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23 Highlights

24  Six tephra layers are identified in sub-Arctic peatlands at Abisko, Sweden

25  Geochemical analyses of glass shards are presented, identifying material 

26 belonging to the Hekla 4, Hekla-Selsund, Hekla 1104, and Hekla 1158 

27 eruptions

28  Variation in the deposition and preservation of tephra layers across adjacent 

29 profiles is identified and discussed

30

31 Abstract

32 Tephrochronology is an increasingly important tool for the dating of sediment and 

33 peat profiles for palaeoecological, palaeoclimatic and archaeological research. 

34 However, although much work has been done on tephra in temperate peatlands, 

35 there have been very few in-depth investigations of permafrost peatlands. Here we 

36 present the analysis of nine peatland cores from Abisko, northern Sweden, and show 

37 that the presence of tephra layers may be highly variable even over a scale of <10 

38 km. Using electron probe microanalysis (EPMA) combined with age-depth profiles 

39 compiled from radiocarbon (14C) and 210Pb dating of peat records, we identify the 

40 Hekla 1104, Hekla 1158, Hekla-Selsund and the Hekla 4 tephra layers. We also infer 

41 the presence of the Askja 1875 tephra, in addition to an unassigned tephra dating 

42 from between 1971-1987 AD in two separate cores. Five of the nine analysed cores 

43 do not contain distinct tephra layers. Volcanic ash deposits in northern Scandinavia 

44 are subject to both regional-scale variations in climate and atmospheric circulation, 

45 and local-scale variations on the order of tens of kilometres in topography, 

46 vegetation, snow cover, and ground permeability. The extreme inconsistency of 



47 tephra preservation within a small study area (~3000 km2) brings into question the 

48 reliability of tephrochronology within permafrost peatlands, and highlights the 

49 necessity of alternative methods for dating peat profiles in this region.

50

51 1 Introduction

52 The study of volcanic ash preserved in peatlands and lake sediments is a well-

53 established science, particularly across western Europe and North America (Lowe, 

54 2011; Stivrins et al., 2016; Watson et al., 2016a; Plunkett et al., 2018; Swindles et al., 

55 2018). Light ash particles from volcanic eruptions are carried across continents by 

56 atmospheric currents, sometimes being transported thousands of kilometres from 

57 their source (Cadle et al., 1976; Palais et al., 1992; Bourne et al., 2016). The fallout 

58 from these eruptions may then be preserved in layers in soft sediments such as in 

59 peatlands and lakes, providing useful markers and isochrons across multiple sites. 

60 Tephra layers linked to particular eruptions allow sediment profiles to be correlated 

61 to specific points in time. Assuming that ash deposition occurs approximately 

62 simultaneously across multiple sites, applying tephrochronology to a given record 

63 allows for precise, high-resolution chronological reconstruction of sediment 

64 columns, with a range of environmental and archaeological applications (Lowe et al., 

65 2011; Lane et al., 2014). However, relatively few tephrochronological studies have 

66 been performed on permafrost peatlands in Europe compared to temperate 

67 peatlands (Watson et al., 2016).

68

69 Abisko Scientific Research Station is located in the Scandinavian Arctic, 

70 approximately 30 kilometres north of the polar circle at 68°21’ N, 18°49’E. The 



71 station has a long history of wide-ranging environmental and ecological research, 

72 with many recent studies focusing on the observations and effects of climate change 

73 in a boreal environment (Alatalo et al., 2016; Lundin et al., 2016; Lett, 2017). Rapid 

74 alterations in the local climate over the past 50 years and an increase in the 

75 frequency of winter warming events in northern Scandinavia (Vikhamar-Schuler et 

76 al., 2016) have caused significant ecological concern. The warmer conditions have 

77 been linked to vast reductions in the extent of permafrost in the area (Osterkamp & 

78 Romanovsky, 1999; Camill, 2003; Schuur & Abbott, 2011), affecting the surface 

79 water pH, water table depth and vegetation in permafrost peatlands (Camill, 1999).

80

81 Wetlands have long been acknowledged as playing a significant role in global carbon 

82 emissions and sequestration (Lai, 2009). It is therefore increasingly important for the 

83 scientific community to develop an understanding of how permafrost peatlands in 

84 this area have changed over time in terms of their ecology, hydrology and carbon 

85 accumulation (Swindles et al., 2015b). Accurate and precise chronological control is a 

86 crucial component of such investigations into peat archives.

87

88 Projections of jet stream currents in the northern hemisphere suggest that, under 

89 typical atmospheric circulation conditions, ash particles injected into the 

90 stratosphere by Icelandic eruptions should be carried and deposited across much of 

91 north-western Europe, including Scandinavia (Woollings et al., 2010; Davies et al., 

92 2010). Past studies have borne this assumption out, and Icelandic tephra has been 

93 found across the UK, Ireland, France, Germany, Poland, Belgium, Switzerland, 

94 Denmark, Sweden, Norway, and the Faroe Islands (Swindles et al., 2011; Lowe et al., 



95 2011; Watson et al., 2017). However, some disparity between the sediment records 

96 of adjacent sites has been noted at several locations (Watson et al., 2016b). 

97 Vegetation, local weather at the time of deposition, pH conditions in the sediment, 

98 and storm events can all affect the capture and preservation of glass shards (Watson 

99 et al., 2016a), resulting in variation across cores, even over distances of a few 

100 kilometres. Northern Scandinavia is on the extreme distal edge of most numerical 

101 simulations reconstructing Icelandic ash clouds (Davies et al., 2010), making 

102 consistent ash fall across wide areas possible, but unlikely. In this paper, we 

103 investigate the cryptotephra content (distal tephra <150 μm along the longest axis) 

104 of nine cores collected in the vicinity of the Abisko field station. We also discuss the 

105 factors affecting shard preservation variability in the area, and consider the 

106 implications for future tephrochronological research in this region.

