,775 controls) in the discovery dataset published by Blauw et al. 

(2012). Our replication cohort (including results from PCR, Sanger and Expansion Hunter) 

comprised 3,955 cases and 2,276 controls. The final dataset included 6,245 ALS patients 
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and 5,051 controls, reaching a final number of 11,296 unique individuals. We combined this 

data in a fixed-effects meta-analysis and found an overall risk of expanded NIPA1 repeat 

length on ALS (odds ratio (OR) = 1.50, P = 3.8x10-5) (Figure 2). Since individual level data 

was available, we additionally performed a multivariate logistic regression analysis, using 

sex at birth, method of genotyping and country of origin as covariates in the pooled data, 

resulting in an equal effect and significance (OR = 1.48, P = 6.2x10-5). Other association 

models that account for random effects, such as random effect meta-analysis and a 

generalised linear mixed model gave similar results (data not shown). Repeating the 

analysis excluding the 322 C9orf72 repeat expansion carriers yielded a P value of 7.7x10-5 

for the fixed-effects meta-analysis (OR = 1.49, 95% confidence interval (CI) = 1.22-1.81) and 

a P value of 1.0x10-4 for the multivariate logistic regression analysis (OR = 1.47, 95% CI = 

1.21-1.78). Exclusion of an additional 171 samples (133 cases and 38 controls) carrying a 

non-synonymous or loss-of-function mutation in SOD1, FUS or TARDBP did not alter the 

results (fixed-effects meta-analysis P value = 7.5 x10-5, OR = 1.49, 95% CI = 1.22-1.81) 

(Supplementary Figure 1). 

 

3.4 Survival 

Clinical data and survival data was available for 1,954 out of 3955 ALS patients from the 

combined replication cohorts (Supplementary Table 2). After correction for sex, age at 

onset, bulbar site of onset and C9orf72 status, we used a Cox regression model in this 

mixed population to test if NIPA1 conferred any risk for shorter survival time; we found no 

evidence for such an effect (Hazard ratio (HR) = 1.16; 95% CI = 0.94-1.45; P = 0.16) 

(Supplementary Figure 2). Also, there was no significant association between NIPA1 

repeat length and age at onset in this replication cohort with correction for sex, site of onset 

and the presence of a C9orf72 expansion (Supplementary Figure 3).  

 

3.4 Co-occurrence with C9orf72 repeat expansion 
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Since a significant number of NIPA1 expansion carriers was reported in a subgroup of 

ALS patients that also carried a C9orf72 repeat expansion (Dekker et al., 2016), we 

evaluated this co-occurrence in 4,619 participants genotyped for both loci in all cohorts (n = 

712 for the discovery cohort; n = 3,907 for the combined replication cohorts).  

Although we did observe a higher than expected frequency of co-occurrence of the repeat 

expansions, our data did not robustly replicate the previously published finding (0.37% 

observed vs 0.26% expected; P = 0.06) (Supplementary Table 3). 

 

4. Discussion 

In this study, we included a large international cohort and additionally meta-analyzed the 

NIPA1 expansion genotypes in a total of 6,245 ALS patients and 5,051 controls. Given that 

we were able to replicate our previous results in an independent cohort and observed an 

increase in significance in the overall meta-analysis, our data adds to the evidence that 

expanded NIPA1 repeats are a risk factor for sporadic ALS. Mutations in NIPA1 were 

already known to cause Hereditary Spastic Paraplegia type 6, a neurodegenerative disease 

with motor-neuron involvement, whereas the 15q11.2 microdeletions are better known for 

low penetrant neurodevelopmental phenotypes, further adding to the complexity of the 

NIPA1 locus (Butler, 2017; Rainier et al., 2003). Interestingly, genetic pleiotropy between 

HSP and ALS appears to be more widespread, as recently it has been shown that mutations 

in different domains in KIF5A either cause HSP or ALS (Brenner et al., 2018; Nicolas et al., 

2018).  

After C9orf72 and ATXN2, NIPA1 is the third reported expanded genomic repeat motif 

associated with an increased risk for ALS. Its initial discovery in ALS by identification of copy 

number variants in the chromosome 15q11.2 locus containing NIPA1, was followed by 

further genetic screening in a large international cohort consisting of Belgian, Dutch, and 

German subjects (Chai et al., 2003). This subsequent study in 2,292 ALS patients and 2,777 

controls revealed that, although NIPA1 deletions and missense mutations were identified in 

ALS patients, it actually was an increase of the (GCG)n repeat motif in the 5’-end of NIPA1 
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that seemed to associate with ALS (OR = 1.71 with P = 1.6x10-4). Knowing that positive 

results derived from candidate gene studies often fail to replicate, we sought to replicate the 

NIPA1 finding in ALS, particularly given the complex genotypic and phenotypic architecture 

of the NIPA1 locus (Messaed and Rouleau, 2009). 

