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when reduced GLS, GLSR or GLSRe are detected by non-
invasive imaging.

Keywords  Magnetic resonance imaging · Myocardial 
infarction · Gadolinium · Left ventricular function

Introduction

Prior myocardial infarction (MI) is defined as either the 
presence of pathological Q waves on an electrocardiogram 
(ECG), regional loss of myocardium on cardiovascular 
(CV) imaging in the absence of a non-ischemic cause or 
pathological findings supportive of prior MI [1]. Myocar-
dial infarction is frequently unrecognized at the time of its 
occurrence, accounting for 20–40% of all prior MI in high 
risk populations diagnosed on ECG criteria [2, 3]. Car-
diovascular magnetic resonance (CMR) late gadolinium 
enhancement (LGE) imaging offers a more sensitive means 
of diagnosis than ECG and is considered the reference 
standard non-invasive imaging technique for the detection 
of prior MI [4, 5]. Studies using this approach have sug-
gested that unrecognized MI is more common than recog-
nized prior MI in certain populations, with a prevalence of 
18% in an elderly, community-based cohort [6].

The presence of unrecognized MI detected by LGE is 
associated with a tenfold increase in risk of CV mortality, 
which appears to be incremental to conventional clinical 
and imaging risk factors [7]. Recognition of the condition 
is therefore important and secondary prevention therapy 
aimed at reducing long-term CV risk is recommended 
when prior MI is diagnosed [8].

Longitudinal strain parameters theoretically have the 
potential to detect prior MI. Myocardial fibers situated 
in the left ventricular (LV) subendocardium contribute 
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significantly to longitudinal LV contraction in systole [9]. 
These fibers are susceptible to ischemia and increased wall 
stress [10] and hence, prior MI affecting these fibers may 
lead to reductions in longitudinal strain values [11]. Global 
longitudinal strain (GLS) is a summation of myocardial 
deformation in the longitudinal plane during systole [12]. 
It is proposed to detect subclinical LV systolic function in 
a number of cardiomyopathies where LV ejection fraction 
(LVEF) is preserved [13]. Global longitudinal strain rate 
(GLSR) and early diastolic longitudinal strain rate (GLSRe) 
represent the rate of longitudinal systolic and early diastolic 
deformation [12] and are comparable to tissue Doppler 
derived S prime and E prime measurements [14]. CMR 
feature tracking is an alternative method of measuring these 
and other myocardial strain indices and uses post-process-
ing software to rapidly obtain measurements from steady 
state free precession (SSFP) cine imaging.

GLS has been demonstrated to be reduced in patients 
with heart failure with reduced ejection fraction (HF-REF) 
due to chronic ischemic heart disease [15] and in the setting 
of acute MI [16]. However, GLS in patients with MI but 
preserved LVEF has not yet been investigated.

We hypothesized that patients with prior MI detected 
by LGE but preserved LVEF would have impaired GLS 
and longitudinal strain rates compared to matched normal 
controls.

Materials and methods

Study population

This was a single centre case control study involving 40 
clinical patients with prior MI occurring >3  months pre-
viously and preserved LVEF (≥55%) and 40 controls 
matched for age and sex with LVEF (≥55%). Prior MI 
patients were retrospectively recruited from consecutive 
patients undergoing CMR for clinical reasons and select-
ing those with MI and preserved LVEF. Healthy controls 
were prospectively recruited volunteers with no history of 
cardiac disease. All participants were screened for CV risk 
factors by completion of a health questionnaire and from 
medical records.

Inclusion and exclusion criteria

Patients with significant arrhythmia (defined as uncon-
trolled tachycardia >100  bpm at the time of CMR study) 
were excluded. Prior MI patients with a history of acute MI 
or chest pain within the preceding 3 months were excluded 
on the basis that significant alterations to both myocardial 
scar burden and LV systolic function could have occurred 

in this time frame. Controls had no known history of CV 
disease.