107

108 2 Materials and Methods

109 2.1 Study Area

110 [Figure 1: Map of study area, showing local topography and the location of coring 

111 sites]

112 Nine samples were collected from peatland sites near Abisko, northern Sweden, 

113 seen in Figure 1, using a Russian peat corer. Each sample is between 20-45 cm in 

114 depth, and is comprised largely of peat, in addition to occasional lenses of organic 

115 mud. 

116

117 Abisko is located within the rain shadow of the Norwegian mountains, and as such 

118 receives a relatively small amount of precipitation (332 mm per year; Callaghan et 



119 al., 2010), with the highest rainfall occurring during the summer months. Each of the 

120 peatlands sampled were part of peat complexes in various stages of permafrost 

121 decomposition, from early dome collapse to full inundation after permafrost thaw. 

122 The peatlands of the region are primarily composed of ombotrophic bogs, peat 

123 plateaus, arctic fens, and palsa mires, many of which are in states of permafrost 

124 collapse as a result of rapid warming. Recent studies have shown an increased rate 

125 of permafrost decay in some of the Abisko sites, such as Stordalen (Swindles et al., 

126 2015b)

127

128 2.2 Methods

129 Coring locations were selected on the basis of physical features, hydrology, and 

130 vegetation composition (Swindles et al., 2015a). Sites were deemed suitable if they 

131 were situated on relatively flat ground, and could be characterised as fens, bogs, or 

132 palsas. Full site details may be found in appendix C. The cores were stored in plastic 

133 wrap and aluminium foil, and kept at a temperature of 4˚C prior to analysis. 

134 Extraction of the tephra in these sediment samples was performed following the 

135 method detailed by De Vleeschouwer et al., 2010. Each peat core was divided into 

136 continuous sections of 1cm depth, and a sample of 4 cm3 was removed from each. 

137 These samples were weighed and dried in ceramic crucibles at 105⁰C for a minimum 

138 of 12 hours. The dry samples were then reduced to ashes in a muffle furnace at 

139 600⁰C for six hours. After each stage of burning and drying, the samples were 

140 weighed to estimate gravimetric water content and mass loss on ignition. These 

141 ashes were suspended in 10% hydrochloric acid for 24 hours to remove carbonate 

142 material, and then washed with deionised water. The tephra was concentrated at 



143 the bottom of the test tubes by placing the aqueous samples in a centrifuge at 3000 

144 r.p.m. for approximately five minutes. This aqueous material was then sieved 

145 through a 10μm mesh.  Petrographic slides were prepared by adding the aqueous 

146 solution to a glass slide on a hotplate until the liquid component evaporated. The 

147 slides were mounted using Histomount and a glass coverslip, and examined through 

148 optical microscopy using 200-400x magnification to assess tephra content. 

149 References to several visual and descriptive sources were used to ensure positive 

150 tephra identification (Lowe, 2011; Watson et al., 2016a).

151

152 Sub-samples which were found to contain more than 10 shards per cm3 were re-

153 sampled and processed using the acid digestion method outlined in Dugmore & 

154 Newton (1992), and, later, to density separation, to fully remove problematic organic 

155 material and biogenic silica (Blockley et al., 2005). In some cases, tephra was found 

156 to exist in irregular, non-continuous, discrete clumps of material rather than in well-

157 defined layers, making repeated extractions from a particular depth within the peat 

158 profile problematic. In these instances, optical slides containing tephra were 

159 submerged in a xylene solution for 48 hours to dissolve the mounting agent 

160 (Ravikumar et al., 2014). This method was found to be highly effective in retaining 

161 the tephra and organic material while completely removing the Histomount. Samples 

162 for geochemical analysis were then dried, remounted in blocks of resin and 

163 subjected to electron probe microanalysis EPMA at the Tephra Analytical Unit, 

164 University of Edinburgh. All analysis was performed using a 5μm diameter beam of 

165 15kV with a current of either 2nA (Na, Mg, Al, Si, K, Ca, and Fe) or 80nA (P, Ti, Mn), 

166 following the method of Hayward (2012). Lipari and BCR-2G basalt glass standards 



167 were used for external calibration (Watson et al., 2015). The standard data 

168 generated during geochemical analysis may be found in table B.2 in the appendices. 

169 The overall data for the standards returns <1% variability for most major elements.

170

171 Radiocarbon signatures of organic material were determined by accelerator mass 

172 spectrometry (AMS). Subsamples of 0.8 mg C were combusted in 6 mm sealed quartz 

173 tubes with 60 mg CuO oxidizer and 1 cm silver wire for 2 hours at 900°C. The 

174 resulting CO2 was purified from water and non-condensable compounds. Afterwards, 

175 CO2 was reduced to graphite using the zinc reduction method where TiH2 and Zn 

176 with Fe act as catalysts at 550°C for 7.5 hours (Xu et al., 2007). All preparations took 

177 place at the Department of Soil Ecology at the University of Bayreuth. The graphite 

178 targets were analysed by the Keck-CCAMS facility of the University of California, 

179 Irvine, with a precision of 2–3‰ (‰ deviation is from the 14C/12C ratio of oxalic acid 

180 standard in 1950). The samples were corrected to a δ13C value of -25‰ to account 

181 for any mass dependent fractionation effects (Stuiver & Polach, 1977). Radiocarbon 

182 signatures were converted to 14C age before present (BP) using the IntCal13 

183 calibration curve (Reimer et al., 2013). Full radiocarbon dating results may be found 

184 in table A.1 in the appendices.

185

186 Further chronological data for the Marooned and Stordalen cores was established 

187 through 210Pb dating.  Peat samples were digested using a combination of 

188 concentrated HCl, HNO3, and H2O2. A small amount of 209Po was then added as a 

189 tracer. Following the method detailed in Whittle & Gallego-Sala (2016), the material 

190 was plated onto silver disks, and alpha spectrometry was performed using an Ortec 



191 Octête Plus Integrated Alpha-Spectrometry System at the University of Exeter (UK) 

192 Radiometry Lab. 210Pb values were derived from the 210Po/209Po ratios, and dates 

193 were then extrapolated from the 210Pb inventory using the constant rate of supply 

194 model (Appleby, 2001).

