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Abstract

This paper proposes a regularisation method for the estimation of large covariance
matrices that uses insights from the multiple testing (MT ) literature. The approach
tests the statistical significance of individual pair-wise correlations and sets to zero
those elements that are not statistically significant, taking account of the multiple
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of dependence of the underlying observations, and the relative expansion rates of N
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MT estimator of the sample correlation matrix is shown to be consistent in the spectral
and Frobenius norms, and in terms of support recovery, so long as the true covariance
matrix is sparse. The performance of the proposed MT estimator is compared to a
number of other estimators in the literature using Monte Carlo experiments. It is shown
that the MT estimator performs well and tends to outperform the other estimators,
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1 Introduction

Improved estimation of covariance matrices is a problem that features prominently in a

number of areas of multivariate statistical analysis. In finance it arises in portfolio selection

and optimisation (Ledoit and Wolf (2003)), risk management (Fan et al. (2008)) and testing

of capital asset pricing models (Sentana (2009)). In global macroeconometric modelling

with many domestic and foreign channels of interactions, error covariance matrices must be

estimated for impulse response analysis and bootstrapping (Pesaran et al. (2004); Dees et

al. (2007)). In the area of bioinformatics, covariance matrices are required when inferring

gene association networks (Carroll (2003); Schäfer and Strimmer (2005)). Such matrices are

further encountered in fields including meteorology, climate research, spectroscopy, signal

processing and pattern recognition.

Importantly, the issue of consistently estimating the population covariance matrix, Σ =

(σij), becomes particularly challenging when the number of variables, N , is larger than the

number of observations, T . In this case, one way of obtaining a suitable estimator for Σ

is to appropriately restrict the off-diagonal elements of its sample estimate denoted by Σ̂.

Numerous methods have been developed to address this challenge, predominantly in the

statistics literature. See Pourahmadi (2011) for an extensive review and references therein.

Some approaches are regression-based and make use of suitable decompositions of Σ such as

the Cholesky decomposition (see Pourahmadi (1999), Pourahmadi (2000), Rothman et al.

(2010), Abadir et al. (2014), among others). Others include banding or tapering methods as

proposed, for example, by Bickel and Levina (2004), Bickel and Levina (2008b) and Wu and

Pourahmadi (2009), which assume that the variables under consideration follow a natural

ordering. Two popular regularisation techniques in the literature that do not make use of

any ordering assumptions are those of thresholding and shrinkage.

Thresholding involves setting off-diagonal elements of the sample covariance matrix that

are in absolute terms below certain threshold values to zero. This approach includes ‘uni-

versal’ thresholding put forward by El Karoui (2008) and Bickel and Levina (2008a), and
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‘adaptive’ thresholding proposed by Cai and Liu (2011). Universal thresholding applies the

same thresholding parameter to all off-diagonal elements of the unconstrained sample co-

variance matrix, while adaptive thresholding allows the threshold value to vary across the

different off-diagonal elements of the matrix. Furthermore, the selected non-zero elements

of Σ̂ can either be set to their sample estimates or can be adjusted downward. This relates

to the concepts of ‘hard’ and ‘soft’ thresholding, respectively. The thresholding approach

traditionally assumes that the underlying (population) covariance matrix is sparse, where

sparsity is loosely defined as the presence of a sufficient number of zeros on each row of Σ

such that it is absolute summable row (column)-wise, or more generally in the sense defined

by El Karoui (2008). However, Fan et al. (2011) and Fan et al. (2013) show that such reg-

ularisation techniques can be applied even if the underlying population covariance matrix

is not sparse, so long as the non-sparsity is characterised by an approximate factor struc-

ture. The main challenge in applying this approach lies in the estimation of the thresholding

parameter, which is primarily calibrated by cross-validation.

In contrast to thresholding, the shrinkage approach reduces all sample estimates of the

covariance matrix towards zero element-wise. More formally, the shrinkage estimator of Σ is

defined as a weighted average of the sample covariance matrix and an invertible covariance

matrix estimator known as the shrinkage target - see Friedman (1989). A number of shrinkage

targets have been considered in the literature that take advantage of a priori knowledge of

the data characteristics under investigation. Examples of covariance matrix targets can be

found in Ledoit and Wolf (2003), Daniels and Kass (1999), Daniels and Kass (2001), Fan

et al. (2008), and Hoff (2009), among others. Ledoit and Wolf (2004) suggest a modified

shrinkage estimator that involves a linear combination of the unrestricted sample covariance

matrix with the identity matrix. This is recommended by the authors for more general

situations where no natural shrinking target exists. On the whole, shrinkage estimators tend

to be stable, but yield inconsistent estimates if the purpose of the analysis is the estimation

of the true and false positive rates of the underlying true sparse covariance matrix (the so

called ‘support recovery’ problem).
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This paper considers an alternative approach using a multiple testing (MT ) procedure

to set the thresholding parameter. A similar idea has been suggested by El Karoui (2008) -

p. 2748, who considers testing the N(N − 1)/2 null hypotheses that σij = 0, for all i 6= j,

jointly. But no formal theory has been developed in the literature for this purpose. In our

application of this idea we focus on testing the significance of the correlation coefficients,

ρij = σij/σ
1/2
ii σ

1/2
jj for all i 6= j, which avoids the scaling problem associated with the use of

σij, and allows us to obtain a universal threshold for all i and j pairs. We use ideas from the

multiple testing literature to control the rate at which the spectral and Frobenius norms of

the difference between the true correlation matrix R = (ρij), and our proposed estimator of

it, R̃MT = (ρ̃ij,T ), tends to zero, and will not be particularly concerned with controlling the

overall size of the joint N(N − 1)/2 tests of ρij = 0, for all i 6= j .

We establish that R̃MT converges to R in spectral norm at the rate of Op

(
mN cp(N)√

T

)
,

where mN is the maximum number of non-zero elements in the off-diagonal rows of R,

cp(N) = Φ−1
(
1− p

2Nδ

)
, Φ−1 (.) is the inverse of the cumulative distribution of a standard

normal variate, p is the nominal size of the test, and the choice of δ > 0 is related to

the degree of non-Gaussianity of the underlying observations. This is equivalent to the

corresponding Op

(
mN

√
ln(N)
T

)
rate established for the threshold estimator of Σ in the

literature, considering that c2p(N)/ ln(N)→ 2δ as N →∞. The main difference between the

two approaches is that we use a multiple testing critical value to set the threshold, whilst

the literature uses cross validation. It is perhaps also worth noting that our results are

established under weaker moment conditions than sub-Gaussianity typically assumed in the

literature while comparable to the polynomial-type tail conditions considered in Bickel and

Levina (2008a) or Cai and Liu (2011).

In terms of the Frobenius norm, we show that the MT estimator converges at the rate

of Op

(√
mNN
T

)
, for suitable choices of the critical value function in our MT procedure.

This result holds even if the underlying observations are non-Gaussian. To the best of

our knowledge, the only work that addresses the theoretical properties of the thresholding

estimator for the Frobenius norm is Bickel and Levina (2008a), who establish the slower
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rate of Op

(√
mNN ln(N)

T

)
. We also establish conditions under which our proposed estimator

consistently recovers the support of the population covariance matrix under Gaussian and

non-Gaussian observations, and show that the true positive rate tends to one with probability

1, and the false positive rate and the false discovery rate tend to zero with probability 1,

even if N tends to infinity faster than T . We provide conditions under which these results

hold.

The performance of the MT estimator is investigated using a Monte Carlo simulation

study, and its properties are compared to a number of extant regularised estimators in

the literature. The simulation results show that the proposed multiple testing estimator is

robust to the typical choices of p used in the literature (10%, 5% and 1%), and performs

favourably compared to the other estimators, especially when N is large relative to T . The

MT procedure also dominates other regularised estimators when the focus of the analysis is

on support recovery.

The rest of the paper is organised as follows: Section 2 outlines some preliminaries,

introduces the MT procedure and derives its asymptotic properties. The small sample

properties of the MT estimator are investigated in Section 3. Concluding remarks are

provided in Section 4. Some of the technical proofs and additional material are provided in

an online supplement.

Notations

O (.) and o (.) denote the Big O and Little o notations, respectively. If {fN}∞N=1 is any

real sequence and {gN}∞N=1 is a sequence of positive real numbers, then fN = O(gN) if

there exists a positive finite constant K such that |fN | /gN ≤ K for all N . fN = o(gN) if

fN/gN → 0 as N →∞. Op(.) and op(.) are the equivalent orders in probability. If {fN}∞N=1
and {gN}∞N=1 are both positive sequences of real numbers, then fN = 	 (gN) if there exists

N0 ≥ 1 and positive finite constants K0 and K1, such that infN≥N0 (fN/gN) ≥ K0, and

supN≥N0 (fN/gN) ≤ K1. The largest and the smallest eigenvalues of theN×N real symmetric

matrix A = (aij) are denoted by λmax (A) and λmin (A) , respectively, its trace by tr (A) =
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∑N
i=1 aii, its maximum absolute column sum norm by ‖A‖1 = max1≤j≤N

(∑N
i=1 |aij|

)
, its

maximum absolute row sum norm by ‖A‖∞ = max1≤i≤N

(∑N
j=1 |aij|

)
, its spectral radius

by % (A) = |λmax (A)|, its spectral (or operator) norm by ‖A‖ = λ1/2max (A
′A), its Frobenius

norm by ‖A‖F =
√
tr (A′A).

a.s.→ denotes almost sure convergence, and
p→ convergence in

probability. K,K0, K1, C,κ, cδ, cd, ε0, ε, γ and η are finite positive constants, independent of

N and T . supit will be used to denote sup1≤i≤N,1≤t≤T . All asymptotics are carried out under

N and T →∞, jointly.

2 Regularising the sample correlation matrix: A mul-

tiple testing (MT) approach

Let {xit, i ∈ N, t ∈ T}, N ⊆ N, T ⊆ Z, be a double index process where xit is de-

fined on a suitable probability space (Ω, F, P ), and denote the covariance matrix of xt =

(x1t, x2t, . . . , xNt)
′ by

V ar (xt) = Σ = E
[
(xt − µ) (xt − µ)′

]
, (1)

where E(xt) = µ = (µ1, µ2, . . . , µN)
′, and Σ is an N × N symmetric, positive definite real

matrix with (i, j) element, σij. We assume that xit is independent over time, t. We consider

the regularisation of the sample covariance matrix estimator of Σ, denoted by Σ̂, with

elements

σ̂ij,T = T−1
T∑

t=1

(xit − x̄i) (xjt − x̄j) , for i, j = 1, 2, . . . , N, (2)

where x̄i = T−1
∑T

t=1 xit. To this end we assume that Σ is (exactly) sparse defined as follows:

Assumption 1 The population covariance matrix, Σ = (σij), where λmin (Σ) ≥ ε0 > 0, is

sparse in the sense that mN defined by

mN = max
1≤i≤N

N∑

j=1

I (σij 6= 0) , (3)
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is O
(
Nϑ
)
for some 0 ≤ ϑ < 1/2, where I(A) is an indicator function that takes the value of

1 if A holds and zero otherwise.

A comprehensive discussion of the concept of sparsity applied to Σ and alternative ways

of defining it are provided in El Karoui (2008) and Bickel and Levina (2008a).

Remark 1 The concept of sparsity defined by (3) is particularly suited to economic applica-

tions where the focus of the analysis is often on connections in a given network, or support

recovery of Σ.1 But our analysis can be readily extended to allow for approximate sparsity

entertained in the literature, with (3) replaced by

mq,N = max
1≤i≤N

N∑

j=1

|σij|q ,

for 0 ≤ q < 1, and mq,N = O
(
Nϑ
)
, with 0 ≤ ϑ < 1/2. To simplify the exposition we focus

on the concept of exact sparsity as defined by Assumption 1.

We follow the hard thresholding literature but, as noted above, we employ multiple

testing to decide on the threshold value. More specifically, we set to zero those elements of

R = (ρij) that are statistically insignificant and therefore determine the threshold value as

part of a multiple testing strategy. We apply the thresholding procedure explicitly to the

correlations rather than the covariances. This has the added advantage that one can use

a so-called ‘universal’ threshold rather than making entry-dependent adjustments, which in

turn need to be estimated when thresholding is applied to covariances. This feature is in line

with the method of Bickel and Levina (2008a) or El Karoui (2008) but shares the properties

of the adaptive thresholding estimator developed by Cai and Liu (2011).

Specifically, denote the sample correlation of xit and xjt, computed over t = 1, 2, . . . , T ,

by

ρ̂ij,T = ρ̂ji,T =
σ̂ij,T√
σ̂ii,T σ̂jj,T

, (4)

1A similar argument is also made in Fan et al. (2011).

6



where σ̂ij,T is defined by (2). For a given i and j, it is well known that under H0,ij : σij = 0,
√
T ρ̂ij,T is asymptotically distributed as N(0, 1) for T sufficiently large. This suggests using

T−1/2Φ−1
(
1− p

2

)
as the threshold for

∣∣ρ̂ij,T
∣∣, where Φ−1 (.) is the inverse of the cumulative

distribution of a standard normal variate, and p is the chosen nominal size of the test,

typically taken to be 1% or 5%. However, since there are in fact N (N − 1) /2 such tests and

N is large, then using the threshold T−1/2Φ−1
(
1− p

2

)
for all N(N −1)/2 pairs of correlation

coefficients will yield inconsistent estimates of Σ and fail to recover its support.

A popular approach to the multiple testing problem is to control the overall size of

the n = N(N − 1)/2 tests jointly (known as family-wise error rate) rather than the size

of the individual tests. Let the family of null hypotheses of interest be H01, H02, . . . , H0n,

and suppose we are provided with the corresponding test statistics, Z1T , Z2T , . . . , ZnT , with

separate rejection rules given by (using a two-sided alternative)

Pr (|ZiT | > CViT |H0i ) ≤ piT ,

where CViT is some suitably chosen critical value of the test, and piT is the observed p-value

for H0i. Consider now the family-wise error rate (FWER) defined by

FWERT = Pr [∪ni=1 (|ZiT | > CViT |H0i )] ,

and suppose that we wish to control FWERT to lie below a pre-determined value, p. One

could also consider other generalized error rates (see for example Abramovich et al. (2006)

or Romano et al. (2008)). Bonferroni (1935) provides a general solution, which holds for all

possible degrees of dependence across the separate tests. Using the union bound, we have

Pr [∪ni=1 (|ZiT | > CViT |H0i )] ≤
n∑

i=1

Pr (|ZiT | > CViT |H0i )

≤
n∑

i=1

piT .
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Hence to achieve FWERT ≤ p, it is sufficient to set piT ≤ p/n. Alternative multiple testing

procedures advanced in the literature that are less conservative than the Bonferroni procedure

can also be employed. One prominent example is the step-down procedure proposed by Holm

(1979) that, similar to the Bonferroni approach, does not impose any further restrictions on

the degree to which the underlying tests depend on each other. More recently, Romano and

Wolf (2005) proposed step-down methods that reduce the multiple testing procedure to the

problem of sequentially constructing critical values for single tests. Such extensions can be

readily considered but will not be pursued here.

In our application we scale p by a general function ofN , which we denote by f(N) = cδN
δ,

where cδ and δ are finite positive constants, and then derive conditions on δ which ensure

consistent support recovery and a suitable convergence rate of the error in estimation of

R = (ρij). In particular, we show that the choice of δ depends on the nature of dependence

of the pairs (yit, yjt), for all i 6= j, and on the relative rate at which N and T rise. As will

be shown in Section 2.1, the degree of dependence is defined by Kv = supijKv(θij) where

θij is a vector of cumulants of (yit, yjt). When ρij = 0 for all i and j, i 6= j, this parameter

is given by ϕmax = supij
(
ϕij
)
where ϕij = E

(
y2ity

2
jt

∣∣ρij = 0
)
> 0. In the case where yit and

yjt are independent under the null, then ϕmax = 1.

Specifically, the multiple testing (MT ) estimator of R, denoted by R̃MT =
(
ρ̃ij,T

)
, is

given by

ρ̃ij,T = ρ̂ij,T I
[∣∣ρ̂ij,T

∣∣ > T−1/2cp(N)
]
, i = 1, 2, . . . , N − 1, j = i+ 1, . . . , N, (5)

where

cp(N) = Φ
−1
(
1− p

2f(N)

)
, (6)

with f(N) = cδN
δ, cδ, δ > 0. The corresponding MT estimator of Σ is given by

Σ̃MT = D̂
1/2
R̃MTD̂

1/2
, (7)
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where D̂ = diag(σ̂11,T , σ̂22,T , . . . , σ̂NN,T ). The MT procedure can also be applied to de-

factored observations following the de-factoring approach of Fan et al. (2011) and Fan et al.

(2013).

2.1 Theoretical properties of the MT estimator

To investigate the asymptotic properties of the MT estimator defined by (5) we make the

following assumption on the bivariate distribution of xit and xjt, for any i 6= j, and t =

1, 2, . . . , T .

Assumption 2 Let yit = (xit − µi)/
√
σii with mean µi = E(xit), |µi| < K, variance σii =

V ar(xit), 0 < σii < K, and correlation coefficient ρij = σij/
√
σiiσjj, where σij = E(yityjt),

and
∣∣ρij
∣∣ < 1. Suppose that supi,tE |yit|2s < K for some positive integer s ≥ 3, and let

ξij,t = (yit, yjt, y
2
it, y

2
jt, yityjt)

′ such that for any i 6= j the time series observations ξij,t, t =

1, 2, . . . , T , are random draws from a common distribution which is absolutely continuous

with non-zero density on subsets of R5.2

We begin our theoretical derivations with the following proposition.

Proposition 1 Let yit = (xit − µi)/
√
σii, and suppose that Assumption 2 holds. Consider

the sample correlation coefficient given by (4), and note that

ρ̂ij,T =

∑T
t=1 (yit − ȳi) (yjt − ȳj)[∑T

t=1 (yit − ȳi)
2
]1/2 [∑T

t=1 (yjt − ȳj)
2
]1/2 . (8)

Then

ρij,T = E
(
ρ̂ij,T

)
= ρij +

Km(θij)

T
+O

(
T−2

)
, (9)

ω2ij,T = V ar
(
ρ̂ij,T

)
=
Kv(θij)

T
+O

(
T−2

)
, (10)

2The restrictions on the common distribution imply that Cramér’s condition holds. See p.45 of Hall
(1992) for further details.
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uniformly in the i and j (i 6= j) pairs, where3

Km(θij) = −
1

2
ρij(1− ρ2ij)+

3

8
ρij [κij(4, 0) + κij(0, 4)]−

1

2
[κij(3, 1) + κij(1, 3)]+

1

4
ρijκij(2, 2),

(11)

Kv(θij) = (1−ρ2ij)2+
1

4
ρ2ij [κij(4, 0) + κij(0, 4)]−ρij [κij(3, 1) + κij(1, 3)]+

1

2
(2+ρ2ij)κij(2, 2),

(12)

κij(4, 0) = E(y4it)− 3, κij(0, 4) = E(y4jt)− 3,

κij(3, 1) = E(y3ityjt)− 3ρij, κij(1, 3) = E(yity
3
jt)− 3ρij,

κij(2, 2) = E(y2ity
2
jt)− 2ρ2ij − 1,

θij = (ρij, κij(0, 4)+κij(4, 0), κij(3, 1)+κij(1, 3), κij(2, 2))
′, supij |Km(θij)| < K and supijKv(θij) <

K. Under the additional assumption that yit are Gaussian the above expressions simplify to

Km(θij) = −1
2
ρij(1− ρ2ij) and Kv(θij) = (1− ρ2ij)

2, and it follows that supijKv(θij) = 1.