CMR acquisition

All patients underwent CMR at either 1.5  T (Philips 
Ingenia) or 3.0  T (Philips Achieva) and controls at 3.0  T 
(Philips Achieva). Images were acquired with breath hold-
ing on end-expiration prior to contrast administration and 
prospectively gated using a 3-lead vector ECG.

Cine images were planned from the scout images and 
for every patient a 2 chamber (2Ch), 4 chamber (4Ch) 
and an LV short axis cine stack were acquired to ensure 
full coverage of the left ventricle. Typical image acquisi-
tion parameters for SSFP cine acquisitions were as fol-
lows: TR 2.6 ms, TE 1.3 ms, flip angle 40°, field of view 
320 × 340  mm × 100  mm, voxel size 2 × 1.62 × 10  mm, 30 
cardiac phases.

LGE imaging was performed in all patients with acqui-
sitions of a short axis LV stack, 2Ch and 4Ch obtained 
10  min after administration of 0.2  mmol/kg Gadolinium 
DTPA contrast (Gadovist, Bayer Schering) using inver-
sion recovery-prepared T1 weighted echo. The optimal 
inversion time (TI) to null normal myocardial signal ascer-
tained by the Look Locker approach. Between 10 and 12 
short axis LV, 2Ch and 4Ch images were acquired for every 
patient. Further imaging with altered phase-encoding direc-
tion or systolic imaging were acquired when prior MI was 
suspected after initial imaging.

CMR analysis

All post processing analysis of CMR scans was performed 
using the same software (CVI 42, Circle Cardiovascular 
Imaging Calgary, Canada). LV contours were drawn manu-
ally at both end diastole and end systole on the LV short 
axis SSFP cine stack. LV papillary muscles were consid-
ered part of the LV cavity.

Percentage myocardial systolic wall thickening (SWT) 
was calculated from the end diastolic and end systolic con-
tours as previously reported [17]. SWT was calculated for 
each LV segment based on the 16 segment AHA model. 
A cut-off value of 30% was used to define the presence of 
wall motion abnormality (WMA) in an individual LV seg-
ment [18]. The minimum value for each of the 16 LV seg-
ments in each patient was taken and used for comparison 
between prior MI patients and controls.

The presence of LGE in a subendocardial pattern sug-
gestive of prior MI was determined independently by two 
physicians with over 4  years’ experience in CMR. Quan-
titative assessment of myocardial scar burden was per-
formed using a threshold of 50% of the maximum inten-
sity within the scar (full width half max method) which has 
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been proposed as the most reproducible method for this 
purpose [19]. After optimization of brightness and contrast 
settings, manual delineation of two separate user-defined 
regions of interest (ROIs) were made on an LGE short axis 
slice where infarcted myocardium was present. One ROI 
was an area of hyperintense infarcted myocardium and a 
second ROI was drawn in remote myocardium containing 
no infarcted myocardium. Automated calculations for the 
remaining LV short axis LGE stack based on these two 
ROIs were then performed.

The strain parameters GLS, GLSR and GLSRe were cal-
culated using feature tracking software from 4Ch and 2Ch 
SSFP cine acquisitions (Fig.  1). Prior to analysis, bright-
ness and contrast settings were adjusted to allow optimiza-
tion of endocardial and blood pool differentiation. The epi-
cardial and endocardial borders were traced manually. The 
software then tracked the voxel features of the myocardium 
to quantify the motion of myocardium and compute strain 
values [20]. This process results in generation of values of 
percentage deformation in the longitudinal plane through-
out the cardiac cycle (providing a value for GLS) as well 
as deformation rate throughout the cardiac cycle (providing 
values for GLSR and GLSRe).