195

196 3 Results

197 3.1 Tephrostratigraphies

198 [Figure 2: Tephrostratigraphic profiles of Abisko peat cores. Radiocarbon dates (cal 

199 BP) are shown in red along the vertical axes. a) Crater Pool 1; b) Crater Pool 2; c) 

200 Eagle Bog; d) Electric Bog; e) Instrument Core; f) Nikka Bog; g) Marooned Bog; h) 

201 Railway Bog; i) Stordalen Core]

202 Figure 2 shows the tephra counts per 4 cm3 of the eight peat profiles collected in 

203 Abisko, along with the percentage loss on ignition, and age-depth models based on 

204 radiocarbon dating of organic material. While four profiles – Stordalen (ST), 

205 Marooned (MN), Eagle (EA), and Nikka (NI) – have clear tephra peaks at varying 

206 depths, the other profiles have only minimal volcanic ash content, averaging only 1-3 

207 glass shards per section. There is little to no consistency in the presence of tephra 

208 with depth across the profiles. The loss-on-ignition for each profile is high, typically 

209 between 80 – 90 %, but there is no apparent correlation with the presence of glass. 

210 The glass shards themselves were typically between 10-150 μm, though a wide range 

211 of morphologies were present, from thin, concave, wisp-like structures to larger 

212 aggregate shards.  As the shards in EA12 and NI8 were found to be too small and 

213 sparse to perform EPMA, 210Pb dating of the profiles containing these layers was 

214 used to determine their ages. The major element geochemistry of the glass found in 



215 the Marooned and Stordalen cores can be found in figure 4. Full geochemistries and 

216 profile dates may be found in the appendices.

217

218 [Figure 3: Age-depth models of Eagle, Nikka, and Stordalen peatland profiles. Tephra 

219 profiles identified in this paper are marked in red. Full radiocarbon and 210Pb data 

220 can be found in appendix A.]

221

222 3.1.1 MN85/Hekla 4

223 Figure 4 shows the geochemistry of tephra shards found at in the Marooned and 

224 Stordalen cores. Shards matching the geochemistry of the Hekla 4 eruption were 

225 found at a depth of 85 cm in the Marooned bog core. The Hekla 4 eruption 

226 represents the most widespread tephra deposit in northern Europe, and relates to a 

227 plinian eruption of Hekla occurring between 2395-2297 BC (Pilcher & Hall, 1996; 

228 Watson et al., 2017). Tephra attributed to this deposit occurs across a range of 

229 compositions from dacitic to rhyolitic; in the case of the tephra found in Marooned 

230 bog, the silica content ranges between 63 – 77 %. 

231

232 3.1.2 MN70/Hekla-Selsund

233 The Hekla-Selsund tephra, also known as the Kebister tephra, is dated as occurring 

234 between 1800-1750 BC, and can be found in multiple sites across north-western 

235 Europe, including Germany, Great Britain, the Faroe Islands and Scandinavia (Watson 

236 et al., 2017). In Abisko, it occurs in the Marooned bog core at a depth of 70 cm. This 

237 tephra is rhyolitic to dacitic in composition. 

238



239 3.1.3 ST30/Hekla 1104 (Hekla 1)

240 These glass shards closely match the geochemistry of the Hekla 1104 eruption (also 

241 known as the Hekla 1 eruption), with an average SiO2 content of 63-67%. This tephra 

242 has previously been found in multiple sites in northern Scandinavia, including the 

243 Sammakovuoma peatland in northern Sweden (Watson et al., 2016a) and the 

244 Lofoten Islands in arctic Norway (Pilcher et al., 2005); see figure 5.

245

246 3.1.4 ST25/Hekla 1158

247 Several shards with geochemistries similar to Hekla 1158 were found in the 

248 Stordalen core at a depth of 23 cm. Tephra from the Hekla 1158 eruption is dacitic in 

249 composition, with a silica content of 67-68%. Evidence of this eruption has only 

250 recently been found in Europe, in Scandinavian sites in almost all instances (Pilcher 

251 et al., 2005; Swindles et al., 2015a). 

252

253 3.1.5 EA12/Askja 1875

254 Using the combined age-depth profile (figure 3), it can be seen that the layer in EA 

255 falls approximately between 1831 and 1920. A likely candidate for this tephra is 

256 therefore the Askja 1875 eruption. Ash from this eruption has previously been found 

257 in several sites in Scandinavia (Pilcher et al., 2005; Wastegård, 2008; Watson et al., 

258 2016b), suggesting that the tephra cloud was at least partially carried in a north-

259 easterly heading from the source (the Dyngjufjöll volcanic system). Approximately 

260 0.5 km3 of rhyolitic tephra was produced during this eruption (Sigurdsson & Sparks, 

261 1981). 

262



263 3.1.6 NI5 (Unknown tephra)

264 Using our precise 210Pb chronology, the layer in NI appears to fall between 1971 and 

265 1987, and is therefore of a more uncertain origin as no tephra layers from this period 

266 have yet been defined in Scandinavia at the time of writing. As stated above, it was 

267 not possible to perform geochemical analysis on these shards; however, several 

268 potential source eruptions occurred in Iceland during this period.  The Hekla and 

269 Krafla volcanic systems both exhibited significant activity, although no tephra from 

270 the eruptions occurring at Hekla in 1980 and 1981 has yet been reported outside 

271 Iceland. The activity from Krafla was almost exclusively effusive with intermittent 

272 phreatic explosions (Global Volcanism Program, 2013), making this an unlikely 

273 candidate for distal tephra deposition. A minor subglacial eruption of Grímsvötn 

274 occurred in 1983, though again this is unlikely to have produced a sufficient tephra 

275 cloud to account for the reported layer (Gronvold & Johannesson, 1984). It is 

276 therefore possible that this tephra originated from a non-Icelandic source. Tephra 

277 attributed to Alaskan volcanoes has previously been found in northern Scandinavia 

278 (Watson et al., 2017), and it has recently been suggested that a previously 

279 unidentified tephra found in Svartkälsjärn, Sweden (Watson et al., 2016a) may have 

280 originated from the Cascades arc in North America (Plunkett & Pilcher, 2018). These 

281 findings indicate that, while Iceland is statistically the most likely source of volcanic 

282 ash in Scandinavian peatlands, it may be necessary to look further afield to identify 

283 more obscure deposits.