All proofs are given in the Appendix with supporting Lemmas and technical details

provided in an online supplement.

Remark 2 From Gayen (1951) p.232 (eq (54)bis) it follows that Kv(θij) > 0 for all corre-

lation coefficients ρij = σij/
√
σiiσjj, such that

∣∣ρij
∣∣ < 1. Further, in the case where ρij = 0,

by (12),

ϕij := Kv(θij
∣∣ρij = 0) = E

(
y2ity

2
jt

∣∣ρij = 0
)
> 0, (13)

and by (11),

ψij := Km(θij
∣∣ρij = 0) = −0.5

[
E
(
y3ityjt

∣∣ρij = 0
)
+ E

(
yity

3
jt

∣∣ρij = 0
)]
. (14)

Note in addition that when yit and yjt are independently distributed, then ϕij = E (y2it)E
(
y2jt
)
=

1, and ψij = 0. This is also the case when yit are Gaussian.

3See also equations (38) and (39) of Gayen (1951).
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The next proposition assists in establishing probability bounds on ρ̂ij,T .

Proposition 2 Consider the standardised correlation coefficient

zij,T =
(
ρ̂ij,T − ρij,T

)
/ωij,T , (15)

where ρ̂ij,T is defined by (4), ρij,T and ω
2
ij,T are defined by (9) and (10), respectively, and

suppose that Assumptions 1 and 2 hold, and for all i and j (i 6= j) supij E (|zij,T |s) < K,

for some finite integer s ≥ 3. Then the cumulative distribution function of zij,T , denoted by

Fij,T (x) = Pr (zij,T ≤ x), has the following Edgeworth expansion

Pr (zij,T ≤ x) = Φ(x) +

s−2∑

r=1

T−r/2gr (x)φ(x) +O
[
T−(s−1)/2

]
(16)

uniformly in x ∈ R, where Φ(x) and φ (x) are the distribution and density functions of

the standard Normal (0, 1), respectively, and gr (x), for r = 1, 2, . . . , s − 2, are finite-order

polynomials in x of degree 3r − 1 whose coefficients do not depend on x. Furthermore, for

all finite s ≥ 3, and aT > 0, we have

Pr (zij,T ≤ −aT ) ≤ Ke−
1
2
a2T +O

(
T−

(s−2)
2 a

3(s−2)−1
T e−

1
2
a2T

)
+O

[
T−(s−1)/2

]
, (17)

and

Pr (zij,T > aT ) ≤ Ke−
1
2
a2T +O

(
T−

(s−2)
2 a

3(s−2)−1
T e−

1
2
a2T

)
+O

[
T−(s−1)/2

]
. (18)

Remark 3 This proposition establishes a bound on the probability of
∣∣ρ̂ij,T − ρij

∣∣ > T−1/2cp(N)

without requiring sub-Gaussianity, at the expense of the additional order term, O
[
T−(s−1)/2

]
,

which relates the bound to the order of the moments of zij,T .

Remark 4 It is also possible to use the Berry-Essen inequality and Cramer-type moderate

deviation to obtain the probability bounds in the above proposition which could result in better

bounds. On this see, in particular, Delaigle et al. (2011), and the recent contributions by

Zhou et al. (2018) and Fan et al. (2018) who make use of a robust covariance estimator
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to tackle heavy-tailed data that yields exponential-type deviation bounds under mild moment

conditions. While the focus of these contributions is primarily on large scale dependence-

adjusted multiple testing of the mean, application of their approach to our problem could lead

to weaker moment conditions.4

Using the probability bounds (17) and (18) we first establish the rate of convergence of

the MT estimator under the spectral norm which implies convergence in eigenvalues and

eigenvectors (see El Karoui (2008), and Bickel and Levina (2008b)).

Theorem 1 (Convergence under spectral norm) Consider the sample correlation coefficient

of xit and xjt, defined by ρ̂ij,T (see (4)), and denote the associated population correlation

matrix by R = (ρij). Let T = cdN
d, with cd > 0, and suppose that Assumptions 1 and 2

hold. Further, let

cp(N) = Φ
−1
(
1− p

2f(N)

)
,

where 0 < p < 1, f(N) = cδN
δ, with cδ, δ > 0. Suppose also that there exist N0 such that

for all N > N0,

1− p

2f(N)
> 0, (19)

ρmin > cp(N)/
√
T , (20)

where ρmin = minij(
∣∣ρij
∣∣ , ρij 6= 0), and

cp(N)/
√
T = o(1). (21)

Consider values of δ that satisfy condition

δ >
2Kv

(1− γ)2
, (22)

for some small positive constant γ, whereKv = supijKv(θij) and Kv(θij) is defined by (12).

4We are grateful to Jianqing Fan (Co-Editor) for drawing our attention to this alternative approach which
could form the basis of future investigations.
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Then for all values of d > 4/ (s− 1), where s is defined by Assumption 2, we have

∥∥∥R̃MT −R
∥∥∥ = Op

(
mNcp(N)√

T

)
, (23)

where mN is defined by (3),and the multiple testing threshold estimator, R̃MT , is defined by

R̃MT =
(
ρ̃ij,T

)
, where ρ̃ij,T = ρ̂ij,T I

[∣∣ρ̂ij,T
∣∣ > T−1/2cp(N)

]
.

Remark 5 The term cp(N) in (23) directly corresponds to the term
√
ln(N) obtained in

the literature for the probability order, Op

(
mN

√
ln(N)√
T

)
, of the spectral norm of threshold

estimators of R. This result follows since limN→∞ c
2
p(N)/ ln(N) = 2δ, for δ > 0.

5

Remark 6 The parameter d, which controls the rate at which T rises with N , is required

to be sufficiently large such that d > 4/(s − 1), and T−1/2cp(N) = o(1) hold. But from

result (a) of Lemma 2 in the online supplement, we have N−d/2cp(N) = O
(√

N−d ln(N)
)
,

and condition T−1/2cp(N) = o(1) will be met if N−d ln(N) = o(1). Further, recall that the

validity of the Edgeworth expansion that underlies our analysis requires s to be finite, and

hence condition d > 0 will follow from the moment condition d > 4/(s − 1), for s ≥ 3

required by Assumption 2.

Remark 7 Condition (19) is met for δ > 0 and N sufficiently large. Condition (20) can be

written as

ρ2min >
c2p(N)

T
=
c2p(N)

cdNd
= c−1d

[
c2p(N)

ln(N)

] [
ln(N)

Nd

]
.

Once again since limN→∞ c
2
p(N)/ ln(N) = 2δ, then condition (20) will be satisfied for any

δ > 0, even if ρmin tends to zero with N , so long as the rate at which ρmin tends to zero is

slower than
√
ln(N)/Nd.

Remark 8 Note that under Gaussianity where Kv = supijKv(θij) = 1, condition (22)

becomes δ > 2. In general, the spectral norm result requires δ to be set above 2 supijKv(θij),

which turns out to be larger than the value of δ required for the Frobenius norm obtained in

the theorem below.
5See part (b) of Lemma 2 in the online supplement.
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Theorem 2 (Convergence under Frobenius norm) Suppose that conditions of Theorem 1

hold, but (22) is replaced by the weaker condition on δ

δ > (2− d)ϕmax, (24)

whereϕmax = supij E
(
y2ity

2
jt

∣∣ρij = 0
)
> 0, yit = (xit− µi)/

√
σii (see Assumption 2), δ and d

are the exponents in f(N) = cδN
δ, and T = cdN

d, with cδ, cd > 0. Then for all values of

d > max

(
2 + ϑ

s− 1 ,
4

s+ 1

)
, (25)

where s is defined by Assumption 2, and ϑ (0 ≤ ϑ < 1/2) is the degree of sparsity of the

correlation matrix, R, defined by condition (3) in Assumption 1, we have

E
∥∥∥R̃MT −R

∥∥∥
F
= O

(√
mNN

T

)
, (26)

and
∥∥∥R̃MT −R

∥∥∥
F
= Op

(√
mNN

T

)
, (27)

where mN = O(Nϑ), and the multiple testing threshold estimator, R̃MT , is defined by R̃MT =
(
ρ̃ij,T

)
, where ρ̃ij,T = ρ̂ij,T I

[∣∣ρ̂ij,T
∣∣ > T−1/2cp(N)

]
.

Remark 9 For the Frobenius norm result to hold condition (24) implies that δ should be set

at a sufficiently high level, determined by d (the relative expansion rates of N and T ), and

ϕmax (the maximum degree of dependence between yit and yjt when ρij = 0). The Frobenius

norm result holds even if N rises faster than T , so long as cp(N)/
√
T = o(1) and a sufficient

number of moments exists such that condition (25) is met. In the case where N and T are

of the same order of magnitude (namely, d = 1), and where yit and yjt are independently

distributed when ρij = 0 (namely, ϕmax = 1), then the Frobenius norm results, (26) and (27),

require δ > 1.
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Remark 10 The number of moments, s, of yit required for the convergence results (23),

(26) or (27) to hold is related to the relative rate of expansion of N and T , d. For d = 1,

s = 5 moments of ρ̂ij (which requires xit to have 10 moments) are sufficient to achieve the

spectral or Frobenius norm results. Additional moments are required if N is to rise faster

than T .

Remark 11 The convergence rate of Op

(√
mNN
T

)
obtained for the MT estimator under the

Frobenius norm compares favourably to the corresponding rate of Op

(√
mNN ln(N)

T

)
obtained

for the threshold estimator. See, for example, Theorem 2 of Bickel and Levina (2008a), BL.

The slower rate of convergence achieved by BL under the Frobenius norm arises from the

fact that their result is derived by explicitly using their spectral norm convergence rate. On

the other hand, we consider the derivation of the Frobenius norm convergence rate directly

and independently of our spectral norm results. Furthermore, the sparsity condition of As-

sumption 1 sets an upper bound, mN , on the number of non-zero units in the rows (columns)

of the population covariance matrix Σ, but it is silent as to the number of rows (columns)

of Σ with mN non-zero elements. Whilst this ambiguity does not impact the convergence

rate obtained for the spectral norm, it does affect the Frobenius norm. In many economic

applications it might be known that only a finite number of rows of Σ, say k, have at most

mN non-zero elements with the rest of the rows only containing a fixed number of non-zero

elements, say m0, which is bounded in N . Under this notion of sparsity the convergence rate

of the Frobenius norm will be given by

∥∥∥R̃MT −R
∥∥∥
F
= Op

(√
kmN

T

)
+Op

(√
(N − k)m0

T

)
,

which has a more favourable convergence rate as compared to (27).

Remark 12 It is interesting to note that application of the Bonferroni procedure to the

problem of testing ρij = 0 for all i 6= j, is equivalent to setting f(N) = N(N − 1)/2.

Our theoretical results suggest that this can be too conservative if ρij = 0 implies yit and
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yjt are independent, but could be appropriate otherwise depending on the relative rates at

which N and T rise. In our Monte Carlo study we consider δ = {1, 2}, that corresponds to

ϕmax = {1, 1.5}.

Consider now the issue of consistent support recovery of R (or Σ) for T = T (N) = cdN
d

and N →∞, which is defined in terms of the true positive rate (TPRN), false positive rate

(FPRN), and false discovery rate (FDRN) statistics. Consistent support recovery requires

TPRN → 1, FPRN → 0 and FDRN → 0, with probability 1 (almost surely) as N → ∞,

and does not follow immediately from the results obtained above on the convergence rates

of different estimators of R. This is addressed in the following theorem.

Theorem 3 (Support Recovery) Suppose that Assumptions 1 and 2 hold, and let

cp(N) = Φ
−1
(
1− p

2f(N)

)
,

where 0 < p < 1, f(N) = cδN
δ, with cδ, δ > 0, and T = cdN

d, with cd > 0. Further, suppose

that there exist N0 such that for all N > N0,

1− p

2f(N)
> 0,

ρmin > cp(N)/
√
T , (28)

where ρmin = minij(
∣∣ρij
∣∣ , ρij 6= 0), and

cp(N)/
√
T = o(1). (29)

Consider the true positive rate (TPRN), the false positive rate (FPRN), and the false dis-
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covery rate (FDRN) statistics defined by

TPRN =

∑∑
i6=j

I(ρ̃ij,T 6= 0, and ρij 6= 0)
∑∑
i6=j

I(ρij 6= 0)
(30)

FPRN =

∑∑
i6=j

I(ρ̃ij,T 6= 0, and ρij = 0)
∑∑
i6=j

I(ρij = 0)
, (31)

FDRN =

∑∑
i6=j

I(ρ̃ij,T 6= 0, and ρij = 0)
∑∑
i6=j

I(ρij 6= 0)
, (32)

computed using the multiple testing estimator

ρ̃ij,T = ρ̂ij,T I
[∣∣ρ̂ij,T

∣∣ > T−1/2cp(N)
]
,

where ρ̂ij,T is the pair-wise correlation coefficient defined by (4). Then as N →∞ we have:

TPRN
a.s.→ 1, for δ > 0, and d > 2/(s− 1)

FPRN
a.s.→ 0, for δ > ϕmax, and d > 2/(s− 1)

FDRN
a.s.→ 0, for δ > (2− ϑ)ϕmax, and d > 2 (2− ϑ) /(s− 1)

where ϑ (0 ≤ ϑ < 1/2) is the degree of sparsity of the correlation matrix, R, defined by

condition (3) in Assumption 1, ϕmax = supij E
(
y2ity

2
jt

∣∣ρij = 0
)
> 0, with yit = (xit−µi)/

√
σii

(see Assumption 2). Further, as N → ∞, TPRN → 1 and FPRN
.→ 0 in probability for

any δ > 0 and d > 2/(s − 1), and FDRN → 0 in probability if δ > (1 − ϑ)ϕmax, and

d > 2 (1− ϑ) /(s− 1).

Remark 13 We note that
c2p(N)

T
≤ 2 [ln(N)− ln(p)]

cdNd
,

and hence condition T−1/2cp(N) = o(1) will be met if N−d ln(N) = o(1). Also, since under

Assumption 2 s ≥ 3, it follows from the moment conditions on d that d > 0. For a discussion
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of the remaining conditions on δ, d, and ρmin > T−1/2cp(N) > 0, see the above Remarks. In

general, the conditions needed for the support recovery results to hold when N is much larger

than T are less restrictive as compared to the conditions needed for the validity of the results

on the spectral and Frobenius norms.

3 Monte Carlo simulations

We investigate the numerical properties of the proposed multiple testing (MT ) estimator

using Monte Carlo simulations. We compare our estimator with a number of thresholding and

shrinkage estimators proposed in the literature, namely the thresholding estimators of Bickel

and Levina (2008a) - BL - and Cai and Liu (2011) - CL, and the shrinkage estimator of LW.

The thresholding methods of BL and CL require the computation of a theoretical constant,

C, that arises in the rate of their convergence. For this purpose, cross-validation is typically

employed which we use when implementing these estimators. For the CL approach we also

consider the theoretical value of C = 2 derived by the authors in the case of Gaussianity.

A review of these estimators along with details of the associated cross-validation procedure

can be found in the Supplementary Appendix B.

We begin by generating the standardised variates, yit, as

yt = Put, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , yNt)
′, ut = (u1t, u2t, . . . , uNt)

′, and P is the Cholesky factor asso-

ciated with the choice of the correlation matrix R = PP ′. We consider two alternatives

for the errors, uit: (i) the benchmark Gaussian case where uit ∼ IIDN(0, 1) for all i and

t, and (ii) the case where uit follows a multivariate t-distribution with v degrees of freedom

generated as

uit =

(
v− 2
χ2v,t

)1/2
εit, for i = 1, 2, . . . , N,

where εit ∼ IIDN(0, 1), and χ2v,t is a chi-squared random variate with v > 4 degrees of
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freedom, distributed independently of εit for all i and t. In order to investigate the robustness

of our results to the moment conditions, we experiment with a relatively low degrees of

freedom for the t-distribution and set v=8, which ensures that E (y6it) exists and ϕmax ≤ 2.

Note that under ρij = 0, ϕij = E
(
y2ity

2
jt

∣∣ρij = 0
)
= (v−2)/(v−4), and with v = 8 we

have ϕij = ϕmax = 1.5. Given our theoretical findings, it is most likely that we obtain

better results if we experiment with higher degrees of freedom. One could further allow for

fat-tailed εit shocks, say, though fat-tail shocks alone (e.g. generating uit as such) do not

necessarily result in ϕij > 1 as shown in Lemma 6 in the online supplementary Appendix

A. The same is true for normal shocks under case (i) where E
(
y2ity

2
jt

)
= 1 whether P = IN

or not. In such cases setting δ = 1 is likely to be sufficient for the Frobenius norms given

the (N, T ) combinations considered. But for the spectral norm a larger value of δ might be

necessary. In order to verify and calibrate the values of δ corresponding to the alternative

processes generating yit, we also consider an estimated version of δ. For this purpose we

use a cross-validation procedure that corresponds to those used for the BL and CL methods

respectively. Details can be found in Section 3.7.

Next, the non-standardised variates xt = (x1t,x2t, . . . ,xNt)
′ are generated as

xt = a+ γft +D
1/2yt, (33)

where D = diag(σ11, σ22, . . . , σNN), a = (a1, a2, . . . , aN)
′ and γ = (γ1, γ2, . . . , γN)

′.

We report results for N = {30, 100, 200} and T = 100, for the baseline case where

γ = 0 and a = 0 in (33). The properties of the MT procedure when factors are included

in the data generating process are also investigated by drawing γi and ai as IIDN (1, 1) for

i = 1, 2, . . . , N , and generating ft, the common factor, as a stationary AR(1) process, but to

save space these results are made available upon request. Under both settings we focus on

the residuals from an OLS regression of xt on an intercept and a factor (if needed).