Our results showed a very similar effect of increased NIPA1 polyalanine expansions on 

ALS-susceptibility in a new Dutch cohort of 1,517 ALS cases and 1,370 unaffected controls 

tested via PCR or Sanger sequencing. Given the high concordance between Sanger/PCR 

results and the calls from the bioinformatic tool ExpansionHunter on WGS data, we were 

able to further increase the sample size of our study by including data from Project MinE 

(Shinchuk et al., 2005). This allowed us to additionally evaluate the role of NIPA1 repeat 

sizes in non-Dutch cohorts. The size of this cohort was similar in the number of cases 

compared to the original discovery cohort, but smaller in number of controls compared to 

that original cohort. Also, the Project MinE dataset is more heterogeneous compared to the 

original discovery cohort. This is a possible explanation as to why the overall NIPA1 signal 

was not replicated in the WGS data. However, we did find a similar direction and effect size 

in 4 out of the 6 WGS cohorts (Ireland, Spain, the United States of America and the United 

Kingdom).  

While empirical thresholds for genome-wide and exome-wide significance have been 

derived for studies assessing associations between phenotypes and single nucleotide 

variants, these thresholds are likely to be too stringent in the context of screening for coding 

repeat expansions, as the genome contains only ~900 genes with a coding TNR tract with a 

length of 6 or more, 90 of which code for a polyalanine tract (Messaed and Rouleau, 2009). 

We therefore set the significance threshold for associations with TNRs to be approximately 

P = 5.6x10-4, correcting for polyalanine only, or (more conservative) P = 5.7x10-5, correcting 

for all TNRs with a length of 6 repeats or more. The meta-analysis results are significant 

regardless of the threshold applied. Furthermore, exclusion of samples carrying a mutation 

in established ALS genes (C9orf72, SOD1, TARDBP and FUS) yielded somewhat lower P 

values (due to loss of power corresponding to lower number of included samples) with 
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similar magnitude of effect, further supporting the role of NIPA1 as independent risk factor 

for developing ALS.     

Although we did see a higher than expected number of ALS cases carrying both NIPA1 

and C9orf72 repeat expansions in this study (n = 17, P = 0.06), we did not robustly 

reproduce the co-occurrence of C9orf72 expansion carriers in the NIPA1 expanded cases 

described by Dekker et al. (2016). This might be attributed to the relatively small sample size 

in the original study (755 ALS patients), resulting in broad confidence intervals that overlap 

with our results (frequency = 0.004 [0.002-0.006] in the current study; frequency = 0.009 

[0.004-0.019] in Dekker et al. (2016). Alternatively, the co-occurrence might be relevant in 

some, but not all included populations. Additionally, we were unable to replicate the effect of 

NIPA1 expansions on ALS survival and age at onset (Blauw et al., 2012). These findings 

again reemphasize the necessity for replication and the importance of tracking clinical 

characteristics in large genetic databases. Currently, we were able to perform a survival 

analysis on just 50% of our replication set and further evaluation in a larger and complete 

dataset is therefore recommended.   

Interestingly, the increase in the NIPA1 repeat size seems to be limited to the addition of 

mostly two GCG repeats. However, this seemingly small addition might well have protein 

conformational effects as has been shown in-vitro; polyalanine stretches between 7 to 15 

alanines transition from a monomeric alpha helix to a predominant macromolecular beta 

sheet, which in turn may lead to stronger protein–protein interactions and aggregation 

(Blauw et al., 2010). Additionally, a patient with a mutation in NIPA1 suffering from a 

progressive motor neuron phenotype was shown to have TDP-43 inclusions, very similar to 

effects seen in ALS and ALS-FTD cases(Martinez-Lage et al., 2012). These findings might 

explain how alterations in NIPA1 could increase ALS risk. 

In conclusion, our data adds to the evidence for an association of NIPA1 expansions and 

ALS. Future investigations may provide further insights in the role of NIPA1 and polyalanine 

stretches in the development and possibly treatment of motor neuron disease. 
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Figure 1. NIPA1 polyalanine repeat length distribution. 

Proportion of total alleles grouped per NIPA1 polyalanine repeat size. Alleles displayed were 

observed multiple times in the Dutch replication cohort of 1517 individuals affected with ALS 

(blue) and 1370 unaffected controls (orange). 

 

 

Figure 2. NIPA1 polyalanine repeat expansion meta-analysis. 

Forest plot for the fixed-effect meta-analysis and joint analysis on individual level data of the 

effect of expanded NIPA1 polyalanine (>8 GCG repeats) on ALS risk with the initial 

discovery reports (Blauw, et al., 2012) and current replication using PCR, Sanger or whole 

genome sequencing (WGS) grouped per cohort/country of origin. Weights depending on 

number of participants. CI, confidence interval.  
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Highlights 

•  We replicated the association of long PolyA-repeats in NIPA1 with ALS in an 

independent Dutch cohort. 

•  A subsequent meta-analysis on 6,245 cases and 5,051 controls yielded P = 3.8x10-5 

with OR = 1.50. 

•  NIPA1 repeat expansions are not associated with ALS age of onset or survival. 

•  NIPA1 repeat expansions (>8 GCG-repeats) are a risk factor for sporadic ALS.  