284

285 [Figure 4: Geochemical bi-plots of glass shards found in the Marooned and Stordalen 

286 cores, showing the geochemical type-data envelopes of the eruptions to which they 



287 correlate. Also shown are geochemical envelopes for alternative eruptions occurring 

288 within a similar timeframe for comparison. a) ST25, b) ST30, c) MN70, d) MN85. 

289 EPMA was performed at the Tephra Analysis Unit, University of Edinburgh.]

290

291 4 Discussion

292 4.1 Tephra transport and preservation

293 [Figure 5: Spatial distributions within Europe of four tephra layers found in the 

294 Abisko peatlands. All four originated at Hekla in southern Iceland, and each has 

295 previously been found within Scandinavia. (Swindles et al., 2017)]

296

297 While several distinct deposits of tephra were found within the Abisko region, there 

298 is poor correlation of tephra preservation across sites, even between cores 

299 separated by <10 km. A distinct tephra layer can clearly be found in the Eagle bog 

300 site, but is not present at the Craterpool bog, despite the two locations being within 

301 12 km of each other. The same is true of the Marooned and Railway bog sites, which 

302 are 9 km apart.

303 There are a number of components influencing the spatial distribution of tephra over 

304 a given deposition area. ‘Ash winnowing’, referring to the resorting and redeposition 

305 of ash sediments, is a phenomenon which has been previously noted in many 

306 volcanological studies, and is typically attributed to erosion by wind- or water-based 

307 processes. Analysis of distal ash deposits from the 2008 eruption of Chaitén, Chile, 

308 for example, showed that unsheltered locations occasionally displayed greater 

309 degrees of reworking and variability in deposit thickness, and that these anomalies 

310 became more frequent with distance from the eruption source (Watt et al., 2009). 



311 The disparities across the stratigraphic columns shown in our results emphasise how 

312 a combination of components can cause extreme variability in glass preservation, 

313 even over a relatively small area. Many factors are related to local conditions at the 

314 time of deposition, while others relate to broader factors such as regional 

315 topography and basin drainage systems. Additionally, eruption conditions at the 

316 origin volcano can affect glass composition and ash shard morphology, with 

317 implications for tephra preservation and transport respectively (Lowe, 2011). Figure 

318 6 provides a summary of the dominant factors, some of which are explained in 

319 greater detail below.

320

321 4.2 Site analysis

322 [Figure 6: Conceptual diagram of factors influencing tephra preservation in Abisko 

323 peatlands.]

324

325 4.2.1 Local climate and wind currents

326 The location of Abisko on the leeward side of the Norwegian mountains results in a 

327 significant decline in annual rainfall relative to nearby locations on the windward 

328 side (Swindles et al., 2015b). While this may decrease the surface runoff in the 

329 region, thus decreasing the likelihood of surface redistribution of fallen tephra, it is 

330 also thought that precipitation itself may play a crucial role in the deposition of 

331 tephra (Davies et al., 2010). Some studies attribute the patchiness of the Hekla 1947 

332 tephra in many areas of Europe to irregular rain- or snowfall (Salmi, 1948; 

333 Thorarinsson, 1967). 

334



335 Another factor to consider when assessing the impact of precipitation on ash 

336 preservation is snow cover. Snow provides a ‘shielding’ layer above the underlying 

337 peatland, enabling redistribution of deposited tephra through surface wind currents 

338 (Bergman et al., 2004). Tephra preserved within snow is also subject to 

339 transportation should that snow cover melt during seasonal temperature changes.

340

341 The variability of air currents over northern Scandinavia is also likely to be a major 

342 controlling factor on tephra deposition in the region. Models suggest that seasonal 

343 variability in the dominant air currents has a strong influence on tephra 

344 transportation, with strong westerlies at high elevations (>15 km) during autumn and 

345 winter, and weak easterlies becoming dominant during spring and summer (Lacasse, 

346 2001). Icelandic eruptions occurring during the latter half of a given year 

347 (September-February) are therefore more likely to deposit tephra across 

348 Scandinavia. In recent years, however, evidence has emerged that the Earth’s 

349 warming climate may have a weakening effect on the polar vortex (Kim et al., 2014). 

350 If this is proved to be the case, future patterns of tephra distribution in the northern 

351 hemisphere may be altered by continuing climate change.

352

353 Additionally, it has been suggested that, under the correct conditions, the 

354 combination of a variable wind field and changes to the eruption parameters due to 

355 fluctuations in the volcanic system may allow for the creation of discrete deposition 

356 patterns for different phases of an eruption (Watt et al., 2009; Stevenson et al., 

357 2012). This may provide an explanation for the unusually uniform major element 

358 geochemistries seen in some of the deposits found in Abisko, most notably the ST25 



359 and ST30 deposits, attributed to Hekla 1158 and Hekla 1104 respectively. These 

360 shard clusters may represent ashfall from a particular phase of those eruptions, 

361 though whether the compositional bias in these deposits occurred during transport 

362 or through winnowing and preservation processes is unclear.

363

364 Studies of ashfall conducted following the 2008 eruption of Chaitén, Chile indicate a 

365 complex pattern of ash deposition which was largely attributed to variable wind 

366 fields during the course of the week-long eruption, at least on a proximal scale (Watt 

367 et al., 2009; Alfano et al., 2010; Durant et al., 2012). However, variations in wind 

368 patterns are typically referenced as a cause of regional-scale depositional variations 

369 on the order of hundreds of kilometres, as opposed to the local-scale variations 

370 observed in Abisko, which occur across areas of <20 km. While a variable wind field 

371 therefore offers a potential explanation for the apparent underrepresentation of 

372 many historical Icelandic tephra deposits in Scandinavia relative to the rest of 

373 western mainland Europe, shifting regional air currents are unlikely to have caused 

374 the erratic preservation pattern observed at Abisko. 