Given our interest in both the problems of regularisation of Σ̂ and support recovery of

Σ, we consider two exactly sparse covariance (correlation) matrices:
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Monte Carlo design A: Following Cai and Liu (2011) we consider the banded matrix

Σ = (σij) = diag(A1,A2),

whereA1 = A+εIN/2,A = (aij)1≤i,j≤N/2, aij = (1− |i−j|
10
)+ with ε = max(−λmin(A), 0)+0.01

to ensure that A is positive definite, and A2 = 4IN/2. Σ is a two-block diagonal matrix,

A1 is a banded and sparse covariance matrix, and A2 is a diagonal matrix with 4 along the

diagonal. Matrix P is obtained numerically by applying the Cholesky decomposition to the

correlation matrix, R = D−1/2ΣD−1/2 = PP′, where the diagonal elements of D are given

by σii = 1 + ε, for i = 1, 2, . . . , N/2 and σii = 4, for i = N/2 + 1, N/2 + 1, . . . , N.

Monte Carlo design B : We consider a covariance structure that explicitly controls for the

number of non-zero elements of the population correlation matrix. First we draw the N × 1

vector b = (b1, b2, . . . , bN)
′ with elements generated as Uniform (0.7, 0.9) for the first and

last Nb (< N) elements of b, where Nb =
[
Nβ
]
, and set the remaining middle elements of b

to zero. The resulting population correlation matrix R is defined by

R = IN + bb
′ − diag (bb′) , (34)

for which
√
Tρmin −cp(N) > 0 and ρmin = minij

(∣∣ρij
∣∣ , ρij 6= 0

)
> 0, in line with Theorem

3. The degree of sparseness of R is determined by the value of the parameter β. We

are interested in weak cross-sectional dependence, so we focus on the case where β < 1/2

following Pesaran (2015), and set β = 0.25. Matrix P is then obtained by applying the

Cholesky decomposition to R defined by (34). Further, we set Σ = D1/2RD1/2, where the

diagonal elements of D are given by σii ∼ IID (1/2 + χ2(2)/4), i = 1, 2, . . . , N .

3.1 Finite sample positive definiteness

As with other thresholding approaches, multiple testing preserves the symmetry of R̂ and is

invariant to the ordering of the variables but it does not ensure positive definiteness of the
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estimated covariance matrix when N > T .

A number of methods have been developed in the literature that produce sparse inverse

covariance matrix estimates which make use of a penalised likelihood (D’Aspremont et al.

(2008), Rothman et al. (2008), Rothman et al. (2009), Yuan and Lin (2007), and Peng et al.

(2009)) or convex optimisation techniques that apply suitable penalties such as a logarithmic

barrier term (Rothman (2012)), a positive definiteness constraint (Xue et al. (2012)), an

eigenvalue condition (Liu et al. (2014), Fryzlewicz (2013), Fan et al. (2013) - FLM). Most of

these approaches are rather complex and computationally extensive.

A simpler alternative, which conceptually relates to soft thresholding (such as the smoothly

clipped absolute deviation by Fan and Li (2001) and the adaptive lasso by Zou (2006)), is

to consider a convex linear combination of R̃MT and a well-defined target matrix which is

known to result in a positive definite matrix. In what follows, we opt to set as benchmark

target the N×N identity matrix, IN , in line with one of the methods suggested by El Karoui

(2008). The advantage of doing so lies in the fact that the same support recovery achieved

by R̃MT is maintained and the diagonal elements of the resulting correlation matrix do not

deviate from unity. Given the similarity of this adjustment to the shrinking method, we dub

this step shrinkage on our multiple testing estimator (S-MT ),

R̃S-MT (ξ) = ξIN + (1− ξ)R̃MT , (35)

with shrinkage parameter ξ ∈ (ξ0, 1], and ξ0 being the minimum value of ξ that produces a

non-singular R̃S-MT (ξ0) matrix. Alternative ways of computing the optimal weights on the

two matrices can be entertained. We choose to calibrate, ξ, since opting to use ξ0 in (35),

as suggested in El Karoui (2008), does not necessarily provide a well-conditioned estimate

of R̃S-MT . Accordingly, we set ξ by solving the following optimisation problem

ξ∗ = arg min
ξ0+ε≤ξ≤1

∥∥∥R−1
0 −R̃

−1
S-MT (ξ)

∥∥∥
2

F
, (36)
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where ε is a small positive constant, and R0 is a reference invertible correlation matrix.

Finally, we construct the corresponding covariance matrix as

Σ̃S-MT (ξ
∗) = D̂

1/2
R̃S-MT (ξ

∗) D̂
1/2
.

Further details on the S-MT procedure, the optimisation of (36) and choice of reference

matrix R0 are available in the Supplementary Appendix C.

3.2 Alternative estimators and evaluation metrics

Using the earlier set up and the relevant adjustments to achieve positive definiteness of the

estimators of Σ where required, we obtain the following estimates of Σ:

MT1: thresholding based on the MT approach applied to the sample correlation matrix

(Σ̃MT ) using δ = 1 (Σ̃MT,1)

MT2: thresholding based on the MT approach applied to the sample correlation matrix

(Σ̃MT ) using δ = 2 (Σ̃MT,2)

MTδ̂: thresholding based on the MT approach applied to the sample correlation matrix

(Σ̃MT ) using cross-validated δ (Σ̃MT,δ̂)

BLĈ : BL thresholding on the sample covariance matrix using cross-validated C (Σ̃BL,Ĉ)

CL2: CL thresholding on the sample covariance matrix using the theoretical value of

C = 2 (Σ̃CL,2)

CLĈ : CL thresholding on the sample covariance matrix using cross-validated C (Σ̃CL,Ĉ)

S-MT1: supplementary shrinkage applied to MT1 (Σ̃S-MT,1)

S-MT2: supplementary shrinkage applied to MT2 (Σ̃S-MT,2)

S-MTδ̂: supplementary shrinkage applied to MTδ̂ (Σ̃S-MT,δ̂)

BLĈ∗ : BL thresholding using the Fan et al. (2013) - FLM - cross-validation adjustment

procedure for estimating C to ensure positive definiteness (Σ̃BL,Ĉ∗)

CLĈ∗ : CL thresholding using the FLM cross-validation adjustment procedure for esti-

mating C to ensure positive definiteness (Σ̃CL,Ĉ∗)
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LWΣ̂: LW shrinkage on the sample covariance matrix (Σ̂LWΣ̂
).

In accordance with the theoretical results and in view of Remark 12, we consider three

versions of the MT estimator depending on the choice of δ =
{
1, 2, δ̂

}
. The BLĈ , CL2

and CLĈ estimators apply the thresholding procedure without ensuring that the resultant

covariance estimators are invertible. The next six estimators yield invertible covariance

estimators. The S-MT estimators are obtained using the supplementary shrinkage approach

described in Section 3.1. BLĈ∗ and CLĈ∗ estimators are obtained by applying the additional

FLM adjustments. The shrinkage estimator, LWΣ̂, is invertible by construction. In the

case of the MT estimators where regularisation is performed on the correlation matrix, the

associated covariance matrix is estimated as D̂1/2R̃MT D̂
1/2.

For both Monte Carlo designs A and B, we compute the spectral and Frobenius norms of

the deviations of each of the regularised covariance matrices from their respective population

Σ:
∥∥∥Σ−Σ̊

∥∥∥ and
∥∥∥Σ−Σ̊

∥∥∥
F
, (37)

where Σ̊ is set to one of the following estimators {Σ̃MT,1, Σ̃MT,2, Σ̃MT,δ̂, Σ̃BL,Ĉ , Σ̃CL,2,

Σ̃CL,Ĉ , Σ̃S-MT,1, Σ̃S-MT,2, Σ̃S-MT,δ̂, Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LWΣ̂
}. The threshold values, δ̂, Ĉ and

Ĉ∗, are obtained by cross-validation (see Section 3.7 and supplementary appendix B.3 for

details). Both norms are also computed for the difference betweenΣ−1, the population inverse

of Σ, and the estimators {Σ̃−1
S-MT,1, Σ̃

−1
S-MT,2, Σ̃

−1
S-MT,δ̂, Σ̃

−1
BL,Ĉ∗ , Σ̃

−1
CL,Ĉ∗ , Σ̂

−1
LWΣ̂

}. Further, we

investigate the ability of the thresholding estimators to recover the support of the true

covariance matrix via the true positive rate (TPR) and false positive rate (FPR), as defined

by (30) and (31), respectively. The statistics TPR and FPR are not relevant to the shrinkage

estimator LWΣ̂ and will not be reported for this estimator.

3.3 Robustness of MT to the choice of p-values

We begin by investigating the sensitivity of the MT estimator to the choice of the p-value,

p, and the scaling factor determined by δ used in the formulation of cp(N) defined by (6).
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For this purpose we consider the typical significance levels used in the literature, namely

p = {0.01, 0.05, 0.10}, δ = {1, 2}, and a cross-validated version of δ, denoted by δ̂. Tables 1a

and 1b summarise the spectral and Frobenius norm losses (averaged over 2000 replications)

for Monte Carlo designs A and B respectively, and for both distributional error assumptions

(Gaussian and multivariate t). First, we note that neither of the norms is much affected by

the choice of the p values when setting δ = 1 or 2 in the scaling factor, irrespective of whether

the observations are drawn from a Gaussian or a multivariate t distribution. Similar results

are also obtained using the cross validated version of δ. Perhaps this is to be expected since

for N sufficiently large the effective p-value which is given by 2p/N δ is very small and the

test outcomes are more likely to be robust to the choice of p values as compared to the choice

of δ. The results in Tables 1a and 1b also show that in the case of Gaussian observations,

where ϕmax = 1, the scaling factor using δ = 1 is likely to perform better as compared to

δ = 2, but the reverse is true if the observations are multivariate t distributed under which

the scaling factor using δ = 2 is to be preferred.

It is also interesting that the performance of the MT procedure when using δ̂ is in line

with our theoretical findings. The estimates of δ are closer to unity in the case of experiments

with ϕmax = 1, and are closer to δ = 2 in the case of experiments with ϕmax = 1.5. The

average estimates of δ̂ shown in Tables 1a and 1b are also indicative that a higher value of δ

is required when observations are multivariate t distributed. Finally, we note that the norm

losses rise with N given that T is kept at 100 almost across the board in all the experiments.

Overall, the simulation results support using a sufficiently high value of δ (say around 2) or

its estimate, δ̂, obtained by cross validation.

3.4 Norm comparisons of MT , BL, CL, and LW estimators

In comparing our proposed estimators with those in the literature we consider a fewer num-

ber of Monte Carlo replications and report the results with norm losses averaged over 100

replications, given the use of the cross-validation procedure in the implementation of MT,
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BL and CL thresholding. This Monte Carlo specification is in line with the simulation set

up of BL and CL. Our reported results are also in agreement with their findings.

Tables 2 and 3 summarise the results for the Monte Carlo designs A and B, respectively.

Based on the results of Section 3.3, we provide norm comparisons for theMT estimator using

the scaling factor where δ = 2 and δ̂, and the conventional significance level of p = 0.05.

Initially, we consider the threshold estimators, the two versions of MT (MT2 and MTδ̂) and

CL (CL2 and CLĈ) estimators, and BL without further adjustments to ensure invertibility.

First, we note that the MT and CL estimators (both versions for each case) dominate the

BL estimator in every case, and for both designs. MT performs better than CL, when

comparing the versions of the two estimators using their respective theoretical thresholding

values and their estimated equivalents. The outperformance of MT is more evident as N

increases and when non-Gaussian observations are considered. The same is also true if we

compareMT and CL estimators to the LW shrinkage estimator, although it could be argued

that it is more relevant to compare the invertible versions of the MT and CL estimators

(namely Σ̃CL,Ĉ∗ , Σ̃S-MT,2 and Σ̃S-MT,δ̂) with Σ̂LWΣ̂
. In such comparisons Σ̂LWΣ̂

performs

relatively better, nevertheless, Σ̂LWΣ̂
is still dominated by Σ̃S-MT,2 and Σ̃S-MT,δ̂, with a few

exceptions in the case of design A and primarily when N = 30. However, no clear ordering

emerges when we compare Σ̂LWΣ̂
with Σ̃CL,Ĉ∗ .

3.5 Norm comparisons of inverse estimators

Although the theoretical focus of this paper has been on estimation of Σ rather than its

inverse, it is still of interest to see how well Σ̃
−1
S-MT,2, Σ̃

−1
S-MT,δ̂, Σ̃

−1
BL,Ĉ∗ , Σ̃

−1
CL,Ĉ∗ , and Σ̂

−1
LWΣ̂

estimate Σ−1, assuming that Σ−1 is well defined. Table 4 provides average norm losses for

Monte Carlo design B for which Σ is positive definite. Σ for design A is ill-conditioned

and will not be considered any further here. As can be seen from the results in Table 4,

both Σ̃
−1
S-MT,2 and Σ̃

−1
S-MT,δ̂ perform much better than Σ̃

−1
BL,Ĉ∗ and Σ̃

−1
CL,Ĉ∗ for Gaussian and

multivariate t-distributed observations. In fact, the average spectral norms for Σ̃
−1
BL,Ĉ∗ and
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Σ̃
−1
CL,Ĉ∗ include some sizeable outliers, especially for N ≤ 100. However, the ranking of the

different estimators remains the same if we use the Frobenius norm which appears to be less

sensitive to the outliers. It is also worth noting that Σ̃
−1
S-MT,2 and Σ̃

−1
S-MT,δ̂ perform better than

LWΣ̂, for all sample sizes and irrespective of whether the observations are drawn as Gaussian

or multivariate t. Finally, using δ̂ rather than δ = 2 when implementing the MT method

improves the precision of the estimated inverse covariance matrix across all experiments.

3.6 Support recovery statistics

Table 5 reports the true positive and false positive rates (TPR and FPR) for the support

recovery of Σ using the multiple testing and thresholding estimators. In the comparison set

we include three versions of theMT estimator (Σ̃MT,1, Σ̃MT,2 and Σ̃MT,δ̂), Σ̃BL,Ĉ , Σ̃CL,2, and

Σ̃CL,Ĉ . Again we use 100 replications due to the use of cross-validation in the implementation

of MT , BL and CL thresholding. We include the MT estimators for choices of the scaling

factor where δ = 1 and δ = 2, computed at p = 0.05, to see if our theoretical result, namely

that for consistent support recovery only the linear scaling factor, where δ = 1, is needed, is

borne out by the simulations. Further, we implement MT using δ̂ to verify that the support

recovery results under MTδ̂ correspond more closely to those under MT1, in line with the

findings of Theorem 3. For consistent support recovery we would like to see FPR values

near zero and TPR values near unity. As can be seen from Table 5, the FPR values of all

estimators are very close to zero, so any comparisons of different estimators must be based

on the TPR values. Comparing the results for Σ̃MT,1 and Σ̃MT,2 we find that as predicted

by the theory (Theorem 3 and Remark 13), TPR values of Σ̃MT,1 are closer to unity as

compared to the TPR values of Σ̃MT,2. This is supported by the TPR values of Σ̃MT,δ̂

as well. Similar results are obtained for the MT estimators for different choices of the p

values. Table 6 provides results for p = {0.01, 0.05, 0.10}, and for δ =
{
1, 2, δ̂

}
using 2,000

replications. In this table it is further evident that, in line with the conclusions of Section

3.3, both the TPR and the FPR statistics are relatively robust to the choice of the p values
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irrespective of the scaling factor, or whether the observations are drawn from a Gaussian or a

multivariate t distribution. This is especially true under design B, since for this specification

we explicitly control for the number of non-zero elements in Σ, that ensures the conditions

of Theorem 3 are met.

Turning to a comparison with other estimators in Table 5, we find that the MT and

CL estimators perform substantially better than the BL estimator. Further, allowing for

dependence in the errors causes the support recovery performance of BLĈ , CL2 and CLĈ to

deteriorate noticeably while MT1, MT2 and MTδ̂ remain remarkably stable. Finally, again

note that TPR values are higher for design B. Overall, the estimators Σ̃MT,1 or Σ̃MT,δ̂ do

best in recovering the support of Σ as compared to other estimators, although the results of

CL and MT for support recovery can be very close, which is in line with the comparative

analysis carried out in terms of the relative norm losses of these estimators.

3.7 Cross-validation of δ

We calibrate δ, the parameter of the critical value function, cp(N), in the MT approach,

by following closely the cross-validation procedure implemented in BL and CL. Importantly,

Bickel and Levina (2008a) show theoretically the validity of this approach for the ‘sample

splitting’, ‘2-fold cross-validation’ and more general ‘V-fold cross-validation’ procedures.

More precisely, we perform a grid search for the choice of δ over the range: δ =

{c : δmin ≤ c ≤ δmax}. We set δmin = 1.0 and δmax = 2.5 and impose either fixed increments

of 0.1 or N -dependent increments of 1/N .6 At each point of the range, c, we generate xit,

i = 1, 2, . . . , N, t = 1, 2, . . . , T and select the N × 1 column vectors xt = (x1t, x2t, . . . , xNt)′ ,

t = 1, 2, . . . , T which we randomly reshuffle over the t-dimension. This yields a new set of

N × 1 column vectors x(s)t =
(
x
(s)
1t , x

(s)
2t , . . . , x

(s)
Nt

)′
for the first shuffle s = 1. We repeat this

reshuffling S times in total where we set S = 50. We consider this to be sufficiently large

(FLM suggested S = 20 while BL recommended S = 100 - see also Fang et al. (2016)).

6The sample size dependent alternative provides slight improvement in estimation precision for δ, but is
computationally more expensive as N rises.

27



For each shuffle s = 1, 2, . . . , S, we divide x(s) =
(
x
(s)
1 ,x

(s)
2 , . . . ,x

(s)
T

)
into two subsam-

ples of size N × T1 and N × T2, where T2 = T − T1. The theoretically ‘justified’ split

suggested in BL is given by T1 = T
(
1− 1

ln(T )

)
and T2 =

T
ln(T )

. In our simulation study

we set T1 =
2T
3
and T2 =

T
3
. Let Σ̂

(s)

1 =
(
σ̂
(s)
1,ij

)
with elements σ̂

(s)
1,ij = T−11

∑T1
t=1 x

(s)
it x

(s)
jt

and Σ̂
(s)

2 =
(
σ̂
(s)
2,ij

)
with elements σ̂

(s)
2,ij = T−12

∑T
t=T1+1

x
(s)
it x

(s)
jt , i, j = 1, 2, . . . , N denote the

sample covariance matrices generated using T1 and T2 respectively, for each shuffle s. The

corresponding sample correlation matrices are given by R̂
(s)

1 =
[
D̂
(s)

1

]−1/2
Σ̂
(s)

1

[
D̂
(s)

1

]−1/2

and R̂
(s)

2 =
[
D̂
(s)

2

]−1/2
Σ̂
(s)

2

[
D̂
(s)

2

]−1/2
respectively, where D̂

(s)

i = diag(σ̂
(s)
i,11, σ̂

(s)
i,22, . . . , σ̂

(s)
i,NN),

i = 1, 2. We regularise R̂
(s)

1 using the MT method in (5) and compute the following expres-

sion,

Ĵ (c) =
1

S

S∑

s=1

∥∥∥R̃
(s)

1 (c)− R̂(s)

2

∥∥∥
2

F
, (38)

for each c and

δ̂ = arg inf
δmin≤c≤δmax

Ĵ (c) . (39)

The final estimator of the correlation matrix is then given by R̃δ̂ and the associated covari-

ance matrix estimator, Σ̃δ̂, is computed as in (7).