Statistical analysis and power calculation

Normality of data was tested using a Shapiro–Wilk test. 
Mean values ± SD are reported. Unpaired Student t test 
and Mann–Whitney U test were used as appropriate to 
compare continuous variables. Cut-off values to identify 
prior MI were derived from receiver-operating charac-
teristic (ROC) curve analysis using Youden index giving 
maximum sensitivity and specificity. AUCs were com-
pared by using validated methods described by DeLong 
et  al. [21]. Multivariable linear regression was used for 
variables with a statistical significance of <0.1 on univar-
iable linear regression. Intra and interobserver variabil-
ity for GLS were tested on ten randomly selected healthy 
controls using coefficient of variation (CoV). All tests 
were two-sided and p < 0.05 was considered statistically 
significant.

Based on the pooled standard deviation of 2.8% 31 
subjects are needed in each group to detect an abso-
lute reduction of GLS by 2% in those with chronic MI 
(α = 0.8, significance = 0.05).

Fig. 1   Calculation of GLS using CMR feature tracking in a healthy 
control. Panel A 4Ch cine acquisition with manually contoured epi-
cardial and endocardial borders. Panel B 2Ch cine acquisition with 
manually contoured epicardial and endocardial border. Panel C fea-
ture tracking of 4Ch cine acquisition. Panel D feature tracking of the 

2Ch cine acquisition. Panel E graph showing GLS [x axis shows time 
(ms) and y axis shows deformation (%) in longitudinal plane]. Panel 
F graph showing longitudinal strain rate [x axis shows time (m/s) and 
y axis shows deformation rate (%/s)]
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Results

A total of 40 prior MI and 40 healthy controls were 
recruited. Analysis was completed in all 40 patients in both 
groups, thus all were included in the final study sample. 
The prior MI patients were well-matched with controls for 
age and sex. Other variables including blood pressure, body 
mass index, LV mass, LV end diastolic volume (LVEDV) 
and LV systolic function were comparable across both 
groups. There were no statistically significant differences 
between any of these variables (Table 1).

Feature tracking parameters of myocardial strain

Feature tracking analysis was successfully performed in all 
prior MI patients and controls. Global longitudinal strain 
(Fig.  2) was significantly lower in prior MI patients than 
controls (−17.3 ± 3.7% versus −19.3 ± 1.9%, p = 0.012). 
Global longitudinal strain rate was significantly lower in 
prior MI patients versus controls (−88.0 ± 33.7% s−1 versus 
−103.3 ± 26.5% s−1 p = 0.005). Early diastolic longitudinal 
strain rate was also significantly lower in prior MI patients 
versus controls (76.4 ± 28.4% s−1 versus 95.5 ± 26.0% s−1, 
p = 0.001). GLS was not significantly different in prior 
MI patients scanned at 1.5 and 3.0 T (mean GLS at 1.5 T 
−18.0 ± 1.8 versus −17.2 ± 4.0 at 3.0 T, p = 0.61).

Quantitative systolic wall thickening

Quantitative systolic wall thickening analysis was possi-
ble in all prior MI patients and controls. There was no 
significant difference in minimum SWT in those with 

prior MI compared to controls (46.0 ± 18.3% versus 
42.0 ± 14.1%, p = 0.093). There was no significant differ-
ence in the proportion of subjects with WMA defined as 
a segment with SWT < 30% [6/40 (15%) prior MI patients 
and 6/40 (15%) controls].

Table 1   Patient characteristics 
in prior MI and control groups

Clinical variable Prior MI (n = 40) Controls (n = 40) p value

Age 60 ± 11 57 ± 10 0.29
Females 9/40 (23%) 9/40 (23%) –
LVEF (%) 62.3 ± 3.9 62.1 ± 3.8 0.82
LV mass (g) 107.9 ± 24.6 100.7 ± 23.8 0.18
LVEDV (ml) 159.8 ± 34.3 161.3 ± 30.2 0.84
Systolic blood pressure (mmHg) 133 ± 25.6 130.0 ± 12.3 0.61
Diastolic blood pressure (mmHg) 78 ± 19.5 73.0 ± 9.8 0.19
Body mass index (kg/m2) 27.9 ± 3.4 27.8 ± 3.9 0.82
Hemoglobin (g/L) 146 ± 11.5 142 ± 14.5 0.27
Creatinine (micromol/L) 77 ± 13.4 75 ± 13.6 0.52
Estimated GFR (ml/min/1.73 m2) 81 ± 8.5 83 ± 9.1 0.83
Hypertension 13/40 (33%) 4/40 (9%) 0.008
Hypercholesterolemia 10/40 (25%) 1/40 (3%) 0.004
Diabetes mellitus 6/40 (15%) 0/40 0.02
Smoking 18/40 (45%) 2/40 (6%) <0.001 