375

376 4.2.2 Vegetation

377 Similarly to snow cover, vegetation can provide a shielding effect to underlying 

378 sediment. However, a more significant implication for tephra preservation is the 

379 effect of root trapping, wherein plant roots capture small packets of sediment, 

380 preserving them at a given depth. This has multiple negative consequences for the 

381 field of tephrochronology; firstly, the unequal distribution of ash within a given 

382 horizon complicates the process of tephra extraction, as it makes the presence of a 



383 particular layer at a given depth more uncertain. Additionally, the vertical 

384 redistribution of tephra can negatively impact the creation of age-depth profiles for 

385 peatlands and lake sediment, as the correlation between tephra layers and dated 

386 organic material from the same layer becomes less reliable (Cutler et al., 2016). 

387 Dugmore et al., 2018, suggest that uniformly vegetated slopes can produce 

388 consistent tephra layers in the stratigraphic record, but areas of sparse or patchy 

389 vegetation will result in variability. Many of the Abisko sites were characterised by a 

390 uniform top layer of sphagnum moss of between 1-4cm thickness, with intermittent 

391 tussocks of thicker vegetation and herbaceous plants such cotton sedge (Eriophorum 

392 angustifolium). Studies of vegetation succession in the Marooned and Stordalen sites 

393 also indicate the variable presence of shrub communities over the past millennium 

394 (Gałka et al., 2017), making it likely that root trapping could have interfered with 

395 tephra preservation in this region. 

396 Ashfall may also be intercepted by vegetation at a sub-aerial level, such as on leaves 

397 and branches. However, the sparseness of larger forms of plant life in most sub-

398 Arctic peatland reduces the influence of this factor in this region.

399

400 4.2.3 Topography

401 A recent study (Dugmore et al., 2018) based on data from Iceland and Washington 

402 State, USA, has shown that tephra layers of 1-10 cm thickness can remain stable on 

403 slopes <35˚, given sufficiently uniform vegetation cover. Slopes of a greater angle are 

404 unlikely to produce consistent stratigraphic records, as tephra particles become 

405 concentrated in topographic hollows, resulting in down-slope thickening which can 

406 cause differences in thickness as great as an order of magnitude between the peak 



407 and the base of a slope (Mairs et al., 2006). Down-slope runoff processes can be 

408 mitigated by vegetation and ground cover, resulting in small-scale variation within a 

409 given layer. 

410

411 4.2.4 Eruption conditions

412 Eruption conditions represent a strong control on cryptotephra layers. Very fine ash 

413 of the size and density suitable for airborne transport over several thousand 

414 kilometres is generated in far greater quantities during explosive silicic eruptions 

415 than effusive basaltic eruptions (Rose & Durant, 2009). The effects of ash 

416 morphology on airborne tephra transport have been the subject of a great deal of 

417 study, as the topic has significant implications for ash cloud modelling techniques. 

418 The surface roughness, sphericity and convexity of ash particles all affect the 

419 aerodynamic properties of those particles (Riley et al., 2003), which in turn affect the 

420 settling velocity, atmospheric residence time, and transport distance. For example, 

421 irregular particles with low vesicularities and high surface-to-volume ratios are likely 

422 to aggregate due to the high wettability and surface roughness, while flat particles 

423 with high long axis to short axis ratios are likely to be transported further from their 

424 source (Riley et al., 2003; Cioni et al., 2014). The primary determining factors in ash 

425 morphology are magma fragmentation – itself a product of gas content, 

426 pressurisation and conduit width, among others – and interaction of the magma and 

427 subsequent volcanic plume with water. A greater degree of interaction results in 

428 greater fragmentation, giving the tephra a thinner, more concave morphology, with 

429 complex implications for transport distance (Freundt & Rosi, 1998). 



430 While a small number of larger (>150 μm) shards were found some samples in the 

431 Stordalen and Marooned cores, the vast majority of tephra found in the Abisko 

432 region has a thin, wispy morphology with an average length of 50-100 μm and pale 

433 colouration, corresponding with the explosive eruptions to which all of the identified 

434 ash layers have been assigned. 

435

436 4.2.5 Other factors

437 An absence of water outflow is crucial to the successful preservation of a tephra 

438 layer. Lakes or fens which have substantial throughflow are typically not suitable for 

439 tephrochronological study, as hydrological redistribution of lighter particles is 

440 substantially more likely. Dry or impermeable surfaces may also facilitate windblown 

441 redistribution of tephra to topographic lows. Particles are therefore preferentially 

442 preserved in low areas of damp, permeable terrain. A recent study conducted on 

443 thin tephra layers in temperate regions (Blong et al., 2017) suggested that the 

444 erosional reworking of tephra layers <300 mm in thickness, as is the case for many 

445 European cryptotephra layers, is highly variable even across relatively homogenous 

446 sites. These results may indicate the necessity of large sample sizes and the 

447 collection of multiple cores within small areas, although in practice this method is 

448 likely to become impractical. 

449

450 5 Conclusions

451 [1] Six distinct tephra layers, the majority of which are likely to be of Icelandic origin, 

452 were recorded in the surveyed Abisko peatland cores.



453 [2] Using geochemical analysis, we identify shards belonging to the Hekla 4, Hekla 

454 1104, Hekla 1158 and Hekla-Selsund eruptions in Abisko.

455 [3] From age-depth profiles of two cores, we suggest that the Askja 1875 tephra, and 

456 an unidentified, possibly non-Icelandic tephra are present in the Abisko region.

457 [4] We find very little correlation between tephrostratigraphies of adjacent peat 

458 cores, suggesting that local-scale variations in topography, vegetation, snow cover, 

459 ground permeability, and other factors significantly influence the preservation of 

460 windblown tephra in sub Arctic Sweden.

461 [5] The variability of tephra preservation across multiple sites within the study area 

462 suggests that northern Scandinavian peatlands may be an unreliable source of 

463 volcanic ash deposits due to the increased risks of redeposition and secondary 

464 transport, further complicating studies into the tephrochronology of the region.