3.8 Computational demands of the different thresholding methods

Table 7 reports the relative execution times of the different thresholding methods studied.

All times are relative to the time it takes to carry out the computations for the MT2 es-

timator. The computational times shown for the methods that use a calibrated threshold

parameter (i.e. MTδ̂, BLĈ and CLĈ) assume a sample-dependent grid in their respective

CV procedures. It took 0.010, 0.013, and 0.014 seconds to apply the MT method in Matlab

to a sample of N = {30, 100, 200}, respectively, and T = 100 observations using a desktop

PC. The execution times ofMT1 andMT2 are very similar and differ only slightly across the

experiments with different p-values. In contrast, the BLĈ and CLĈ thresholding approaches

are computationally much more demanding. Their computations took between about 12 and
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485257 times (depending on N) longer than the MT2 approach, for the same sample sizes

and computer hardware. The BLĈ method was less demanding than the CLĈ method -

it took between about 12 and 584 times longer than the MT2 approach. Even CL2, which

does not require estimation of the threshold parameter, took up to 19 times longer than

the MT2 approach. Thus, compared with other thresholding methods, MT1 and MT2 pro-

cedures have a clear computational advantage over the CL and BL procedures. This is

not a surprising outcome, considering that MT1 and MT2 do not involve cross validation.

But we find similar computational advantages for the MT procedure when we compare its

cross-validated version, MTδ̂, with CLĈ . The execution times of MTδ̂ were between 1278

and 482038 faster than CLĈ . But when compared to BLĈ , we find that BLĈ is somewhere

between 24 and 2634 faster to compute than MTδ̂. However, when using a fixed point in-

crement in the implementation of the MTδ̂ procedure, the computational advantage of BLĈ

over MTδ̂ disappears.

4 Concluding Remarks

This paper considers regularisation of large covariance matrices particularly when the cross

section dimension N of the data under consideration exceeds the time dimension T. In this

case the sample covariance matrix, Σ̂, becomes ill-conditioned and is not a satisfactory

estimator of the population covariance.

A regularisation estimator is proposed which makes use of insights from the multiple

testing literature to obtain threshold values for sample correlation coefficients. The proposed

MT estimator of the correlation coefficient (ρij) is set to zero when the sample correlation,

in absolute value, is below the threshold, otherwise the MT estimator is set to the sample

correlation coefficient. It is shown that the resultant estimator has a convergence rate of

the order of mNcp(N)/
√
T under the spectral norm, and

√
mNN/T under the Frobenius

norm, where N is the number of units each observed T times, mN measures the degree of

sparsity of the population correlation matrix, and cp(N) = Φ
−1 (1− p

2Nδ

)
, where Φ−1 (.) is
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the inverse of the cumulative distribution of a standard normal variate, and p is the nominal

size of the test. cp(N) directly corresponds to
√
ln (N). Our analysis allows for non-Gaussian

observations and provides guidance as to the choice of critical value function for thresholding

in terms of the degree to which underlying observations are dependent even if ρij = 0. The

choice of δ depends on the degree of non-Gaussianity of the underlying observations and

yields spectral norm results that are similar to the rates obtained in the literature. But for

the Frobenius norm we obtain better rates than those established in the literature.

The numerical properties of the proposed estimator are investigated using Monte Carlo

simulations. It is shown that the MT estimator performs well, and generally better than

the other estimators proposed in the literature. The simulations also show that in terms of

spectral and Frobenius norm losses, the MT estimator is reasonably robust to the choice

of p in the threshold criterion,
∣∣ρ̂ij
∣∣ > T−1/2Φ−1

(
1− p

2f(N)

)
, where f(N) = cδN

δ, with cδ

and δ being finite positive constants, particularly when setting δ = 2. For support recovery,

better results are obtained if δ = 1.
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Table 1a: Spectral and Frobenius norm losses for the MT estimator using significance

levels p = {0.01, 0.05, 0.10} and scaling factors with δ =
{
1, 2, δ̂

}
, for T = 100

Monte Carlo design A

δ = 1 δ = 2 δ̂

N\p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

uit∼ Gaussian

Spectral norm

30 1.70(0.49) 1.68(0.49) 1.71(0.49) 1.89(0.51) 1.79(0.50) 1.75(0.50) 1.71(0.49) 1.68(0.49) 1.69(0.49)

100 2.61(0.50) 2.51(0.50) 2.50(0.50) 3.11(0.50) 2.91(0.50) 2.84(0.50) 2.62(0.50) 2.52(0.50) 2.51(0.50)

200 3.04(0.48) 2.92(0.49) 2.89(0.49) 3.67(0.47) 3.46(0.47) 3.37(0.47) 3.05(0.48) 2.93(0.49) 2.90(0.49)

Frobenius norm

30 3.17(0.45) 3.14(0.50) 3.20(0.53) 3.49(0.42) 3.32(0.43) 3.26(0.43) 3.19(0.44) 3.13(0.48) 3.16(0.52)

100 6.67(0.45) 6.51(0.51) 6.60(0.55) 7.75(0.40) 7.34(0.41) 7.17(0.42) 6.70(0.45) 6.52(0.50) 6.57(0.54)

200 9.87(0.46) 9.60(0.53) 9.73(0.58) 11.76(0.40) 11.15(0.41) 10.89(0.42) 9.91(0.46) 9.62(0.52) 9.69(0.57)

uit∼ multivariate t−distributed with 8 degrees of freedom
Spectral norm

30 2.26(1.08) 2.42(1.20) 2.55(1.26) 2.29(0.90) 2.24(0.99) 2.24(1.03) 2.23(0.95) 2.32(1.04) 2.39(1.08)

100 3.85(4.84) 4.20(5.28) 4.46(5.48) 3.78(3.78) 3.71(4.12) 3.71(4.27) 3.67(3.81) 3.83(4.11) 3.93(4.21)

200 4.49(3.46) 5.04(4.34) 5.44(4.77) 4.26(1.80) 4.20(2.21) 4.19(2.37) 4.20(2.43) 4.45(2.78) 4.57(2.94)

Frobenius norm

30 4.06(1.14) 4.35(1.32) 4.60(1.40) 4.12(0.90) 4.04(1.00) 4.03(1.06) 4.03(1.00) 4.19(0.13) 4.32(1.19)

100 8.88(5.17) 9.75(5.67) 10.49(5.87) 9.04(4.04) 8.80(4.40) 8.74(4.57) 8.65(4.16) 9.09(4.48) 9.41(4.59)

200 12.96(4.23) 14.50(5.41) 15.81(5.95) 13.25(2.10) 12.85(2.54) 12.71(2.76) 12.57(2.97) 13.25(3.48) 13.73(3.67)

Cross validated values of δ

N\p 0.01 0.05 0.10

uit∼ Gaussian

30 1.08(0.11) 1.10(0.12) 1.12(0.13)

100 1.04(0.06) 1.05(0.07) 1.06(0.08)

200 1.03(0.05) 1.03(0.06) 1.04(0.06)

uit∼ multivariate t−distr. with 8 dof
30 1.13(0.18) 1.19(0.22) 1.25(0.25)

100 1.12(0.18) 1.18(0.22) 1.23(0.25)

200 1.15(0.20) 1.20(0.23) 1.24(0.25)

Note: The MT approach is implemented using δ = 1, δ = 2, and δ̂, computed using cross-validation.
Norm losses and estimates of δ, δ̂, are averages over 2,000 replications. Simulation standard deviations are
given in parentheses.
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Table 1b: Spectral and Frobenius norm losses for the MT estimator using significance

levels p = {0.01, 0.05, 0.10} and scaling factors with δ =
{
1, 2, δ̂

}
, for T = 100

Monte Carlo design B

δ = 1 δ = 2 δ̂

N\p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

uit∼ Gaussian

Spectral norm

30 0.48(0.16) 0.50(0.16) 0.53(0.16) 0.50(0.20) 0.49(0.18) 0.48(0.17) 0.48(0.17) 0.49(0.16) 0.49(0.16)

100 0.75(0.34) 0.76(0.32) 0.78(0.31) 0.89(0.43) 0.81(0.39) 0.79(0.37) 0.76(0.35) 0.76(0.34) 0.76(0.34)

200 0.71(0.22) 0.74(0.20) 0.77(0.20) 0.85(0.33) 0.78(0.28) 0.75(0.26) 0.72(0.24) 0.72(0.22) 0.72(0.22)

Frobenius norm

30 0.87(0.17) 0.91(0.18) 0.97(0.19) 0.89(0.20) 0.87(0.17) 0.86(0.17) 0.86(0.17) 0.88(0.17) 0.88(0.17)

100 1.56(0.24) 1.66(0.24) 1.77(0.24) 1.67(0.34) 1.60(0.29) 1.58(0.27) 1.56(0.25) 1.58(0.24) 1.58(0.25)

200 2.16(0.18) 2.32(0.20) 2.50(0.21) 2.25(0.24) 2.19(0.21) 2.16(0.20) 2.15(0.18) 2.18(0.19) 2.18(0.20)

uit∼ multivariate t−distributed with 8 degrees of freedom
Spectral norm

30 0.70(0.39) 0.78(0.43) 0.84(0.45) 0.67(0.33) 0.67(0.35) 0.67(0.37) 0.67(0.33) 0.68(0.35) 0.68(0.36)

100 1.16(0.97) 1.32(1.10) 1.42(1.18) 1.15(0.75) 1.11(0.80) 1.10(0.83) 1.10(0.72) 1.10(0.77) 1.11(0.80)

200 1.36(1.73) 1.65(2.05) 1.83(2.20) 1.14(1.03) 1.13(1.21) 1.14(1.28) 1.16(1.06) 1.19(1.20) 1.20(1.27)

Frobenius norm

30 1.23(0.42) 1.40(0.48) 1.53(0.51) 1.15(0.35) 1.16(0.38) 1.17(0.39) 1.17(0.36) 1.19(0.38) 1.20(0.39)

100 2.39(1.12) 2.90(1.31) 3.25(1.40) 2.17(0.77) 2.15(0.86) 2.16(0.90) 2.17(0.76) 2.22(0.85) 2.24(0.89)

200 3.57(2.13) 4.52(2.54) 5.18(2.72) 2.97(1.21) 2.98(1.43) 3.01(1.53) 3.06(1.27) 3.17(1.48) 3.21(1.57)

Cross validated values of δ

N\p 0.01 0.05 0.10

uit∼ Gaussian

30 1.27(0.27) 1.46(0.35) 1.61(0.36)

100 1.25(0.24) 1.43(0.31) 1.56(0.32)

200 1.23(0.22) 1.36(0.26) 1.49(0.27)

uit∼ multivariate t−distr. with 8 dof
30 1.45(0.38) 1.72(0.39) 1.87(0.35)

100 1.59(0.41) 1.76(0.40) 1.85(0.37)

200 1.68(0.44) 1.78(0.41) 1.85(0.39)

The MT approach is implemented using δ = 1, δ = 2, and δ̂, computed using cross-validation. Norm
losses and estimates of δ, δ̂, are averages over 2,000 replications. Simulation standard deviations are given
in parentheses.
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Table 2: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (T = 100) - Monte Carlo design A

N = 30 N = 100 N = 200

Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius

uit∼ Gaussian

Error matrices (Σ− Σ̊)
MT2 1.85(0.53) 3.38(0.40) 2.83(0.50) 7.29(0.42) 3.45(0.43) 11.17(0.38)

MTδ̂ 1.75(0.55) 3.21(0.49) 2.44(0.50) 6.48(0.50) 2.95(0.45) 9.65(0.48)

BLĈ 5.30(2.16) 7.61(1.23) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.26(0.13)

CL2 1.87(0.55) 3.39(0.44) 2.99(0.49) 7.57(0.44) 3.79(0.47) 11.88(0.42)

CLĈ 1.82(0.58) 3.33(0.56) 2.54(0.50) 6.82(0.51) 3.02(0.46) 10.22(0.59)

S-MT2 3.36(0.78) 4.45(0.63) 5.83(0.34) 10.95(0.47) 6.47(0.21) 16.64(0.35)

S-MTδ̂ 2.67(0.81) 3.85(0.65) 5.08(0.40) 9.70(0.51) 5.79(0.27) 14.91(0.46)

BLĈ∗ 7.09(0.10) 8.62(0.09) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.25(0.10)

CLĈ∗ 7.05(0.16) 8.58(0.12) 8.71(0.07) 16.85(0.11) 8.94(0.04) 24.23(0.09)

LWΣ̂ 2.99(0.47) 6.49(0.29) 5.20(0.34) 16.70(0.19) 6.28(0.20) 26.84(0.14)

uit∼ multivariate t− distributed with 8 degrees of freedom
Error matrices (Σ− Σ̊)

MT2 2.17(0.72) 4.02(0.88) 3.44(0.98) 8.52(1.17) 4.00(0.83) 12.79(1.66)

MTδ̂ 2.27(0.88) 4.20(1.11) 3.59(1.39) 8.76(1.65) 4.32(1.53) 13.28(2.83)

BLĈ 6.90(0.82) 8.75(0.55) 8.74(0.10) 17.26(0.30) 9.00(0.42) 24.93(1.02)

CL2 2.55(0.93) 4.53(1.00) 4.63(1.11) 10.35(1.48) 5.92(0.81) 16.43(1.74)

CLĈ 2.27(0.76) 4.24(0.94) 3.85(1.51) 9.44(2.33) 5.04(2.04) 15.65(4.71)

S-MT2 3.28(0.80) 4.76(0.77) 5.84(0.45) 11.47(0.62) 6.48(0.32) 17.27(0.71)

S-MTδ̂ 2.86(0.92) 4.51(0.97) 5.30(0.52) 10.76(0.77) 6.00(0.39) 16.36(1.04)

BLĈ∗ 7.06(0.13) 8.84(0.30) 8.74(0.10) 17.25(0.31) 8.95(0.08) 24.84(0.55)

CLĈ∗ 7.01(0.16) 8.77(0.30) 8.73(0.11) 17.23(0.29) 8.94(0.08) 24.77(0.53)

LWΣ̂ 3.35(0.51) 7.35(0.50) 5.67(0.46) 18.04(0.45) 6.60(0.43) 28.18(0.53)

Note: Norm losses are averages over 100 replications. Simulation standard deviations are given in
parentheses. Σ̊ = {Σ̃MT,2, Σ̃MT,δ̂

, Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MT,2, Σ̃S-MT,δ̂
, Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LWΣ̂

}.
Σ̃MT,2, Σ̃MT,δ̂

, Σ̃S-MT,2 and Σ̃S-MT,δ̂
are computed using p = 0.05. (MT2, S-MT2) and (MTδ̂, S-MTδ̂)

are thresholding based on multiple testing with critical value Φ−1
(
1− p

2f(N)

)
, where f(N) = N2 and

f(N) = N δ̂, respectively, with δ̂ being estimated by cross-validation. BL is Bickel and Levina universal

thresholding, CL is Cai and Liu adaptive thresholding, Σ̃MT,2 and Σ̃MT,δ̂
are based on MT2 and MTδ̂.

Σ̃S-MT,2 and Σ̃S-MT,δ̂
apply supplementary shrinkage to Σ̃MT,2 and Σ̃MT,δ̂

, Σ̃BL,Ĉ and Σ̃CL,Ĉ are based

on Ĉ which is obtained by cross-validation, Σ̃BL,Ĉ∗ and Σ̃CL,Ĉ∗ employ the further adjustment to the cross-

validation coefficient, Ĉ∗, proposed by Fan et al. (2013), Σ̃CL,2 is CL’s estimator with C = 2 (the theoretical

value of C). Σ̂LWΣ̂
is Ledoit and Wolf’s shrinkage estimator applied to the sample covariance matrix.
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Table 3: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (T = 100) - Monte Carlo design B

N = 30 N = 100 N = 200

Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius

uit∼ Gaussian

Error matrices (Σ− Σ̊)
MT2 0.49(0.18) 0.89(0.19) 0.87(0.37) 1.63(0.28) 0.73(0.24) 2.15(0.19)

MTδ̂ 0.48(0.14) 0.89(0.16) 0.79(0.31) 1.57(0.23) 0.67(0.18) 2.15(0.17)

BLĈ 0.91(0.50) 1.35(0.43) 1.40(0.95) 2.25(0.78) 2.53(0.55) 3.49(0.32)

CL2 0.49(0.17) 0.90(0.18) 1.00(0.48) 1.77(0.44) 0.90(0.37) 2.30(0.30)

CLĈ 0.49(0.15) 0.92(0.17) 0.83(0.31) 1.71(0.28) 1.14(0.83) 2.54(0.58)

S-MT2 0.68(0.27) 1.08(0.21) 1.53(0.53) 2.16(0.38) 1.23(0.41) 2.44(0.26)

S-MTδ̂ 0.66(0.23) 1.07(0.18) 1.45(0.44) 2.08(0.29) 1.12(0.30) 2.38(0.19)

BLĈ∗ 1.19(0.46) 1.63(0.40) 3.32(0.20) 3.90(0.14) 2.73(0.11) 3.61(0.08)

CLĈ∗ 1.08(0.46) 1.53(0.46) 3.34(0.15) 3.92(0.06) 2.73(0.10) 3.61(0.08)

LWΣ̂ 1.05(0.13) 2.07(0.10) 2.95(0.26) 4.47(0.09) 2.46(0.06) 6.01(0.03)

uit∼ multivariate t−distributed with 8 degrees of freedom
Error matrices (Σ− Σ̊)

MT2 0.64(0.24) 1.12(0.24) 1.05(0.45) 2.13(0.49) 1.29(2.32) 3.15(2.66)

MTδ̂ 0.66(0.25) 1.15(0.26) 1.03(0.42) 2.17(0.53) 1.30(1.90) 3.29(2.22)

BLĈ 1.36(0.40) 1.84(0.35) 2.70(0.94) 3.58(0.74) 2.70(0.29) 4.08(0.67)

CL2 0.71(0.29) 1.21(0.30) 1.69(0.70) 2.73(0.70) 1.62(0.57) 3.31(0.65)

CLĈ 0.80(0.39) 1.33(0.39) 2.03(1.08) 3.07(0.90) 2.19(0.78) 3.72(0.62)

S-MT2 0.69(0.26) 1.18(0.23) 1.41(0.57) 2.36(0.47) 1.32(0.79) 3.02(0.87)