Fig. 2   Box and whisker plot for GLS in prior MI and healthy con-
trols. GLS values for all prior MI patients and healthy controls are 
shown as individual data points. For both groups, the horizontal line 
in the middle of the box demonstrates median values, the bottom of 
the box represents the 25th percentile and the top of the box repre-
sents the 75th percentile. The T-bar ‘whiskers’ represent the 95% 
confidence intervals
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Receiver operator characteristic analysis

AUC for the ability of each longitudinal strain parameter to 
correctly identify prior MI were as follows (Fig.  3): GLS 
0.662 (95% CI 0.540–0.785), p = 0.01, GLSR 0.684 (95% 
CI 0.566–0.802), p = 0.005 and for GLSRe 0.707 (95% 
CI 0.592–0.821), p = 0.001. By comparison, AUC for the 
ability of both presence of WMA and minimum SWT to 
correctly identify prior MI were lower at 0.500 (95% CI 
0.386–0.614), p = 1.0 and 0.609 (95% CI 0.483–0.735), 
p = 0.09 respectively. Comparison of AUC values for all 
longitudinal strain parameters assessed showed signifi-
cantly higher diagnostic accuracy for the detection of prior 
MI than WMA (GLS p = 0.02, GLSR p = 0.01 and GLSRe 

p = 0.001). Comparison of AUC values between longi-
tudinal strain parameters and minimum SWT showed no 
statistical significance (GLS p = 0.59, GLSR p = 0.39 and 
GLSRe p = 0.29).

Scar quantitation

Scar quantitation was successfully performed in all prior 
MI patients. The range of absolute scar mass was wide at 
between 0.7 and 21.4  g. The overall mean absolute scar 
mass was 5.5 ± 4.3 g, equating to a relative percentage of 
LV mass of 4.9 ± 3.3%.

Sensitivity and specificity of feature tracking derived 
strain values

Two approaches were used in determining sensitivity and 
specificity for the correct identification of prior MI by the 
different longitudinal strain values assessed. Firstly, the 
cut-off value giving maximum area under the curve was 
determined for each variable. Secondly, the value giving 
maximum specificity was determined. Results are summa-
rized in Table 2.

Univariable and multivariable regression analysis 
for GLS

Variables including patient demographics, risk factors for 
CVD and presence of prior MI were analyzed to determine 
univariable predictors of GLS (Table  3). Multivariable 
regression analysis revealed only prior MI to be an inde-
pendent predictor of change in GLS.

Observer variability

On intraobserver analysis, mean GLS values by CMR fea-
ture tracking were similar at −20.3 and −19.6% (p = 0.60) 
and CoV 3.9%. On interobserver analysis, mean GLS 

Fig. 3   ROC curves for the accuracy of longitudinal strain parameters 
(GLS, GLSR and GLSRe) and presence of WMA in the prediction of 
prior MI

Table 2   Identification of prior 
MI with longitudinal strain 
parameters optimized for 
sensitivity and specificity

Variable Sensitivity (%) Specificity (%) MI correctly 
identified

MI incor-
rectly 
identified

GLS
 Cut-off ≥18% 60 72.5 24/40 11/40
 Cut-off ≥15.7% 22.5 100 9/40 0/40

GLSR
 Cut-off ≥93.5% s−1 65 60 26/40 16/40
 Cut-off ≥66.4% s−1 22.5 100 9/40 0/40

GLSRe
 Cut-off <86% s−1 67.5 60 27/40 16/40
 Cut-off <44.81% s−1 10 100 4/40 0/40
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values CMR feature tracking were again similar at −20.3% 
and −19.6 (p = 0.62) and CoV% 4.0%.