465
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486 Appendix A

487 Table A.1. Radiocarbon dates of Abisko peat profiles

Site Lab Code Depth 

(cm)

14C 

Age

1σ 

Error

Material dated Cal range 2σ 

(BP)

Cal Median Age 

(BP)

UB2359 17 165 20 Dicranum bergerii 

+ Dicranum 

elongatum stems 

with leaves

166-225 187Electric

UB2360 22 390 20 Sphagnum stems 

+ leaves

434-505 476

UB2358 15 860 20 Sphagnum 

russowii stems 

with leaves

726-796 763Crater Pool I

Poz-80223 22 1110 30 Sphagnum 

riparium stems 

with leaves

937-1071 1014

UB2356 19 160 20 Betula nana leaf 

remains + fruits 

scale, Empetrum 

nigrum seed 

remains, 

Andromeda 

polifolia leaves 

and seeds, 

Sphagnum 

fuscum stems 

with leaves

167-224 187Crater Pool II

UB2357 29 345 20 Sphagnum 

fuscum stems 

with leaves, 

Oxycoccus 

palustris leaves, 

Betula nana leaf 

remains

316-407 386

Railway UB2366 28 200 20 Oxycoccus 

palustris leaves, 

Betula nana leaf 

remains, 

Sphagnum 

146-189 172



russowii stems 

with leaves

UB2398_2 40 1240 20 Bulk 1196-1263 1211

UB2365 19 130 20 Dicranum 

elongatum stems 

with leaves, 

Pleurozium 

schreberii stems 

with leaves

59-149 119Eagle

UB2397_2 30 1725 25 Bulk 1565-1700 1635

UB2363 24 180 20 Sphagnum 

fuscum stems 

with leaves

142-219 183Nikka

UB2364 30 595 20 Sphagnum 

fuscum stems 

with leaves

584-647 606

UB2361 25 165 20 Dicranum 

elongatum stems 

with leaves

166-224 187Instrument

UB2362 30 320 20 Dicranum 

elongatum stems 

with leaves

348-458 387

D-AMS 

006366

14 340 24 Sphagnum 477-314 388Stordalen

D-AMS 

006367

17 553 31 Sphagnum 640-518 559

Marooned D-AMS 

006368

28 2317 26 Sphagnum, herb 

epidermis

2360-2211 2342

488

489 Table A.2 210Pb dating of Abisko peat profiles

Site

Cumul. 
210Pb_ex 
inventory 
(Bq/m2)

±
Residual 
210Pb_ex 
(Bq/m2)

±
Age 

(year)
YEAR 
(AD)