S-MTδ̂ 0.69(0.25) 1.19(0.22) 1.36(0.49) 2.34(0.42) 1.30(0.78) 3.10(0.87)

BLĈ∗ 1.49(0.26) 1.98(0.21) 3.33(0.24) 4.07(0.18) 2.77(0.37) 4.04(0.56)

CLĈ∗ 1.26(0.40) 1.79(0.40) 3.35(0.17) 4.08(0.14) 2.73(0.14) 4.01(0.42)

LWΣ̂ 1.13(0.15) 2.25(0.11) 3.14(0.21) 4.68(0.11) 2.52(0.08) 6.18(0.13)

See the note to Table 2.
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Table 4: Spectral and Frobenius norm losses for the inverses of different regularised
covariance matrix estimators for Monte Carlo design B - T = 100

N = 30 N = 100 N = 200

Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ−1−Σ̊−1)
uit∼ Gaussian

S-MT2 4.44(1.23) 2.66(0.32) 15.81(2.63) 5.90(0.45) 14.24(2.37) 5.50(0.38)

S-MTδ̂ 4.36(1.22) 2.64(0.31) 15.25(2.78) 5.80(0.48) 13.36(2.47) 5.39(0.37)

BLĈ∗ 3.8×103(2.4×104) 19.56(58.88) 1.2×103(1.1×104) 12.16(33.25) 41.07(143.74) 7.66(3.17)

CLĈ∗ 1.9×103(1.7×104) 10.92(42.39) 51.99(241.39) 8.16(4.23) 28.45(24.37) 7.35(1.11)

LWΣ̂ 11.03(0.58) 4.26(0.09) 31.04(0.64) 8.62(0.06) 31.81(0.21) 9.40(0.05)

uit∼ multivariate t−distributed with 8 degrees of freedom
S-MT2 3.45(1.61) 2.44(0.39) 12.78(3.13) 5.55(0.55) 11.57(4.17) 5.58(0.66)

S-MTδ̂ 3.43(1.63) 2.45(0.40) 12.37(3.27) 5.51(0.59) 11.28(3.97) 5.65(0.67)

BLĈ∗ 157.26(1.0×103) 6.11(11.28) 349.35(3.1×103) 9.80(17.03) 28.58(22.06) 7.77(1.04)

CLĈ∗ 85.82(546.85) 5.53(7.84) 517.27(4.8×103) 10.07(21.25) 25.61(3.55) 7.54(0.50)

LWΣ̂ 12.08(1.19) 4.48(0.20) 31.78(1.32) 8.74(0.23) 32.06(1.00) 9.50(0.33)

Note: Σ̊
−1
= {Σ̃−1S-MT,2, Σ̃

−1
S-MT,δ̂, Σ̃

−1
BL,Ĉ∗ , Σ̃

−1
CL,Ĉ∗ , Σ̂

−1
LWΣ̂

}. See also the note to Table 2.

Table 5: Support recovery statistics for different multiple testing and thresholding
estimators - T = 100

Monte Carlo design A Monte Carlo design B

N MT1 MT2 MT
δ̂
BLĈ CL2 CLĈ N MT1 MT2 MT

δ̂
BLĈ CL2 CLĈ

uit∼ Gaussian

30 TPR 0.80 0.71 0.79 0.29 0.72 0.78 30 TPR 1.00 0.98 1.00 0.64 0.98 1.00

FPR 0.00 0.00 0.00 0.04 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

100 TPR 0.69 0.57 0.69 0.00 0.56 0.68 100 TPR 1.00 0.98 1.00 0.80 0.94 0.99

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.53 0.66 0.00 0.50 0.65 200 TPR 1.00 0.96 0.99 0.11 0.88 0.78

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

uit∼ multivariate t−distributed with 8 degrees of freedom
30 TPR 0.80 0.72 0.79 0.03 0.62 0.74 30 TPR 1.00 0.98 0.99 0.26 0.89 0.82

FPR 0.01 0.00 0.00 0.00 0.00 0.00 FPR 0.01 0.00 0.00 0.00 0.00 0.00

100 TPR 0.69 0.58 0.67 0.00 0.43 0.57 100 TPR 1.00 0.97 0.98 0.27 0.70 0.57

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.53 0.64 0.00 0.35 0.47 200 TPR 0.99 0.93 0.95 0.05 0.57 0.30

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

Note: TPR is the true positive rate and FPR is the false positive rate defined by (30) and (31), respec-
tively. MT estimators are computed with p = 0.05. For a description of other estimators see the note to
Table 2. The TPR and FPR numbers are averages over 100 replications
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Table 6: Support recovery statistics for the multiple testing estimator computed with p = {0.01, 0.05, 0.10} - T = 100

Monte Carlo design A Monte Carlo design B

p = 0.01 p = 0.05 p = 0.10 p = 0.01 p = 0.05 p = 0.10

N MT1 MT2 MT
δ̂
MT1 MT2 MT

δ̂
MT1 MT2 MT

δ̂
N MT1 MT2 MT

δ̂
MT1 MT2 MT

δ̂
MT1 MT2 MT

δ̂

uit∼ Gaussian

30 TPR 0.75 0.67 0.75 0.80 0.71 0.79 0.81 0.73 0.80 30 TPR 1.00 0.97 1.00 1.00 0.99 1.00 1.00 0.99 1.00

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 TPR 0.65 0.54 0.64 0.69 0.57 0.69 0.71 0.59 0.70 100 TPR 1.00 0.97 0.99 1.00 0.98 1.00 1.00 0.99 1.00

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.62 0.49 0.61 0.66 0.53 0.66 0.68 0.54 0.67 200 TPR 0.99 0.92 0.99 1.00 0.96 0.99 1.00 0.97 0.99

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

uit∼ multivariate t−distributed with 8 degrees of freedom
30 TPR 0.76 0.68 0.74 0.80 0.81 0.78 0.81 0.73 0.79 30 TPR 0.99 0.96 0.98 1.00 0.98 0.99 1.00 0.99 0.99

FPR 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 FPR 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

100 TPR 0.65 0.54 0.64 0.71 0.71 0.67 0.71 0.59 0.68 100 TPR 0.99 0.96 0.97 1.00 0.97 0.98 1.00 0.98 0.98

FPR 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

200 TPR 0.62 0.50 0.60 0.68 0.68 0.63 0.68 0.55 0.65 200 TPR 0.99 0.91 0.93 0.99 0.94 0.95 1.00 0.96 0.96

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: TPR is the true positive rate and FPR is the false positive rate defined by (30) and (31), respectively. MT estimators are computed with
p = 0.05. For a description of other estimators see the note to Table 2. The TPR and FPR numbers are averages over 2000 replications
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Table 7: Relative execution times of different thresholding methods

T = 100
N = 30 N = 100 N = 200

MT2 1.000 1.000 1.000
MT1 0.996 0.971 1.017
MTδ̂ 35.84 497.4 3219
BLĈ 11.53 106.3 584.8
CL2 1.924 5.629 19.12
CLĈ 1314 63481 485257

Note: All times are relative to the MT2 estimator.
See Table 2 for a note on the thresholding methods.
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Appendix: Mathematical proofs of theorems for the MT

estimator

The lemmas referred to in this Appendix are stated and proved in a supplement which will

be available online.

Proof of Proposition 1. The results for E
(
ρ̂ij,T

)
and V ar

(
ρ̂ij,T

)
are established in

Gayen (1951) using a bivariate Edgeworth expansion approach. This confirms earlier find-

ings obtained by Tschuprow (1925) (English Translation, 1939) who shows that results (9)

and (10) hold for any law of dependence between xit and xjt. See, in particular, p. 228

and equations (53) and (54) in Gayen (1951). To see that these results hold uniformly

in the i and j (i 6= j) pairs, first note we have that supij
∣∣ρij
∣∣ < 1. Using (10) and (12)

limT→∞
[
TV ar

(
ρ̂ij,T

)]
= Kv(θij). The uniform boundedness of |Km(θij)| and Kv(θij) fol-

lows directly from Assumption 2 that the sixth-order moment of yit is uniformly bounded

and application of Holder’s and the Cauchy-Schwarz inequalities. Application of these in-

equalities establishes the uniform boundedness of the moments E(y3ityjt) and E
(
y2ity

2
jt

)
as

given below:

sup
ij,t

∣∣E(y2ity2jt)
∣∣ ≤ sup

ij,t
E(
∣∣y2ity2jt

∣∣) ≤ sup
ij,t

{[
E(|yit|4)

]1/2 [
E
(
|yjt|4

)]1/2}

≤ sup
i,t

[
E(|yit|4)

]1/2
sup
j,t

[
E
(
|yjt|4

)]1/2
< K

and

sup
ij,t

∣∣E(yity3jt)
∣∣ ≤ sup

ij,t
E(
∣∣yity3jt

∣∣) ≤ sup
ij,t

{[
E(|yit|4)

]1/4 [
E
(∣∣y3jt

∣∣4/3
)]3/4}

= sup
ij,t

{[
E(|yit|4)

]1/4 [
E
(
|yjt|4

)]3/4}
= sup

i,t
E(|yit|4) < K.

The remaining terms included in O (T−2) in (9) and (10) as can be seen from Gayen

(1951) are also a function of ρij and κij(., .) up to order κij(4, 0). Hence, the results of Gayen
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(1951) hold uniformly across all i and j pair of correlations.

Consider now the case where yit for all i are Gaussian. Then E(y
4
it) = 3, and for all i 6= j

we have

yit = ρijyjt + ηjt,

where E(ηjt) = 0, V ar(ηjt) = 1− ρ2ij, and ηjt and yjt are independently distributed. Hence,

E(y3jtyit) = E[y3jt(ρijyjt + ηjt)] = ρijE(y
4
jt) = 3ρij.

E(y2ity
2
jt) = E[y2jt(ρ

2
ijy

2
jt + η

2
jt + 2ρijyjtηjt)] = 3ρ

2
ij + (1− ρ2ij) = 1 + 2ρ

2
ij.

Using the above results it now follows that

κij(4, 0) = κij(0, 4) = 0, κij(3, 1) = κij(1, 3) = 0,

which in turn establishes, when used in (11) and (12), that Km(θij) = −1
2
ρij(1 − ρ2ij) and

Kv(θij) = (1− ρ2ij)
2.

Proof of Proposition 2. Under Assumption 2, for a given i and j, set ξt = (yit, yjt, y
2
it, y

2
jt, yityjt)

′ =

(ξ1t, ξ2t, . . . , ξ5t)
′, where yit = (xit−µi)/

√
σii. To simplify the notation we drop the subscripts

i, j. Define

ξ̄T = T−1
T∑

t=1

ξt =
(
ξ̄1T , ξ̄2T , . . . , ξ̄5T

)′
,

and note that by Assumption 2, ξt, for t = 1, 2, . . . , T , are random draws from a common

distribution with non-zero density, the elements of ξt are continuously differentiable functions

of yt = (yit, yjt)
′. ρ̂ij,T , the sample correlation coefficient of xit and xjt, can be written as

ρ̂ij,T = H
(
ξ̄T
)
=

ξ̄5T − ξ̄1T ξ̄2T(
ξ̄3T − ξ̄

2
1T

)1/2 (
ξ̄4T − ξ̄

2
2T

)1/2 ,

where ξ̄3T > ξ̄
2
1T , and ξ̄4T > ξ̄

2
2T . See also Bhattacharya and Ghosh (1978) - p. 434.

It is also easily seen that µξ = E(ξ̄T ) = (0, 0, 1, 1, ρij)
′, and H

(
µξ
)
= ρij, and hence
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√
T
[
H
(
ξ̄T
)
−H

(
µξ
)]
=
√
T
(
ρ̂ij,T − ρij

)
, where H (ξ) is continuous and differentiable in

ξ, and all derivatives of H (ξ) are continuous in a neighbourhood of µξ; 1, ξ1t, ξ2t, . . . , ξ5t

are linearly independent, and E |ξkt|s < ∞, for k = 1, 2, . . . , 5, for some positive integer

s ≥ 3. Hence, Theorem 2 of Bhattacharya and Ghosh (1978) can be applied to ρ̂ij,T , which

establishes the validity of the Edgeworth expension, (16). To prove (17) using (16) we first

note that (for some aT > 0)

Pr (zij,T > aT ) = 1− Pr (zij,T ≤ aT )

= 1− Φ(aT )−
s−2∑

r=1

T−r/2gr (aT )φ(aT ) +O
[
T−(s−1)/2

]

= Φ(−aT )− (2π)−1/2 exp
(
−a

2
T

2

) s−2∑

r=1

T−r/2gr (aT ) +O
[
T−(s−1)/2

]
,

and by the inequality (A.1) (in the online supplement), we have

Pr (zij,T > aT ) ≤
1

2
exp

(
−a

2
T

2

)
+ (2π)−1/2 exp

(
−a

2
T

2

) s−2∑

r=1

T−r/2 |gr (aT )|+O
[
T−(s−1)/2

]
.

(40)

But gr (aT ) is a polynomial of degree 3r− 1 in aT , which is odd for even r, and even for odd

r. For r = 1 and r = 2 we have

|g1(x)| ≤ |g11|+ |g12| |x|2 , and |g2(x)| ≤ |g21| |x|+ |g22| |x|3 + |g23| |x|5 ,

where gij are fixed coefficients that depend on the cumulants of ξ. Result (17) now follows

from (40) by separating the constant terms of gr(aT ) from the powers of aT . Similarly, using

(16) for aT > 0 we have

Pr (zij,T ≤ −aT ) = Φ(−aT )−
s−2∑

r=1

T−r/2gr (−aT )φ(aT ) +O
[
T−(s−1)/2

]
,
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which upon using (A.1) yields

Pr (zij,T ≤ −aT ) ≤
1

2
exp

(
−a

2
T

2

)
+(2π)−1/2 exp

(
−a

2
T

2

) s−2∑

r=1

T−r/2 |gr (−aT )|+O
[
T−(s−1)/2

]
,

and result (18) follows.

Proof of Theorem 1. First we note that (see Horn and Johnson (1985) - p.297)

∥∥∥R̃−R
∥∥∥ ≤

∥∥∥R̃−R
∥∥∥
∞
= max

1≤i≤N

∑
j

∣∣ρ̃ij,T − ρij
∣∣ ,

where

ρ̃ij,T = ρ̂ij,T I
[∣∣ρ̂ij,T

∣∣ > θ (N, T )
]
, i = 1, 2, . . . , N − 1, j = i+ 1, . . . , N,

θ (N, T ) = T−1/2cp(N), and cp (N) = Φ−1
(
1− p

2f(N)

)
> 0. Note that θ (N, T ) > 0, and

θ (N, T ) = o(1) by assumption. Let ρ∗ij = ρijI
[∣∣ρij

∣∣ > θ (N, T )
]
, and further note that

max
i

∑
j

∣∣ρ̃ij,T − ρij
∣∣ ≤ max

i

∑
j

∣∣ρ̃ij,T − ρ∗ij
∣∣+max

i

∑
j

∣∣ρ∗ij − ρij
∣∣ , (41)

where to simplify the notation we will be using maxi for max1≤i≤N . We begin with the

second term of (41) and write

max
i

∑
j

∣∣ρ∗ij − ρij
∣∣ = max

i

∑
j

∣∣ρijI
[∣∣ρij

∣∣ > θ (N, T )
]
− ρij

∣∣ =

≤ max
i

∑
j

∣∣ρij
∣∣ I
[∣∣ρij

∣∣ ≤ θ (N, T )
]
.

But
∣∣ρij
∣∣ I
[∣∣ρij

∣∣ ≤ θ (N, T )
]
≤ θ (N, T ) , and hence, in view of (3) we have

max
i

∑
j

∣∣ρ∗ij − ρij
∣∣ < Kθ (N, T )max

i

(
∑

j,ρij 6=0
1

)
= O [θ (N, T )mN ] . (42)
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Consider now the first term of (41), and following Bickel and Levina (2008a) note that

max
i

∑
j

∣∣ρ̃ij,T − ρ∗ij
∣∣ ≤ max

i

∑
j

∣∣ρ̂ij,T
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ < θ (N, T )

]

+max
i

∑
j

∣∣ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

+max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

= A+ B + C. (43)

Starting with C we have

C = max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]
.

But I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]
≤ I

[∣∣ρij
∣∣ > θ (N, T )

]
and also I

( ∣∣ρij
∣∣ > θ (N, T )

∣∣ρij = 0
)
=

0. Hence

C ≤ max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I[
∣∣ρij
∣∣ > θ (N, T )]

≤ max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I[
∣∣ρij
∣∣ > θ (N, T )

∣∣ρij 6= 0]

+max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I[
∣∣ρij
∣∣ > θ (N, T )

∣∣ρij = 0]

= max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I[
∣∣ρij
∣∣ > θ (N, T )

∣∣ρij 6= 0] ≤ max
ij

∣∣ρ̂ij,T − ρij
∣∣mN . (44)

However, using (A.3) of Lemma 3 in the online supplement and noting that c2p(N) =

Tθ2 (N, T ), we have

sup
ij
Pr
[∣∣ρ̂ij,T − ρij

∣∣ > θ (N, T )
]
≤ Ke

− 1
2

c2p(N)

Kv +O


T−

(s−2)
2

[
c2p(N)

Kv

] 3(s−2)−1
2

e
− 1
2

c2p(N)

Kv




+O
(
T−(s−1)/2

)
,

where Kv = supijKv (θij) < K, and Kv (θij) is defined by (12), with Kv (θij) > 0. By the
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first-order Bonferroni inequality we have

Pr

[
max
ij

∣∣ρ̂ij,T − ρij
∣∣ > θ (N, T )

]
≤ KN2e

− 1
2

c2p(N)

Kv +O


N2T−

(s−2)
2

[
c2p(N)

Kv

] 3(s−2)−1
2

e
− 1
2

c2p(N)

Kv




+O
(
N2T−(s−1)/2

)
,

which can also be written as (noting that the middle term of the above is dominated by the

first term)

Pr

[
max
ij

∣∣ρ̂ij,T − ρij
∣∣ > θ (N, T )

]
= O

(
N2e

− 1
2

c2p(N)

Kv

)
+O

(
N2T−(s−1)/2

)
. (45)

Also, using result (b) of Lemma 2 in the online supplement, e−
1
2

c2p(N)

Kv = O
(
N−δ/Kv

)
, and

therefore

Pr

[
max
ij

∣∣ρ̂ij,T − ρij
∣∣ > θ (N, T )

]
= O

(
N2−δ/Kv

)
+O

(
N2T−(s−1)/2

)
. (46)

Since T = O(Nd), then it follows that

max
ij

∣∣ρ̂ij,T − ρij
∣∣ = Op [θ (N, T )] , (47)

so long as δ > 2Kv and d > 4/(s− 1). Using this result in (44) now yields

C = Op [mNθ (N, T )] . (48)

For A we have

A = max
i

∑
j

∣∣ρ̂ij,T
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ < θ (N, T )

]

≤ max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ < θ (N, T )

]
+max

i

∑
j

∣∣ρij
∣∣ I
[∣∣ρij

∣∣ < θ (N, T )
]

≤ A1 +A2,
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where

A2 = max
i

∑
j

∣∣ρij
∣∣ I
[∣∣ρij

∣∣ < θ (N, T )
]
= O [θ (N, T )mN ] . (49)

Also, for any γ ∈ (0, 1), we have

A1 = max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ < θ (N, T )

]

≤ max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) ,
∣∣ρij
∣∣ ≤ γθ (N, T )

]

+max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) , γθ (N, T ) <
∣∣ρij
∣∣ < θ (N, T )

]

≤ A11 +A12,

where

A11 = max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I
[∣∣ρ̂ij,T − ρij

∣∣ > (1− γ)θ (N, T )
]
, (50)

A12 = max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) , γθ (N, T ) <
∣∣ρij
∣∣ < θ (N, T )

]
. (51)

But

Pr

[
max
i

∑
j

I
[∣∣ρ̂ij,T − ρij

∣∣ > (1− γ)θ (N, T )
]
> 0

]
= Pr

[
max
ij

∣∣ρ̂ij,T − ρij
∣∣ > (1− γ)θ (N, T )

]
,

(52)

and by (45) we have,

Pr

[
max
ij

∣∣ρ̂ij,T − ρij
∣∣ > (1− γ)θ (N, T )

]
= O

(
N2e

− 1
2

(1−γ)2c2p(N)
Kv

)
+O

(
N2T−(s−1)/2

)
.