Discussion

We have found that in patients with preserved LVEF and 
prior MI there is impairment of GLS, GLSR and GLSRe. 
Furthermore, impairment of GLSR and GLSRe had supe-
rior diagnostic accuracy than the quantitative assessment of 
WMA in the detection of prior MI. These results demon-
strate that prior MI may be detected when GLS is impaired 
when LVEF is preserved, although its ability to detect prior 
MI in this context is moderate.

Impairment of longitudinal measures of strain in prior 
MI may relate to myocardial fiber arrangement within the 
left ventricle. Subendocardial myofibers contribute pre-
dominantly to contraction in the longitudinal plane with 
subepicardial fibers providing a lesser contribution. Con-
versely, both circumferential and radial motion of the myo-
cardium are generated by fibers predominantly located in 
the midwall [9]. Longitudinal function is particularly vul-
nerable to any disease process affecting the subendocar-
dium. It is therefore possible that in limited subendocar-
dial MI, longitudinal myocardial deformation is reduced 
whereas radial function, which results from contraction 
of LV midwall fibers, may be relatively preserved. Given 
that LVEF and systolic wall thickening are predominantly 
measures of radial contraction, this would explain the find-
ings in this study that minimum SWT, presence of WMA 
and LVEF were all poor predictors of prior MI in patients 
with preserved LV function. Delgado et  al. demonstrated 
that although GLS was reduced in patients with HF-REF 
due to chronic ischemic heart disease, the relationship 

between LVEF and GLS was only weakly linear (r = 0.62, 
p = <0.001) [15] which would again potentially support the 
concept of impaired GLS being largely attributable to loss 
of subendocardial myocardial fiber contraction.

There was no significant difference in the proportion of 
patients with WMA (>30% minimum SWT in any LV seg-
ments) between the prior MI and control groups. Our find-
ing of WMA in asymptomatic controls was not unexpected 
and has previously been reported elsewhere in the literature 
[17, 22].

The importance of LVEF and regional LV systolic func-
tion as indicators of prior MI is stressed in international 
guidelines [1]. Our results demonstrate the potential addi-
tive value of longitudinal strain parameters and in particu-
lar GLS in looking beyond traditional means of assessing 
LV systolic function in the detection of prior MI.

Of the longitudinal strain parameters assessed, GLS was 
moderately useful in terms of specificity and sensitivity 
with a cut-off value of ≥18% giving a sensitivity of 60% 
and specificity of 72.5% and was the most useful of the 3 
strain values assessed. These findings broadly correlate 
with those of Nucifora et al. who demonstrated a correla-
tion between reduced GLS measured by echocardiography 
and the presence of significant coronary artery disease on 
CT coronary angiography in patients with symptoms sug-
gestive of stable angina with normal LVEF [23]. In that 
study, the authors proposed a cut off value ≥−17.4% pre-
dicting significant coronary artery disease with a sensitivity 
of 83% and specificity of 77%. It is unclear why our own 
values for the sensitivity and specificity of GLS in identify-
ing prior MI were lower, though one reason could be that 
ischemia has a more profound effect on GLS than infarc-
tion, possibly due to the influence of LV remodeling in the 
context of chronic infarction.