±

19.02 1.68 3632.39 26.67 0.17 2011.83 1.00

116.57 6.13 3534.84 26.62 1.04 2010.96 1.02

273.73 8.11 3377.68 25.96 2.50 2009.50 1.06

504.43 11.26 3146.97 25.41 4.77 2007.23 1.08

833.18 14.73 2818.22 24.17 8.32 2003.68 1.12

1263.37 18.20 2388.03 22.23 13.64 1998.36 1.17

1942.68 21.82 1708.73 19.49 24.39 1987.61 1.25

2485.15 23.74 1166.26 15.33 36.65 1975.35 1.35

3073.40 25.72 578.01 12.15 59.19 1952.81 1.61

3359.58 26.35 291.83 7.05 81.14 1930.86 1.75

3582.02 26.53 69.39 4.14 127.27 1884.73 2.89

3651.40 26.67 0.00 2.76

3651.40 26.85

Marooned 3611.87 26.91



3618.02 31.04

3556.55 33.89

47.57 4.29 3602.81 45.06 0.42 2011.58 1.01

166.11 7.75 3484.27 44.85 1.50 2010.50 1.04

553.84 18.48 3096.54 44.38 5.28 2006.72 1.10

1239.81 25.69 2410.57 41.09 13.33 1998.67 1.25

1923.16 30.09 1727.22 37.01 24.03 1987.97 1.43

2521.79 40.57 1128.59 33.53 37.70 1974.30 1.71

3064.50 43.78 585.89 19.60 58.75 1953.25 1.97

3441.33 44.64 209.05 10.63 91.84 1920.16 2.59

3650.38 45.06 0.00 6.09

3650.38 45.48

3606.77 45.52

3580.58 45.59

3511.91 45.65

3254.74 45.99

2968.36 47.14

2868.03 48.93

Eagle 2579.98 51.08

129.65 12.70 2517.20 28.58 1.61 2010.39 1.02

328.28 16.64 2318.57 25.61 4.25 2007.75 1.16

600.43 18.59 2046.42 23.24 8.26 2003.74 1.22

1018.88 20.87 1627.98 21.71 15.61 1996.39 1.28

1599.29 23.67 1047.56 19.53 29.77 1982.23 1.44

1971.58 27.37 675.27 16.03 43.87 1968.13 1.64

2248.59 28.20 398.26 8.23 60.82 1951.18 1.65

2455.75 28.40 191.10 4.65 84.40 1927.60 1.80

2584.36 28.51 62.50 3.23 120.30 1891.70 2.66

2646.85 28.58 0.00 2.05

2646.85 28.75

2618.05 29.25

2607.31 29.73

2594.90 31.04

Nikka 2556.27 31.43

129.65 12.70 2517.20 28.58 1.61 2010.39 1.02

328.28 16.64 2318.57 25.61 4.25 2007.75 1.16

600.43 18.59 2046.42 23.24 8.26 2003.74 1.22

1018.88 20.87 1627.98 21.71 15.61 1996.39 1.28

1599.29 23.67 1047.56 19.53 29.77 1982.23 1.44

1971.58 27.37 675.27 16.03 43.87 1968.13 1.64

2248.59 28.20 398.26 8.23 60.82 1951.18 1.65

2455.75 28.40 191.10 4.65 84.40 1927.60 1.80

2584.36 28.51 62.50 3.23 120.30 1891.70 2.66

2646.85 28.58 0.00 2.05

2646.85 28.75

2618.05 29.25

2607.31 29.73

2594.90 31.04

Stordalen 2556.27 31.43

490
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492 Appendix B



493 Table B.1. Non-normalised major element glass geochemistry of Abisko peat profiles

Core
Depth 
(cm) SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total

Marooned 85 70.54 0.45 13.10 4.65 0.19 0.18 1.53 4.89 3.52 0.05 99.09

76.16 0.24 11.91 2.06 0.08 0.07 0.90 4.19 3.03 0.03 98.69

73.40 0.28 14.28 3.43 0.12 0.32 2.41 4.91 1.95 0.05 101.19

71.93 0.24 13.25 2.98 0.12 -0.20 1.95 5.25 2.40 0.03 97.96

63.12 0.85 14.63 7.49 0.23 0.89 4.45 4.17 1.87 0.28 97.98

64.73 0.85 15.19 7.59 0.24 0.90 4.55 4.78 1.67 0.29 100.75

73.99 0.14 12.80 2.01 0.08 0.05 1.35 5.02 2.90 0.01 98.38

66.65 0.52 15.15 4.41 0.20 0.34 1.87 5.54 3.88 0.07 98.65

72.96 0.13 12.14 1.94 0.09 0.03 1.18 4.67 2.82 0.00 95.98

66.40 0.57 15.02 5.22 0.17 0.45 3.66 5.69 1.59 0.16 98.92

66.23 0.59 15.03 4.04 0.11 0.31 3.87 5.64 1.35 0.19 97.34

71.16 0.24 13.29 3.09 0.11 0.13 2.06 5.06 2.48 0.02 97.67

71.96 0.23 12.95 2.84 0.11 0.10 1.87 4.71 2.58 0.02 97.41

63.02 1.18 15.07 7.17 0.20 1.38 4.75 4.41 1.57 0.40 99.09

64.28 1.18 14.04 7.17 0.21 1.35 4.58 4.48 1.52 0.39 99.11

75.55 0.20 12.23 1.73 0.07 0.06 1.34 4.34 2.75 0.03 98.36

Stordalen 25 69.57 0.46 13.51 5.23 0.14 0.34 2.34 4.97 2.88 0.10 99.54

69.36 0.42 15.53 4.17 0.11 0.19 3.01 5.34 2.44 0.10 100.68

69.26 0.50 14.28 4.83 0.19 0.24 2.81 5.49 2.54 0.10 100.25

68.79 0.47 15.19 5.09 0.15 0.40 3.29 5.47 2.05 0.09 100.99

68.72 0.46 15.23 5.52 0.17 0.43 3.13 5.27 2.30 0.11 101.34

68.68 0.47 15.41 5.46 0.17 0.47 3.15 5.12 2.32 0.10 101.35

68.40 0.48 14.09 5.48 0.19 0.42 3.03 5.06 2.42 0.10 99.68

68.23 0.48 14.53 5.48 0.17 0.48 3.33 5.16 2.31 0.09 100.26

68.11 0.47 15.35 5.70 0.18 0.46 2.96 5.30 2.38 0.10 101.01

67.90 0.47 14.36 5.31 0.18 0.44 3.14 5.54 2.30 0.11 99.75

67.84 0.48 14.88 5.75 0.17 0.45 3.22 5.12 2.31 0.11 100.32

67.84 0.47 14.52 5.83 0.15 0.46 3.28 4.81 2.31 0.12 99.77

67.80 0.48 15.01 5.75 0.19 0.50 3.02 4.78 2.26 0.08 99.97

67.66 0.46 15.06 5.70 0.18 0.46 2.94 5.71 2.24 0.09 100.51

67.62 0.45 14.22 5.39 0.14 0.50 3.02 5.44 2.41 0.11 99.30

67.60 0.46 14.83 5.76 0.16 0.44 3.14 5.43 2.35 0.10 100.29

67.60 0.48 15.22 5.65 0.19 0.44 3.14 5.09 2.39 0.10 100.31

67.39 0.46 15.04 6.06 0.17 0.46 3.02 5.55 2.30 0.11 100.56

67.22 0.45 14.85 5.61 0.17 0.48 3.11 5.39 2.32 0.11 99.71

67.11 0.41 16.93 4.25 0.15 0.34 3.88 5.87 1.97 0.09 101.00

65.41 0.07 13.85 5.66 0.11 0.41 3.16 4.04 2.19 0.07 95.20