Using a similar line of reasoning as above there exist δ > 2Kv/(1 − γ)2 and d > 4/(s − 1)

such that

Pr

[
max
ij

∣∣ρ̂ij,T − ρij
∣∣ > (1− γ)θ (N, T )

]
→ 0.

Using this result in conjunction with (52) and (47) in (50) it follows thatA11 = Op [mNθ (N, T )].
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For A12, we first note that

max
i

∑
j

I
[∣∣ρ̂ij,T

∣∣ > θ (N, T ) , γθ (N, T ) <
∣∣ρij
∣∣ < θ (N, T )

]

≤ max
i

∑
j

I
[
γθ (N, T ) <

∣∣ρij
∣∣ < θ (N, T )

]

= max
i

∑
j

I{
[
γθ (N, T ) <

∣∣ρij
∣∣ < θ (N, T )

] ∣∣ρij 6= 0} ≤ mN ,

which gives A12 = Op [mNθ (N, T )] , and together with the result for A11 we have A1 =

Op [θ (N, T )mN ]. Overall using (49) we obtain

A = Op[mNθ (N, T )]. (53)

Finally, for B we have

B = max
i

∑
j

∣∣ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

≤ max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

+max
i

∑
j

∣∣ρ̂ij,T
∣∣ I
[∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

= B1 + B2.

But as before

B1 = max
i

∑
j

∣∣ρ̂ij,T − ρij
∣∣ I
[∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

≤ max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I
[∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

= max
ij

∣∣ρ̂ij,T − ρij
∣∣max

i

∑
j

I
{
[
∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )]

∣∣ρij 6= 0
}

≤ mN max
ij

∣∣ρ̂ij,T − ρij
∣∣ = Op [mNθ (N, T )] , (54)
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B2 = max
i

∑
j

∣∣ρ̂ij,T
∣∣ I
[∣∣ρ̂ij,T

∣∣ < θ (N, T ) ,
∣∣ρij
∣∣ > θ (N, T )

]

≤ max
i

∑
j,ρij 6=0

∣∣ρ̂ij,T
∣∣ I
[∣∣ρ̂ij,T

∣∣ < θ (N, T )
]

≤ θ (N, T )mN .

Hence B2 = Op [θ (N, T )mN ], which in conjunction with (54) yields,

B = Op [θ (N, T )mN ] . (55)

Substituting results from (53), (55) and (48) in (43), and using the outcome with (42) in

(41) we obtain
∥∥∥R̃−R

∥∥∥ = Op [θ (N, T )mN ] = Op

(
mNcp (N)√

T

)
,

as required.

Proof of Theorem 2. Consider the squared Frobenius norm,

∥∥∥R̃−R
∥∥∥
2

F
=
∑∑
i6=j

(ρ̃ij,T − ρij)
2,

and recall that

ρ̃ij,T − ρij =
(
ρ̂ij,T − ρij

)
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)
− ρij

[
1− I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)]
.

Hence

(
ρ̃ij,T − ρij

)2
=

(
ρ̂ij,T − ρij

)2
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)
+ ρ2ij

[
1− I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)]2

−2ρij
(
ρ̂ij,T − ρij

)
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
) [
1− I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)]
.
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However,

I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
) [
1− I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)]
= 0,

and
[
1− I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)]2

= 1− I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)
.

Therefore, we have

∑∑
i6=j

(
ρ̃ij,T − ρij

)2
=

∑∑
i6=j

(
ρ̂ij,T − ρij

)2
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)

+
∑∑
i6=j

ρ2ij

[
1− I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)]

=
∑∑
i6=j

(
ρ̂ij,T − ρij

)2
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
)

+
∑∑
i6=j

ρ2ijI
(∣∣∣
√
T ρ̂ij,T

∣∣∣ ≤ cp(N)
)
.

Taking expectations we have the following decomposition

E

(∥∥∥R̃−R
∥∥∥
2

F

)
=
∑∑
i6=j

E
(
ρ̃ij,T − ρij

)2
= D + E + F , (56)

where

D =
∑∑
i6=j,ρij 6=0

ρ2ijE
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ ≤ cp(N)
∣∣ρij 6= 0

)]
,

E =
∑∑
i6=j,ρij 6=0

E
[(
ρ̂ij,T − ρij

)2
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
,

F =
∑∑
i6=j,ρij=0

E
[
ρ̂2ij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]
.

Consider now the orders of the above three terms in turn, starting with D. We have ρmin =

minij
(∣∣ρij

∣∣ , ρij 6= 0
)
and ρmax = maxij

(∣∣ρij
∣∣ , ρij 6= 0

)
such that ρmax < 1. Then

D ≤ ρ2maxNmN sup
ij
E
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ ≤ cp(N)
∣∣ρij 6= 0

)]

= ρ2maxNmN sup
ij
Pr
(∣∣∣
√
T ρ̂ij,T

∣∣∣ ≤ cp(N)
∣∣ρij 6= 0

)
,
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and using (A.6) of Lemma 3 in the online supplement for
∣∣ρij
∣∣ > cp(N)/

√
T , we have

D ≤ Kρ2maxNmNKe
−
T(ρmin−T−1/2cp(N))

2

2Kv

[
1 +O

(
T

2(s−2)−1
2

)]
+O

(
NmNT

−(s−1)/2) ,

where Kv = supij |Kv(θij)| < K. By assumption T−1/2cp(N) = o(1), and since ρmin > 0,

then the first term of the above will tend to zero with N and T → ∞. Therefore, D is of

order O(NmNN
−d(s−1)/2) = O(N1+ϑ−d(s−1)/2), and D tends to zero as N →∞, for values of

d > 2(1 + ϑ)/(s− 1) and under (21), where by assumption 0 ≤ ϑ < 1/2.

Consider now E . Recalling that ρ̂ij,T = ωij,T zij,T + ρij,T we have the following decompo-

sition of E , E = E1 + E2 + 2E3, where

E1 =
∑∑

i6=j,ρij 6=0
ω2ij,TE

[
z2ij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
,

E2 =
∑∑
i6=j,ρij 6=0

(
ρij,T − ρij

)2
E
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
,

E3 =
∑∑
i6=j,ρij 6=0

(
ρij,T − ρij

)
ωij,TE

[
zij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
.

Again, using (9) and (10),

ω2ij,T =
Kv(θij)

T
+O

(
T−2

)
, (57)

(
ρij,T − ρij

)2
=

K2
m(θij)

T 2
+O

(
T−3

)
, (58)

(
ρij,T − ρij

)
ωij,T =

K
1/2
v (θij)Km(θij)

T 3/2
+O

(
T−5/2

)
. (59)

E1 =
∑∑
i6=j,ρij 6=0

ω2ij,TE
[
z2ij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]

≤ NmN

T

[
sup
ij
Kv(θij) +O

(
T−1

)]
sup
ij
E
[
z2ij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
.

Using (A.7) in Lemma 4 in the online supplement with r = 2, and noting that supijKv(θij) <
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K, then E1 = O (mNN/T ). Similarly, since E
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
≤ 1, we have

E2 =
∑∑
i6=j,ρij 6=0

(
ρij,T − ρij

)2
E
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]

≤ NmN

[
K2
m(θij)

T 2
+O

(
T−3

)]
= O

(
NmN

T 2

)
.

Also, using (A.7) in Lemma 4 in the online supplement with r = 1, and using (59) we have

E3 =
∑∑
i6=j,ρij 6=0

(
ρij,T − ρij

)
ωij,TE

[
zij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]

≤ KNmN

[
supijK

1/2
v (θij)Km(θij)

T 3/2
+O

(
T−5/2

)
]
= O

(
NmN

T 3/2

)
.

Therefore, overall E = O
(
mNN
T

)
. Consider now the following decomposition of F , in (56):

F =
∑∑
i6=j,ρij=0

E
[
ρ̂2ij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]

=
∑∑
i6=j,ρij=0

ω2ij,TE
[
z2ij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]

+
∑∑
i6=j,ρij=0

ρ2ij,TE
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]

+2
∑∑

i6=j,ρij=0
ρij,Tωij,TE

[
zij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]

= F1 + F2 + F3.

Consider F1 and using (57) note that

F1 ≤
N(N −mN − 1)

T

[
sup
ij
Kv(θij) +O

(
T−1

)]
sup
ij
E
[
z2ij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]
.
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Then using (A.8) in Lemma 4 of the online supplement with r = 2, we have

F1 ≤ K
N(N −mN − 1)

T

[
sup
ij
Kv(θij) +O

(
T−1

)]
×


Ke−

1
2

c2p(N)

ϕmax +O


T−

(s−2)
2

[
c2p(N)

ϕmax

] 3(s−2)−1
2

e
− 1
2

c2p(N)

ϕmax


+O

(
T−(s−1)/2

)

 ,

where ϕmax = supij ϕij > 0. Now noting that supij |Kv(θij)| = Kv <∞, and mN/N = o(1),

then

F1 = O

(
N2T−1e

− 1
2

c2p(N)

ϕmax

)
+O

(
N2T−1T−(s−1)/2

)

= O

(
e
−
(

1
2ϕmax

)
lnN

[
c2p(N)

lnN
−2(2−d)ϕmax

])
+O

(
N2−d(s−1)/2−d) .

Therefore, since limN→∞ c
2
p(N)/ ln(N) = 2δ (see result (b) of Lemma 2 in the online supple-

ment), then F1 → 0, as N → ∞, if δ > (2− d)ϕmax, and d > 4/(s + 1). Similarly, using

(59), we have

F2 =
∑∑
i6=j,ρij=0

ρ2ij,TE
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]

≤ N(N −mN − 1)
{
supij

[
K2
m(θij)

∣∣ρij = 0
]

T 2
+O

(
T−3

)
}
sup
ij
E
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]
.

Now using (A.4) of Lemma 3 in the online supplement we have

F2 ≤ K
N(N −mN − 1)

[
ψ2max +O (T−1)

]

T 2
×


Ke−

1
2

c2p(N)

ϕmax +O


T−

(s−2)
2

[
c2p(N)

ϕmax

] 3(s−2)−1
2

e
− 1
2

c2p(N)

ϕmax


+O

(
T−(s−1)/2

)

 ,

where ψmax = supij ψij < K, and ψij is defined by (14). Once again, since mN/N = o(1),

then

F2 = O

(
e
2(1−d) lnN− 1

2

c2p(N)

ϕmax

)
+O

(
N2T−2T−(s−1)/2

)
,
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and following similar arguments as above, it follows that F2 → 0 as N → ∞, if δ >

2 (1− d)ϕmax, and d > 4/(s + 3). Both of these conditions are met if δ > (2 − d)ϕmax and

d > 4/(s + 1), since (2 − d)ϕmax > 2 (1− d)ϕmax, and s > 0. Consider now F3 and, using

(9) and (10) evaluated at ρij = 0, note that

F3 =
∑∑
i6=j,ρij=0

ρij,Tωij,TE
[
zij,T I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]

≤
∑∑
i6=j,ρij=0

∣∣ρij,T
∣∣ |ωij,T |E

[
|zij,T | I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]

≤ N(N −mN − 1)
[
supij

∣∣ψij
∣∣

T
+O

(
T−2

)
] [
supij

√
ϕij√

T
+O

(
T−3/2

)]

× sup
ij
E
[
|zij,T | I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ ≤ cp(N)
∣∣ρij = 0

)]
.

Further using (A.8) in Lemma 4 of the online supplement with r = 1, we obtain (recall that

supij
∣∣ψij

∣∣ < K and supij
√
ϕij < K)

F3 ≤ K
N(1−mN/N − 1/N)

T 3/2
×


Ke−

1
2

c2p(N)

ϕmax +O


T−

(s−2)
2

[
c2p(N)

ϕmax

] 3(s−2)−1
2

e
− 1
2

c2p(N)

ϕmax


+O

(
T−(s−1)/2

)

 ,

which establishes that F3 → 0, as N →∞, if δ > (2− d)ϕmax and d > 4/(s+ 1) (using the

same type of derivations as above). Therefore, overall F → 0, under the same conditions.

Using this result, together with the results obtained for D and E above, in (56) we obtain

E
∥∥∥R̃−R

∥∥∥
2

F
= O

(
mNN
T

)
, and (26) follows as required. Also by the Markov inequality

Pr

(√
T

mNN

∥∥∥R̃−R
∥∥∥
F
≥ ε

)
= Pr

(
T

mNN

∥∥∥R̃−R
∥∥∥
2

F
≥ ε2

)
≤

T
mNN

E
∥∥∥R̃−R

∥∥∥
2

F

ε2
≤ K

ε2
,

for some small ε > 0. Hence,

√
T

mNN

∥∥∥R̃−R
∥∥∥
F
= Op (1) ,
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and result (27) follows.

Proof of Theorem 3. Recall that T = cdN
d, cd > 0, and consider first the FPRN statistic

given by (31) which can be written equivalently as

FPRN = |FPRN | =

∑∑
i6=j

I
(∣∣ρ̂ij,T

∣∣ > T−1/2cp(N)|ρij = 0
)

N(N −mN − 1)
. (60)

Note that the elements of FPRN are either 0 or 1 and so |FPRN | = FPRN . Taking the

expectation of (60) we have

E |FPRN | =

∑∑
i6=j

Pr
(∣∣ρ̂ij,T

∣∣ > T−1/2cp(N)|ρij = 0
)

N(N −mN − 1)
≤ sup

ij
Pr
(∣∣ρ̂ij,T

∣∣ > T−1/2cp(N)|ρij = 0
)
.

Hence, using (A.4) in Lemma 3 of the online supplement we have

E |FPRN | = O

(
e
− 1
2

c2p(N)

ϕmax

)
+O

(
T−(s−1)/2

)
,

where ϕmax = supij ϕij < K by Assumption 2 (see also Proposition 1). Hence, as N → ∞

for any d > 0 (recalling that T = O(Nd)), E |FPRN | → 0, noting that c2p(N) → ∞, and

ϕmax > 0. Further, by the Markov inequality applied to |FPRN | we have, for some η > 0,

Pr(|FPRN | > η) ≤ E(|FPRN |)
η

= O

(
e
− 1
2

c2p(N)

ϕmax

)
+O

(
T−(s−1)/2

)
. (61)

It therefore follows that limN→∞ Pr(|FPRN | > η) = 0, and FPRN
p→ 0 as N → ∞, for

any d > 0. For almost sure convergence by the Borel Cantelli lemma it suffices to show that

∞∑
N=1

Pr(|FPRN | > η) <∞. (62)
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From result (b) of Lemma 2 we have

e
− 1
2

c2p(N)

ϕmax = O
(
N
− δ
ϕmax

)
, (63)

and from (61) it follows that (for η > 0)

Pr(|FPRN | > η) = O
(
N
− δ
ϕmax

)
+O

(
N−d(s−1)/2) . (64)

Hence (62) holds if
∞∑
N=1

N
− δ
ϕmax and

∞∑
N=1

N−d(s−1)/2 converge, which is ensured if δ > ϕmax,

and d > 2/(s− 1), which establishes that FPRN a.s.→ 0, as N →∞.

Consider now the TPRN statistic given by (30) and note that

TPRN =

∑∑
i6=j

I(ρ̃ij,T 6= 0, and ρij 6= 0)
∑∑
i6=j

I(ρij 6= 0)
.

Hence

XN = 1− TPRN =

∑∑
i6=j

I(ρ̃ij,T = 0, and ρij 6= 0)

NmN

.

Since |XN | = XN , then

E |XN | = E(XN) =

∑∑
i6=j

Pr
(∣∣ρ̂ij,T

∣∣ < T−1/2cp(N)|ρij 6= 0
)

NmN

≤ sup
ij
Pr
(∣∣ρ̂ij,T

∣∣ < T−1/2cp(N)|ρij 6= 0
)
.

From (A.6) of Lemma 3 of the online supplement we further have that

E |XN | ≤ sup
ij
Pr
(∣∣ρ̂ij,T

∣∣ < T−1/2cp(N)|ρij 6= 0
)

≤ Ke−
T(ρmin−T−1/2cp(N))

2

2Kv

[
1 +O

(
T

2(s−2)−1
2

)]
+O

(
T−(s−1)/2

)
,

where ρmin = minij
(∣∣ρij

∣∣ , ρij 6= 0
)
> 0, and Kv = supijKv (θij) < K. Hence, since by as-

sumption T−1/2cp(N) = o(1), and T = cdN
d, with cd,d > 0, it follows that limN→∞E |XN | =
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0, as N → ∞. Further, by the Markov inequality, Pr(|XN | > η) ≤ E|XN |
η

for some η > 0,

and it follows that

Pr(|TPRN − 1| > η) ≤ E(|TPRN − 1|)
η

= O

(
e−

T(ρmin−T−1/2cp(N))
2

2Kv

)
+O

(
N−d(s−1)/2) .