Table 3   Univariable and multivariable regression for global longitudinal strain

Univariable linear regression for global longitudinal strain

Variable Beta 95% CI p value

 Age 0.04 −0.03 to 0.10 0.29
 Hypertension 1.26 −0.48 to 3.00 0.15
 Hypercholesterolemia 1.84 −0.17 to 3.84 0.07
 Diabetes 0.77 −1.96 to 3.49 0.58
 Smoking (ever) 0.47 −1.16 to 2.10 0.57
 Prior MI −1.97 −3.29 to −0.65  0.004 
 Systolic BP −0.01 −0.05 to 0.03 0.76
 Diastolic BP 0.02 −0.03 to 0.07 0.49

Multivariable regression for global longitudinal strain

Variable Beta 95% CI p value

 Hypercholesterolemia 0.93 −1.11 to 2.97 0.37
 Prior MI −1.94 −3.41 to −0.47 0.01 
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GLS has good inter and intra-observer variability when 
measured by CMR feature tracking as demonstrated in both 
this and another study [24]. Similar values have also been 
demonstrated using echocardiography [25]. The findings of 
this study adds to the growing evidence base supporting the 
use of GLS in clinical practice. It has shown potential in 
terms of prognostication and has been demonstrated to be 
superior to LVEF in predicting morbidity and mortality in 
patients with IHD [26]. Additionally, it shows promise as a 
potential screening tool for silent MI [27].

Several studies have demonstrated impairment of GLS, 
predominantly by speckle tracking echocardiography, in a 
range of disease states including diabetes [28], heart failure 
with preserved ejection fraction (HFPEF) [29] and aortic 
stenosis [30]. In these studies, impairment of longitudinal 
function was attributed to a direct cardiomyopathic pro-
cess. However, LGE imaging was not performed in these 
patients and it is therefore possible that impairment of GLS 
may have related to unrecognized MI. Thus, future studies 
of the prognostic importance of GLS should include LGE 
imaging to exclude MI as the mechanism of impairment of 
longitudinal function.

Our findings support the potential utility of GLS as a 
screening tool for identifying prior MI in patients with pre-
served LV ejection fraction, although when used alone, its 
ability to correctly identify prior MI in this context is only 
moderate. Further prospective studies are needed to iden-
tify whether combining it with other imaging and/or clini-
cal parameters lead to improvement in its specificity and 
sensitivity. As GLS has been shown to be impaired inde-
pendently of LVEF in aortic stenosis [30], hypertrophic 
cardiomyopathy [31] and HFPEF [29], it must be inter-
preted with caution where these conditions are present or 
are suspected.

Limitations of the study

The values for the strain parameters measured in this study 
were calculated using feature tracking post-processing soft-
ware. This remains a research application and currently 
lacks the clinical validation to enable its adoption into rou-
tine clinical practice. Nevertheless, both GLS and GLSR 
can be readily measured using modern echocardiographic 
speckle tracking [12] which have been validated against 
CMR strain measurements [32].

CMR tagging has traditionally been considered the 
reference standard technique for calculation of strain val-
ues and was not used in this study. We have elected to 
use feature tracking preferentially for this study because 
tagging techniques suffer from both lower temporal 

resolution and fading of the tag overlay as the cardiac 
cycle progresses [24]. Furthermore agreement between 
feature tracking and CMR tagging is excellent [33] and 
can be easily performed without the need for acquisition 
of additional sequences.

We have not carried out invasive assessment of coro-
nary anatomy in all patients and it is possible that undi-
agnosed ischaemia may have contributed to impairment 
of longitudinal strain parameters. However, performing 
coronary angiography on patients in whom it is not clini-
cally indicated would not be ethically appropriate.

Finally, there were higher rates of CV risk factors in 
our prior MI population compared with healthy volun-
teers, thus it is unclear as to their relative contribution (if 
any) to the observed decrease in GLS seen in prior MI 
patients. Nevertherless, in our multivariable analysis, 
only prior MI was an independent predictor of change in 
GLS and CV risk factors including hypertension, smok-
ing, hypercholesterolemia and diabetes were not.

Conclusion

The strain parameters GLS, GLSR and GLSRe are 
reduced in patients with prior MI in the context of nor-
mal LVEF. A normal LVEF and lack of WMA is insuf-
ficient to exclude prior MI. Prior MI may be suspected 
when impaired GLS, GLSR or GLSRe are detected by 
non-invasive imaging.
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