64.71 0.27 20.15 3.10 0.07 0.31 5.19 6.36 1.32 0.06 101.54

Stordalen 30 67.63 0.38 16.11 4.01 0.16 0.26 1.78 5.73 4.18 0.05 100.29

67.49 0.40 15.75 4.05 0.19 0.27 1.82 6.16 4.22 0.06 100.40

67.48 0.39 16.25 4.23 0.18 0.24 1.85 6.22 4.21 0.06 101.12

67.41 0.39 15.78 4.42 0.16 0.33 1.76 5.92 4.16 0.05 100.38

67.28 0.47 15.85 4.69 0.19 0.46 2.05 5.97 3.94 0.09 101.01

67.20 0.43 15.84 4.75 0.20 0.36 2.09 5.73 4.11 0.64 100.76

66.98 0.34 15.68 3.76 0.15 0.23 1.71 6.01 4.21 0.06 99.12

66.96 0.46 16.59 4.48 0.19 0.40 2.24 5.99 4.13 0.08 101.52

66.76 0.43 15.94 4.34 0.16 0.37 1.98 6.14 4.07 0.06 100.25

66.66 0.43 16.64 4.14 0.17 0.32 1.96 5.87 4.02 0.07 100.28

66.50 0.36 16.14 4.28 0.15 0.28 1.58 6.14 4.28 0.06 99.73



66.44 0.33 14.26 3.60 0.15 0.19 1.63 5.64 4.29 0.04 96.56

66.27 0.41 15.63 4.34 0.18 0.35 1.99 6.25 4.06 0.07 99.53

65.85 0.47 14.11 5.66 0.28 0.66 2.73 5.49 4.12 0.08 99.46

65.83 0.57 16.08 5.60 0.23 0.57 2.43 5.74 3.78 0.12 100.94

65.73 0.38 15.60 4.07 0.16 0.31 1.80 5.92 4.27 0.07 98.31

65.41 0.46 15.62 4.53 0.18 0.31 1.96 6.07 3.98 0.07 98.60

65.13 0.46 15.79 4.61 0.17 0.34 2.12 6.13 3.92 0.08 98.74

64.89 0.40 15.78 4.17 0.18 0.31 1.89 5.89 4.18 0.07 97.76

63.34 0.43 15.82 4.25 0.16 0.31 1.87 5.71 3.95 0.06 95.91

Marooned 70 72.02 0.62 14.51 2.45 0.16 0.53 1.71 6.08 2.84 0.10 100.96

64.63 0.77 15.68 5.58 0.24 0.54 2.65 6.43 3.65 0.16 100.27

72.73 0.64 13.28 3.17 0.15 0.69 2.61 4.65 1.71 0.13 99.73

71.16 0.25 13.54 3.02 0.12 0.12 1.98 4.66 2.36 0.03 97.28

70.33 0.31 13.18 3.82 0.17 0.11 1.29 4.87 5.10 0.04 99.24

65.73 0.67 14.49 6.32 0.21 0.58 3.43 4.99 1.95 0.20 98.55

71.67 0.25 13.34 3.00 0.12 0.13 1.85 5.08 2.42 0.02 97.90

71.40 0.23 13.42 2.98 0.14 0.02 1.79 5.64 2.78 0.01 98.42

64.60 0.77 14.05 7.17 0.23 0.78 3.93 4.40 1.67 0.24 97.82

72.28 0.24 13.55 3.13 0.12 0.11 1.92 5.84 2.42 0.03 99.63

494

495 Table B.2 EMPA of Lipari and BCR-2G glass standards prior to Abisko glass shard 

496 analysis

DataSet SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total Comment
Mean
Z

1 / 1 . 55.20 2.30 13.56 12.15 0.20 3.60 6.93 3.21 1.79 0.36 99.29 BCR2g 12.70

2 / 1 . 54.41 2.26 13.38 12.48 0.17 3.72 7.13 3.28 1.74 0.38 98.96 BCR2g 12.70

3 / 1 . 54.54 2.26 13.16 12.58 0.21 3.75 6.91 3.32 1.88 0.39 99.00 BCR2g 12.72

4 / 1 . 53.96 2.26 13.23 12.38 0.20 3.77 7.03 3.52 1.79 0.38 98.51 BCR2g 12.64

5 / 1 . 74.43 0.07 12.70 1.76 0.07 0.04 0.81 4.18 5.23 0.00 99.30 Lipari 11.27

6 / 1 . 74.04 0.08 12.68 1.63 0.07 0.04 0.71 4.16 4.96 0.01 98.36 Lipari 11.13

7 / 1 . 74.78 0.07 12.99 1.59 0.07 0.06 0.72 4.27 5.21 0.00 99.76 Lipari 11.29

8 / 1 . 74.50 0.07 12.80 1.65 0.07 0.02 0.79 4.01 5.24 0.00 99.15 Lipari 11.24

9 / 1 . 54.11 2.26 13.23 12.50 0.18 3.69 6.99 3.21 1.86 0.36 98.40 BCR2g 12.64

10 / 1 . 54.70 2.27 13.33 12.72 0.20 3.76 7.09 3.42 1.76 0.36 99.60 BCR2g 12.80

11 / 1 . 54.92 2.26 13.41 12.62 0.19 3.66 7.11 3.42 1.81 0.38 99.77 BCR2g 12.81

12 / 1 . 54.22 2.28 13.08 11.70 0.20 3.80 7.00 3.25 1.86 0.35 97.74 BCR2g 12.48

497

498 Appendix C

499 Table C.1 Site information

Site name Codes Latitude 
(°N)

Longitude 
(°E)

Peatland 
type

Number of 
samples

Water table depth 
range (cm)

pH 
range

Craterpool P1-7 68°19′10.1″ 19°51′27.2″ Palsa 7 − 5 to 45 3.76–
4.77

Eagle E1-6 68°21′56.5″ 19°35′02.9″ Fen and 
bog

6 0 to 29 4.52–
6.74

Electric L1-6 67°51′56.1″ 19°22′06.4″ Palsa 6 0 to 45 3.66–
6.95



Site name Codes Latitude 
(°N)

Longitude 
(°E)

Peatland 
type

Number of 
samples

Water table depth 
range (cm)

pH 
range

Instrument I1-6 68°11′52.4″ 19°45′56.2″ Palsa 6 0 to 36 3.43–
5.32

Marooned M1-7 67°57′24.0″ 19°59′11.4″ Fen and 
bog

7 − 1 to 29 3.24–
4.21

Nikka N1-6 67°52′02.2″ 19°10′42.5″ Fen and 
bog

6 − 1 to 40 4.02–
5.27

Railway R1-7 68°05′12.6″ 19°49′52.9″ Palsa 7 0 to 40 3.25–
6.35

Stordalen S1-40 68°21′24.3″ 19°02′53.5″ Palsa and 
fen

40 − 7 to 50 2.99–
3.80

500
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Vegetation and snow 
cover may prevent 
tephra from being 

preserved

Outflows (streams, 
rivers etc) can carry 
tephra away from 
the initial site of 

deposition

Roots and sunken debris 
can retain tephra in 

uneven patches rather 
than discrete layers, or 

redistribute tephra 
through a depth profile

Topographic lows 
provide shelter for 

deposition

Surface tephra may 
be redistributed over 

dry/impermeable 
surfaces by wind, or 
by surface runoff (eg 
from seasonal melt) 
to topographic lows

Variable air currents 
can result in unequal 

deposition over a 
small area

Rain shadow and 
sheltering effects from 

major topographic highs 
affect the probability of 

deposition