(65)

Once again since by assumption T−1/2cp(N) = o(1), d > 0, and ρmin > 0, then for any

η > 0, limN→∞ Pr(|TPRN − 1| > η) = 0, and TPRN
p→ 1, as N → ∞. For almost sure

convergence it is further required that

∞∑
N=1

Pr(|TPRN − 1| > η) <∞. (66)

From (65) we have that

∞∑
N=1

Pr(|TPRN − 1| > η) = O

( ∞∑
N=1

aN

)
+O

( ∞∑
N=1

bN

)
,

where (setting cd = 1 to simplify the notations)

aN = e
−Nd
2Kv
(ρmin−N−d/2cp(N))

2

, and bN = N−d(s−1)/2.

Hence, for (66) to hold, the series
∞∑
N=1

aN and
∞∑
N=1

bN must converge. Using the direct

comparison test for convergence of infinite series, this will be the case if

N−d(s−1)/2 ≤ N−1−ε, (67)

and

e
−Nd
2Kv
(ρmin−T−1/2cp(N))

2

≤ N−1−ε (68)

for all N ≥ N0, where N0 is some finite positive integer, since for ε > 0, we have
∞∑
N=1

N−1+ε <
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K. Condition (68) can be written equivalently as

1

2Kv

(
ρmin − T−1/2cp(N)

)2
> (1 + ε)T−1 ln(N),

which is satisfied since by assumption N−d/2cp(N) = T−1//2cp(N) = o(1), d > 0, ρmin > 0,

and Kv is a bounded positive constant. Hence, under the conditions of the theorem it follows

that TPRN
a.s.→ 1 as N →∞, if d > 2/(s− 1).

Finally, consider the FDR statistic defined by (32), and note that

FDRN =

(
N −mN − 1

mN

)
FPRN .

Now noting that (N−mN−1)
mN

= 	(N1−ϑ), and using (64) we have

E |FDRN | = O
(
N1−ϑN

− δ
ϕmax

)
+O

(
N1−ϑN−d(s−1)/2) .

Hence, limN→∞E |FDRN | = 0, as N → ∞, if δ > (1 − ϑ)ϕmax and d > 2 (1− ϑ) /(s − 1).

Also, applying Markov inequality to |FDRN |, for some η > 0 we have

Pr(|FDRN | > η) ≤ E(|FDRN |)
η

= O
(
N1−ϑN

− δ
ϕmax

)
+O

(
N1−ϑN−d(s−1)/2) . (69)

Almost sure convergence requires

∞∑
N=1

Pr(|FDRN | > η) <∞, (70)

and using (69) this follows if δ > (2 − ϑ)ϕmax and d > 2 (2− ϑ) /(s − 1), then FDRN a.s.→ 1

as N →∞.
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Supplementary Appendix A

Technical Lemmas

A.1 Statement of technical lemmas

We begin by stating a number of technical lemmas that are needed for the proofs of the main
results.

Lemma 1 Consider the distribution function of a standard normal variate defined by

Φ(x) = (2π)−1/2
∫ x
−∞e

−u2

2 du.

Then, for x > 0

Φ(−x) = 1− Φ(x) ≤ 1

2
exp(−x

2

2
). (A.1)

Lemma 2 Consider the critical value function7

cp(N) = Φ
−1
(
1− p

2f(N)

)
,

where Φ−1 (.) is the inverse function of the cumulative standard normal distribution, 0 < p <
1, f(N) = cδN

δ, where cδ and δ are finite positive constants, and suppose there exists finite
N0 such that for all N > N0

1− p

2f(N)
> 0. (A.2)

Then for 0 < κ ≤ 1, we have

(a) cp(N) = O
(
[ln (N)]1/2

)
;

(b) exp
[
−κc2p (N) /2

]
= 	

(
N−δκ), limN→∞ c

2
p(N)/ ln(N) = 2δ;

(c) if δ > 1/κ, then N exp
[
−κc2p (N) /2

]
→ 0, as N →∞.

Lemma 3 Consider the sample correlation coefficient, ρ̂ij,T , defined by (4), and suppose
that Assumptions 1 and 2 hold, T = cdN

d, with cd > 0. Then, there exists N0 such that for
all N ≥ N0,

8

Pr
[∣∣ρ̂ij,T − ρij

∣∣ > T−1/2cp(N)
]
≤ Ke

− 1
2

c2p(N)

Kv (θij) +O


T−

(s−2)
2

[
c2p(N)

Kv (θij)

] 3(s−2)−1
2

e
− 1
2

c2p(N)

Kv (θij)




+O
(
T−(s−1)/2

)
, (A.3)

7We would like to thank George Kapetanios for his help with the proof of (b) and (c) of this Lemma.

8To simplify the notation we have dropped the lower order terms e
− 1
2

cp(N)√
Kv (θij)

K√
T and e−

K
T , as they do

not affect the results, and can be absorbed in the remainder order term.

1



and

Pr
[∣∣ρ̂ij,T

∣∣ > T−1/2cp(N)|ρij = 0
]
≤ Ke

− 1
2

c2p(N)

ϕij +O


T−

(s−2)
2

[
c2p(N)

ϕij

] 3(s−2)−1
2

e
− 1
2

c2p(N)

ϕij




+O
(
T−(s−1)/2

)
, (A.4)

where Kv(θij) is given by (12), ϕij = E
(
y2ity

2
jt

∣∣ρij = 0
)
, and

cp(N) = Φ
−1
(
1− p

2f(N)

)
> 0, (A.5)

with 0 < p < 1, and f(N) = cδN
δ where cδ and δ are finite positive constants. Further, if∣∣ρij

∣∣ > cp(N)/
√
T then we have

Pr
[∣∣ρ̂ij,T

∣∣ ≤ T−1/2cp(N)|ρij 6= 0
]
≤ Ke

−
T(|ρij|−T−1/2cp(N))2

2Kv (θij)

[
1 +O

(
T

2(s−2)−1
2

)]

+O
(
T−(s−1)/2

)
. (A.6)

Lemma 4 Consider the standardised sample correlation coefficient

zij,T =
[
V ar

(
ρ̂ij,T

)]−1/2 [
ρ̂ij,T − E

(
ρ̂ij,T

)]
,

where ρ̂ij,T is defined by (4) and E
(
ρ̂ij,T

)
and V ar

(
ρ̂ij,T

)
> 0 are given by (9) and (10), re-

spectively. Suppose that Assumptions 1 and 2 hold, cp(N) = Φ
−1
(
1− p

2f(N)

)
, and condition

(A.2) holds. Also let T = cdN
d, with cd > 0. Then, there exists N0 such that for N ≥ N0,

and for r ≥ 0,
sup
ij
E
[
|zij,T |r I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
< K, (A.7)

and

sup
ij
E
[
|zij,T |r I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]
≤ Ke

− 1
2

c2p(N)

ϕmax +O


T−

(s−2)
2

[
c2p(N)

ϕmax

] 3(s−2)−1
2

e
− 1
2

c2p(N)

ϕmax




+O
(
T−(s−1)/2

)
, (A.8)

where ϕmax = supij ϕij, ϕij is defined by (13), and s ≥ 3 is defined by Assumption 2.

Lemma 5 Consider the data generating process

yt = Put,

where yt and ut are N × 1 vectors of random variables, and P is an N ×N matrix of fixed
constants, such that PP′ = R, where R is a correlation matrix. Suppose that ut follows a

2



multivariate t-distribution with v degrees of freedom generated as

ut =

(
v − 2
χ2v,t

)1/2
εt,

where εt = (ε1t, ε2t, . . . , εNt)
′
∼ IIDN(0, IN), and χ

2
v,t is a chi-squared random variate with

v > 4 degrees of freedom distributed independently of εt. Then we have that

E(y2ity
2
jt) =

(v − 2)
[
(p′ipi)

2 + (p′ipj)
2]

(v − 4) ,

where p′i is the i
th row of P. In the case where P = IN , E(y

2
ity

2
jt) = (v − 2)/(v − 4) and

E(y2ityjt) = E(y2jtyit) = 0.

Lemma 6 Fat-tailed shocks do not necessarily generate E(y2ity
2
jt) > 1.

A.2 Proofs of lemmas for the MT estimator

Proof of Lemma 1. Using results in Chiani et al. (2003) - eq. (5), we have

erf c(x) =
2√
π

∫∞
x
e−u

2

du ≤ exp(−x2), (A.9)

where erf c(x) is the complement of the erf(x) error function defined by

erf(x) =
2√
π

∫ x
0
e−u

2

du. (A.10)

But

1− Φ(x) = (2π)−1/2
∫∞
x
e−

u2

2 du =
1

2
erf c

(
x√
2

)
,

and using (A.9) we have

1− Φ(x) = 1

2
erf c

(
x√
2

)
≤ 1

2
exp

[
−
(
x√
2

)2]
=
1

2
exp

(
−x

2

2

)
.

Proof of Lemma 2. First note that

Φ−1 (z) =
√
2 erf−1(2z − 1), z ∈ (0, 1),

where Φ(x) is cumulative distribution function of a standard normal variate, and erf(x) func-
tion is defined by (A.10). Consider now the inverse complementary error function erfc−1(x)
given by

erf c−1(1− x) = erf−1(x).

3



Using results in Chiani et al. (2003) on p.842, we have

erf c−1(x) ≤
√
− ln(x).

Applying the above results to cp(N) we have

cp(N) = Φ−1
(
1− p

2f(N)

)

=
√
2 erf−1

{
2

[
1− p

2f(N)

]
− 1
}

=
√
2 erf−1

[
1− p

f(N)

]
=
√
2 erf c−1

[
p

f(N)

]

≤
√
2

√
− ln

[
p

f(N)

]
=
√
2 [ln f(N)− ln(p)].

Therefore, for f(N) = cδN
δ we have

c2p(N) ≤ 2 [δ ln(N)− ln(p)] = O [ln(N)] ,

which establishes part (a).
Further, by Proposition 24 of Dominici (2003) we have that

lim
N→∞

cp(N)/LW





1

2π
[(
1− p

2f(N)

)
− 1
]2





1/2

= 1,

where LW denotes the LambertW function which satisfies limN→∞ LW (N)/ {ln(N)− ln [ln(N)]} =
1 as N →∞. We note that limN→∞ ln(N)/ {ln(N)− ln [ln(N)]} = 1 as N →∞. So

lim
N→∞

LW

{
1

2π[(1− p
2f(N))−1]

2

}1/2

{
2 ln

(√
2f(N)√
πp

)}1/2 = 1.

Hence, for any 0 < κ ≤ 1,

lim
N→∞

exp
[
−κc2p(N)/2

]

exp


−

κ

{[
2 ln

(√
2f(N)√
πp

)]1/2}2

2



= lim

N→∞

exp
[
−κc2p(N)/2

]

[f (N)]−κ πκ/2pκ2−κ/2
= 1, as N →∞,

and substituting cδN
δ for f (N) yields,

lim
N→∞

exp
[
−κc2p (N) /2

]

c−κδ N−δκ =
2κ/2cκδ
πκ/2pκ

. (A.11)

4



It follows from (A.11) that exp
[
−κc2p (N) /2

]
= 	

(
N−δκ), as required. From this result it

also follows that
[
−κc2p (N) /2

]
= 	 (−δκ lnN), which in turn yields limN→∞ c

2
p(N)/ ln(N) =

2δ. This completes the proof of part (b). Finally, it readily follows from (b) thatN exp
[
−κc2p (N) /2

]
=

	
(
N1−δκ), and therefore N exp

[
−κc2p (N) /2

]
→ 0 when δ > 1/κ, as required for the proof

of part (c).

Proof of Lemma 3. We first note that

Pr
[∣∣ρ̂ij,T − ρij

∣∣ > T−1/2cp(N)
]

= Pr
[
ρ̂ij,T − ρij > T−1/2cp(N)

]
+ Pr

[
−
(
ρ̂ij,T − ρij

)
> T−1/2cp(N)

]

= Pr
[
ρ̂ij,T − ρij > T−1/2cp(N)

]
+ Pr

[(
ρ̂ij,T − ρij

)
< −T−1/2cp(N)

]
. (A.12)

and
ρ̂ij,T − ρij = ωij,T zij,T +

(
ρij,T − ρij

)
,

where zij,T is the standardised sample correlation coefficient defined by (15), ρij,T = E
(
ρ̂ij,T

)

and ω2ij,T = V ar
(
ρ̂ij,T

)
> 0 are given by (9) and (10), respectively. Hence

Pr
[
ρ̂ij,T − ρij > T−1/2cp(N)

]
= Pr

[
ωij,T zij,T +

(
ρij,T − ρij

)
> T−1/2cp(N)

]

= Pr (zij,T > aij,T ) ,

where

aij,T =
T−1/2cp(N)−

(
ρij,T − ρij

)

ωij,T
.

Similarly,
Pr
[
ρ̂ij,T − ρij < −T−1/2cp(N)

]
= Pr (zij,T < −bij,T ) ,

where

bij,T =
T−1/2cp(N) +

(
ρij,T − ρij

)

ωij,T

But using (9) and (10) we have (note that by assumption supij |Km(θij)|and supijK1/2
v (θij) <

K)

aij,T =
T−1/2cp(N)− Km (θij)

T
+O (T−2)√

T−1Kv(θij) +O (T−2)
=

cp(N)

K
1/2
v (θij)

+O
(
T−1/2

)
, (A.13)

and

bij,T =
T−1/2cp(N) +

Km (θij)

T
+O (T−2)√

T−1Kv(θij) +O (T−2)
=

cp(N)

K
1/2
v (θij)

+O
(
T−1/2

)
. (A.14)

Using the above results in (A.12) we now have

Pr
[∣∣ρ̂ij,T − ρij

∣∣ > θ (N, T )
]
= Pr

(
zij,T >

cp(N)

K
1/2
v (θij)

+O
(
T−1/2

)
)

+Pr

(
zij,T ≤

−cp(N)
K
1/2
v (θij)

+O
(
T−1/2

)
)
,
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where θ (N, T ) = T−1/2cp(N). Result (A.3) now follows using (17) and (18) with aT replaced

by (A.13), and ignoring the higher order terms e
− K√

T

cp(N)√
Kv (θij)and e−

K
T that arise from squaring

aT = K
−1/2
v (θij)cp(N)+O

(
T−1/2

)
. Result (A.4) can be obtained as a special case by setting

ρij = 0. Finally, to establish (A.6), using similar line of reasoning as above, we first note
that

Pr
[∣∣ρ̂ij,T

∣∣ ≤ θ (N, T ) |ρij 6= 0
]
= Pr

(
zij,T ≤ −

√
Tρij − cp(N)

K
1/2
v (θij)

+O
(
T−1/2

)
)

(A.15)

−Pr
(
zij,T ≤ −

cp(N) +
√
Tρij

K
1/2
v (θij)

+O
(
T−1/2

)
)

≤ Pr

(
zij,T ≤ −

√
T
[
ρij − T−1/2cp(N)

]

K
1/2
v (θij)

+O
(
T−1/2

)
)
.

Suppose that ρij > T−1/2cp(N) > 0, then using (17) we have (again ignoring higher order
terms in T−1)

Pr
[∣∣ρ̂ij,T

∣∣ ≤ T−1/2cp(N)|ρij 6= 0
]
≤ Ke

−
T(ρij−T−1/2cp(N))

2

2Kv (θij)

[
1 +O

(
T

2(s−2)−1
2

)]
+O

[
T−(s−1)/2

]
.

(A.16)
A similar result follows when ρij < 0. In this case we consider writing (A.15) equivalently as

Pr
[∣∣ρ̂ij,T

∣∣ ≤ T−1/2cp(N)|ρij 6= 0
]
= 1− Pr

(
zij,T > −

√
Tρij − cp(N)

K
1/2
v (θij)

+O
(
T−1/2

)
)

−1 + Pr
(
zij,T > −

cp(N) +
√
Tρij

K
1/2
v (θij)

+O
(
T−1/2

)
)

≤ Pr

(
zij,T >

√
T
[
−ρij + T−1/2cp(N)

]

K
1/2
v (θij)

+O
(
T−1/2

)
)
,

where by assumption −ρij + T−1/2cp(N) > 0. Now applying (18) to the right hand side of
the above yields the outcome in (A.16) with ρij replaced by −ρij Thus the desired result
(A.6) is established for positive and negative values of ρij such that

∣∣ρij
∣∣− T−1/2cp(N) > 0.

Proof of Lemma 4. We first note that since infij V ar
(
ρ̂ij,T

)
> 0, and ρ̂ij,T is a correlation

coefficient,
∣∣ρ̂ij,T

∣∣ ≤ 1, there exists T0 such that for all T > T0

|zij,T | ≤
∣∣ρ̂ij,T

∣∣+
∣∣E
(
ρ̂ij,T

)∣∣
√
V ar

(
ρ̂ij,T

) ≤ 2 sup
i,j


 1√

V ar
(
ρ̂ij,T

)


 < K.
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Hence, E |zij,T |r < K for any finite r. Also, by the Cauchy—Schwarz inequality

E
[
|zij,T |r I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]
≤

[
E
(
z2rij,T

)]1/2 {
E
[
I
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)]}1/2

=
[
E
(
z2rij,T

)]1/2
Pr
(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij 6= 0

)

≤ K.

which establishes (A.7), as required. Similarly,

E
[
|zij,T |r I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]
≤ K Pr

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)
,

and using result (A.4) of Lemma 3, we have

E
[
|zij,T |r I

(∣∣∣
√
T ρ̂ij,T

∣∣∣ > cp(N)
∣∣ρij = 0

)]
≤ Ke

− 1
2

c2p(N)

ϕij +O


T−

(s−2)
2

[
c2p(N)

ϕij

] 3(s−2)−1
2

e
− 1
2

c2p(N)

ϕij




+O
(
T−(s−1)/2

)
.

which establishes (A.8).

Proof of Lemma 5. First we note that

E

(
1

χ2v,t

)
=

1

v− 2 , V ar
(
1

χ2v,t

)
=

2

(v− 2)2 (v− 4)

E

(
1

χ2v,t

)2
=

2

(v− 2)2 (v− 4)
+

(
1

v− 2

)2
=

v− 2
(v− 2)2 (v− 4)

. (A.17)

Then

E (utu
′
t) = E

[(
v− 2
χ2v

)
εtε

′
t

]
= E

(
v− 2
χ2v,t

)
E (εtε

′
t) = IN ,

and
E(yt) = 0, E (yty

′
t) = PP

′ = R.

It is clear that yit has mean zero and a unit variance. Denote the i
th row of P by p′i and

note that yit = p
′
iut =

(
v−2
χ2v ,t

)1/2
p′iεt, and hence

µij(2, 2) = E(y2ity
2
jt) = E

[(
v− 2
χ2v,t

)2
(p′iεt)

2 (
p′jεt

)2
]
,

and since εt and χ
2
v,t are distributed independently using (A.17) we have

E(y2ity
2
jt) =

(v− 2)3

(v− 2)2 (v− 4)
E [(ε′tAiεt) (ε

′
tAjεt)] ,

7



where Ai = pip
′
i. But since εt ∼ N(0, IN), using results in Magnus (1978) we have

E [(ε′tAiεt) (ε
′
tAjεt)] = tr (pip

′
i) tr

(
pjp

′
j

)
+ tr

(
pip

′
ipjp

′
j

)

= (p′ipi)
2
+ (p′ipj)

2
.

Hence

E(y2ity
2
jt) =

(v− 2)
[
(p′ipi)

2 + (p′ipj)
2]

(v− 4) .

WhenP is an identity matrix then p′ipi = 1 and p
′
ipj = 0, and henceE(y

2
ity

2
jt) = (v−2)/(v−4).

Also

E(y2ityjt) = E

[(
v− 2
χ2v,t

)3/2]
E
[
(ε′tAiεt)p

′
jεt
]
= 0.

Proof of Lemma 6. Consider the data generating process yt = Put where the elements
of ut = (u1t, u2t, . . . , uNt)

′, uit, are generated as a standardized independent chi-squared
distribution with vi degrees of freedom, namely

uit =
χ2it(vi)− vi√

2vi
, for all i and t.

Then it is clear that E(uit) = 0, E(u
2
it) = 1, as well as E(u

2
itu

2
jt) = E(u2it)E(u

2
jt) = 1, and

E(utu
′
t) = IN . Let p

′
i be the i

th row of P and note that

E (yityjt) = p′iE (utu
′
t)pj = p

′
ipj = ρij

p′ipi =

N∑

r=1

p2ir = 1.

Also

E
(
y2ity

2
jt

)
= E

[
(p′iutu

′
tpi)

(
p′jutu

′
tpj
)]

=
∑

r

∑

r′

∑

s

∑

s′

pirpir′pjspjs′E(urtur′tustus′t).

But

E(urtur′tustus′t) = 0 if r 6= r′ or s 6= s′

= E(u2rtu
2
st) = 1 if r = r′ and s = s′,

and hence

E
(
y2ity

2
jt

)
=
∑

r

∑

s

p2irp
2
js =

(
N∑

r=1

p2ir

)2
= 1.

Therefore, fat-tailed shocks do not necessarily generate µij(2, 2) = E
(
y2ity

2
jt

)
> 1.
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Supplementary Appendix B

An overview of key regularisation techniques

Here we provide an overview of three main covariance estimators proposed in the literature
which we use in our Monte Carlo experiments for comparative analysis, namely the thresh-
olding methods of Bickel and Levina (2008), and Cai and Liu (2011), and the shrinkage
approach of Ledoit and Wolf (2004).

B.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008) - BL - employs ‘universal’ thresholding
of the sample covariance matrix Σ̂ = (σ̂ij) , i, j = 1, 2, . . . , N . Under this approach Σ is
required to be sparse as they define on p. 2580. The BL thresholding estimator is given by

Σ̃BL,C =

(
σ̂ijI

[
|σ̂ij| ≥ C

√
ln (N)

T

])
, i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N (B.18)

where I (.) is an indicator function and C is a positive constant which is unknown. The
choice of thresholding function - I (.) - implies that (B.18) implements ‘hard’ thresholding.

The consistency rate of the BL estimator is mN

√
ln(N)
T

under the spectral norm of the error

matrix
(
Σ̃BL,C −Σ

)
. The potential computational burden in the implementation of this

approach is the estimation of the thresholding parameter, C. This is usually calibrated
by a separate cross-validation (CV) procedure. The quality of the performance of the BL
estimator is rooted in the specification chosen for the implementation of CV.9 Details of the
BL cross-validation procedure are given in Section B.3.
As argued by BL, thresholding maintains the symmetry of Σ̂ but does not ensure positive

definiteness of Σ̃BL,Ĉ in finite samples. BL show that their threshold estimator is positive
definite if ∥∥∥Σ̃BL,C − Σ̃BL,0

∥∥∥ ≤ ε and λmin (Σ) > ε, (B.19)

where ‖.‖ is the spectral or operator norm and ε is a small positive constant. This condition
is not met unless T is sufficiently large relative to N . ‘Universal’ thresholding on Σ̂ performs
best when the units xit, i = 1, 2, . . . , N, t = 1, 2, . . . , T are assumed homoskedastic (i.e.
σ11 = σ22 = . . . = σNN).

B.2 Cai and Liu (CL) thresholding

Cai and Liu (2011) - CL - proposed an improved version of the BL approach by incorporating
the unit specific variances in their ‘adaptive’ thresholding procedure. In this way, unlike
‘universal’ thresholding on Σ̂, their estimator is robust to heteroscedasticity. Specifically,

9Fang et al. (2013) provide useful guidelines regarding the specification of various parameters used in
cross-validation through an extensive simulation study.
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the thresholding estimator Σ̃CL,C is defined as

Σ̃CL,C =
(
σ̂ijsτ ij [|σ̂ij| ≥ τ ij]

)
, i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N (B.20)

where τ ij > 0 is an entry-dependent adaptive threshold such that τ ij =
√
θ̂ijωT , with

θ̂ij = T−1
∑T

i=1(xitxjt − σ̂ij)
2 and ωT = C

√
ln (N) /T , for some constant C > 0. CL

implement their approach using the general thresholding function sτ (.) rather than I (.),
but point out that all their theoretical results continue to hold for the hard thresholding
estimator. The consistency rate of the CL estimator is C0mN

√
ln (N) /T under the spectral

norm of the error matrix
(
Σ̃CL,C −Σ

)
. The parameter C can be fixed to a constant implied

by theory (C = 2 in CL) or chosen via cross-validation. Details of the CL cross-validation
procedure are provided in Section B.3.
As with the BL estimator, thresholding in itself does not ensure positive definiteness of

Σ̃CL,Ĉ . In light of condition (B.19), Fan et al. (2013) - FLM - extend the CL approach and
propose setting a lower bound on the cross-validation grid when searching for C such that

the minimum eigenvalue of their threshold estimator is positive, λmin

(
Σ̃FLM,Ĉ

)
> 0. This

idea originated from Fryzlewicz (2013). Further details of this procedure can be found in
Section B.3. We apply this extension to both BL and CL procedures (see Section B.3 for
the relevant expressions).

B.3 Cross-validation

We perform a grid search for the choice of C over a specified range: C = {c : Cmin ≤ c ≤ Cmax}.
In the BL procedure, we set Cmin =

∣∣∣∣minij σ̂ij

∣∣∣∣
√

T
lnN

and Cmax =

∣∣∣∣maxij σ̂ij

∣∣∣∣
√

T
lnN

and impose

increments of (Cmax−Cmin)
N

. In CL cross-validation, we set Cmin = 0 and Cmax = 4, and im-
pose increments of c/N for c = 1. In each point of the respective ranges, c, we use xit,
i = 1, 2, . . . , N, t = 1, 2, . . . , T and select the N × 1 column vectors xt = (x1t, x2t, . . . , xNt)′ ,
t = 1, 2, . . . , T which we randomly reshuffle over the t-dimension. This gives rise to a new

set of N × 1 column vectors x(s)t =
(
x
(s)
1t , x

(s)
2t , . . . , x

(s)
Nt

)′
for the first shuffle s = 1. We repeat

this reshuffling S times in total where we set S = 50. We consider this to be sufficiently
large (FLM suggested S = 20 while BL recommended S = 100 - see also Fang et al. (2013)).

In each shuffle s = 1, 2, . . . , S, we divide x(s) =
(
x
(s)
1 ,x

(s)
2 , . . . ,x

(s)
T

)
into two subsamples of

size N × T1 and N × T2, where T2 = T − T1. A theoretically ‘justified’ split suggested in

BL is given by T1 = T
(
1− 1

ln(T )

)
and T2 =

T
ln(T )

. In our simulation study we set T1 =
2T
3

and T2 =
T
3
. Let Σ̂

(s)

1 =
(
σ̂
(s)
1,ij

)
, with elements σ̂

(s)
1,ij = T−11

∑T1
t=1 x

(s)
it x

(s)
jt , and Σ̂

(s)

2 =
(
σ̂
(s)
2,ij

)

with elements σ̂
(s)
2,ij = T−12

∑T
t=T1+1

x
(s)
it x

(s)
jt , i, j = 1, 2, . . . , N, denote the sample covariance

matrices generated using T1 and T2 respectively, for each shuffle s. We threshold Σ̂
(s)

1 as in
(B.18), (B.20) using I (.) as the thresholding function, where for CL both θ̂ij and ωT are
adjusted to

θ̂
(s)

1,ij =
1

T1

∑T1
t=1(x

(s)
it x

(s)
jt − σ̂

(s)
1,ij)

2,
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and

ωT1 (c) = c

√
ln (N)

T1
.

Then (B.20) becomes

Σ̃
(s)
1 (c) =

(
σ̂
(s)
1,ijI

[∣∣∣σ̂(s)1,ij
∣∣∣ ≥ τ

(s)
1,ij (c)

])
,

for each c, where

τ
(s)
1,ij (c) =

√
θ̂
(s)

1,ijωT1 (c) > 0,

and θ̂
(s)

1,ij and ωT1 (c) are defined above. The following expression is computed for BL and
CL,

Ĝ (c) =
1

S

S∑

s=1

∥∥∥Σ̃(s)
1 (c)− Σ̂(s)

2

∥∥∥
2

F
, (B.21)

for each c and
Ĉ = arg min

Cmin≤c≤Cmax
Ĝ (c) . (B.22)

If several values of c attain the minimum of (B.22), then Ĉ is chosen to be the smallest one.

The final estimator of the covariance matrix is then given by Σ̃Ĉ . The thresholding approach

does not necessarily ensure that the resultant estimate, Σ̃Ĉ , is positive definite. To ensure
that the threshold estimator is positive definite FLM propose setting a lower bound on the

cross-validation grid for the search of C such that λmin

(
Σ̃Ĉ

)
> 0 - see Fryzlewicz (2013).

Therefore, for BL and CL we modify (B.22) so that

Ĉ∗ = arg min
Cpd+ε≤c≤Cmax

Ĝ (c) , (B.23)

where Cpd is the lowest c such that λmin

(
Σ̃Cpd

)
> 0 and ε is a small positive constant. We do

not conduct thresholding on the diagonal elements of the covariance matrices which remain
in tact.

B.4 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004) - LW - considered a shrinkage estimator for regularisation which is
based on a linear combination of the sample covariance matrix, Σ̂, and an identity matrix
IN , and provide formulae for the appropriate weights. The LW shrinkage is expressed as

Σ̂LW = ρ̂1IN + ρ̂2Σ̂, (B.24)

with the estimated weights given by

ρ̂1 = mT b
2
T/d

2
T , ρ̂2 = a2T/d

2
T
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where

mT = N−1 tr
(
Σ̂
)
, d2T = N−1 tr

(
Σ̂
2
)
−m2

T ,

a2T = d2T − b2T , b
2
T = min(b̄

2
T , d

2
T ),

and

b̄2T =
1

NT 2

T∑

t=1

∥∥∥ẋtẋ′t − Σ̂
∥∥∥
2

F
=

1

NT 2

T∑

t=1

tr [(ẋtẋ
′
t) (ẋtẋ

′
t)]−

2

NT 2

T∑

t=1

tr
(
ẋ′tΣ̂ẋt

)
+
1

NT
tr
(
Σ̂
2
)
,

and noting that
∑T

t=1 tr
(
ẋ′tΣ̂ẋt

)
=
∑T

t=1 tr
(
Σ̂
∑T

t=1 ẋtẋ
′
t

)
= T

∑T
t=1 tr

(
Σ̂
2
)
, we have

b̄2T =
1

NT 2

T∑

t=1

(
N∑

i=1

ẋ2it

)2
− 1

NT
tr
(
Σ̂
2
)
,

with ẋt = (ẋ1t, ẋ2t, . . . , ẋNt)
′ and ẋit = (xit − x̄i).

10

Σ̂LW is positive definite by construction. Thus, the inverse Σ̂
−1
LW exists and is well

conditioned.

Supplementary Appendix C

Shrinkage on MT estimator (S-MT)

Recall the shrinkage on the multiple testing estimator (S-MT ) expression displayed in Sec-
tion 3.1,

R̃S-MT (ξ) = ξIN + (1− ξ)R̃MT ,

where the N × N identity matrix IN is set as benchmark target, the shrinkage parameter
is denoted by ξ ∈ (ξ0, 1], and ξ0 is the minimum value of ξ that produces a non-singular

R̃S-MT (ξ0)matrix. Note that shrinkage is deliberately implemented on the correlation matrix

R̃MT rather than on Σ̃MT . In this way we ensure that no shrinkage is applied to the variances.
Further, shrinkage is applied to the non-zero elements of R̃MT , and as a result the shrinkage
estimator, R̃S-MT , also consistently recovers the support of R, since it has the same support
recovery property as R̃MT . With regard to the calibration of the shrinkage parameter, ξ, we
solve the following optimisation problem

ξ∗ = arg min
ξ0+ε≤ξ≤1

∥∥∥R−1
0 −R̃

−1
S-MT (ξ)

∥∥∥
2

F
,

10Note that LW scale the Frobenius norm by 1/N , and use ‖A‖2F = tr(A′A)/N . See Definition 1 of Ledoit
and Wolf (2004, p. 376). Here we use the standard notation for this norm.
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where ε is a small positive constant, and R0 is a reference invertible correlation matrix. Let

A = R−1
0 and B (ξ) = R̃

−1
S-MT (ξ). Note that since R0 and R̃S-MT are symmetric

∥∥∥R−1
0 −R̃

−1
S-MT (ξ)

∥∥∥
2

F
= tr

(
A2
)
− 2 tr[AB (ξ)] + tr[B2 (ξ)].

The first order condition for the above optimisation problem is given by

∂
∥∥∥R−1

0 −R̃
−1
S-MT (ξ)

∥∥∥
2

F

∂ξ
= −2 tr

(
A
∂B (ξ)

∂ξ

)
+ 2 tr

(
B (ξ)

∂B (ξ)

∂ξ

)
,

where

∂B (ξ)

∂ξ
= −R̃−1

S-MT (ξ)
(
IN − R̃MT

)
R̃
−1
S-MT (ξ)

= −B (ξ)
(
IN − R̃MT

)
B (ξ) .

Hence, ξ∗ is obtained as the solution of

f(ξ) = − tr
[
(A−B (ξ))B (ξ)

(
IN − R̃MT

)
B (ξ)

]
= 0,

where f(ξ) is an analytic differentiable function of ξ for values of ξ close to unity, such that
B (ξ) exists.

The resulting R̃S-MT (ξ
∗) is guaranteed to be positive definite since

λmin

[
R̃S-MT (ξ)

]
= ξλmin (IN) + (1− ξ)λmin

(
R̃MT

)
> 0,

for any ξ ∈ [ξ0, 1], where ξ0 = max
(
ε−λmin(R̃MT )
1−λmin(R̃MT )

, 0

)
.

C.1 Derivation of S-MT shrinkage parameter

We need to solve f(ξ) = 0 for ξ∗ such that f(ξ∗) = 0 for a given choice of R0.
11

Abstracting from the subscripts, note that

f(1) = − tr
[(
R−1−IN

) (
IN − R̃

)]
,

or

f(1) = − tr
[
−R−1R̃+R−1−IN + R̃

]

= tr
(
R−1R̃

)
− tr

(
R−1) ,

which is generally non-zero. Also, ξ = 0 is ruled out, since R̃S-MT (0) = R̃ need not be

11The code for computing R0 of our choice is available upon request (see Section C.2).
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non-singular.
Thus we need to assess whether f(ξ) = 0 has a solution in the range ξ0 < ξ < 1, where

ξ0 is the minimum value of ξ such that R̃S-MT (ξ0) is non-singular. First, we can compute ξ0
by implementing naive shrinkage as an initial estimate:

R̃S-MT (ξ0) = ξ0IN + (1− ξ0)R̃.

The shrinkage parameter ξ0 ∈ [0, 1] is given by

ξ0 = max



ε− λmin

(
R̃
)

1− λmin

(
R̃
) , 0


 ,

where in our simulation study we set ε = 0.01. Here, λmin (A) stands for the minimum

eigenvalue of matrix A. If R̃ is already positive definite and λmin

(
R̃
)
> 0, then ξ0 is

automatically set to zero. Conversely, if λmin

(
R̃
)
≤ 0, then ξ0 is set to the smallest possible

value that ensures positivity of λmin

(
R̃S-MT (ξ0)

)
.

Second, we implement the optimisation procedure. In our simulation study we employ a
grid search for ξ∗ = {ξ : ξ0 + ε ≤ ξ ≤ 1} with increments of 0.005. The final ξ∗ is given by

ξ∗ = argmin
ξ
[f(ξ)]2 .

C.2 Specification of reference matrix R0

Implementation of the above procedure requires the use of a suitable reference matrix R0.
Our experimentations suggested that the shrinkage estimator of Ledoit and Wolf (2004) -
LW - applied to the correlation matrix is likely to work well in practice, and is to be recom-
mended. Schäfer and Strimmer (2005) consider LW shrinkage on the correlation matrix. In
our application we also take account of the small sample bias of the correlation coefficients
in what follows. We set as reference matrix R0 the shrinkage estimator of LW applied to the
sample correlation matrix:

R̂0 = θIN + (1− θ)R̂,

with shrinkage parameter θ ∈ [0, 1], and R̂ = (ρ̂ij). The optimal value of the shrinkage
parameter that minimizes the expectation of the squared Frobenius norm of the error of
estimating R by R̂0:

E
∥∥∥R̂0 −R

∥∥∥
2

F
=
∑∑
i6=j

E
(
ρ̂ij − ρij

)2
+ θ2

∑∑
i6=j

E
(
ρ̂2ij
)
− 2θ

∑∑
i6=j

E
[
ρ̂ij
(
ρ̂ij − ρij

)]
, (C.25)

is given by

θ∗ =

∑∑
i6=j

E
[
ρ̂ij
(
ρ̂ij − ρij

)]

∑∑
i6=j

E
(
ρ̂2ij
) = 1−

∑∑
i6=j

E
(
ρ̂ijρij

)

∑∑
i6=j

E
(
ρ̂2ij
) , (C.26)
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with

θ̂
∗
= 1−

∑∑
i6=j

ρ̂ij

[
ρ̂ij −

ρ̂ij(1−ρ̂2ij)
2T

]

1
T

∑∑
i6=j

(1− ρ̂2ij)
2 +

∑∑
i6=j

[
ρ̂ij −

ρ̂ij(1−ρ̂2ij)
2T

]2 .

Note that limT→∞(θ̂
∗
) = 0 for any N . However, in small samples values of θ̂

∗
can be obtained

that fall outside the range [0, 1]. To avoid such cases, if θ̂
∗
< 0 then θ̂

∗
is set to 0, and if

θ̂
∗
> 1 it is set to 1, or θ̂

∗∗
= max(0,min(1, θ̂

∗
)).
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