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The origins of agriculture were key events in human history, during which people Ͷͻ 
came to depend for their food upon small numbers of animal and plant species. ͷͲ 
However, the biological traits determining which species were domesticated for food ͷͳ 
provision and which were not, are unclear. Here, we investigate the phylogenetic ͷʹ 
distribution of livestock and crops, and compare their phenotypic traits with those of ͷ͵ 
wild species. Our results indicate that phylogenetic clustering is modest for crop ͷͶ 
species but more intense for livestock. Domesticated species explore a reduced portion ͷͷ 
of the phenotypic space occupied by their wild counterparts and have particular traits ͷ͸ 
in common. For example, herbaceous crops are globally characterized by traits ͷ͹ 
including high leaf nitrogen concentration and tall canopies, which make them fast ͷͺ 
growing and proficient competitors. Livestock species are relatively large mammals ͷͻ 
with low basal metabolic rates, which indicate moderate to slow life histories. Our ͸Ͳ 
study therefore reveals ecological differences in domestication potential between ͸ͳ 
plants and mammals. Domesticated plants belong to clades with traits advantageous ͸ʹ 
in intensively-managed high-resource habitats whereas domesticated mammals are ͸͵ 
from clades adapted to moderately productive environments. Combining comparative ͸Ͷ 
phylogenetic methods with ecologically relevant traits has proven useful to unravel the ͸ͷ 
causes and consequences of domestication. ͸͸ 
 ͸͹ 
The plant and animal species domesticated for human food supply represent only a small ͸ͺ 
fraction of global biodiversity. Of around 370,000 extant flowering plants1, only 1,000-͸ͻ 
2,000 have undergone some form of domestication for that purpose 2�4. Similarly, humans ͹Ͳ 
have domesticated 20-31 species of mammals for food 5,6, from ~ 5,400 species ͹ͳ 
contemporary to late Paleolithic people7. The taxonomic distribution of species used for ͹ʹ 
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farming seems non-random5,8, such that certain families include numerous domesticated ͹͵ 
species (e.g. grasses and legumes among flowering plants, and bovids and camelids among ͹Ͷ 
mammals), while many others contain none. An uneven phylogenetic distribution of the ͹ͷ 
species that became domesticated would imply that certain combinations of phenotypic ͹͸ 
traits are more adaptive for husbandry, if these traits are phylogenetically conserved9. ͹͹ 
However, global comparative analyses between domesticates and wild relatives are rare10�12 ͹ͺ 
or consider taxonomically and/or geographically restricted groups of species13,14. Filling ͹ͻ 
that gap would direct agricultural sciences towards the phylogenetic groups and traits that ͺͲ 
could be pursued for new food sources. Additionally, investigating such patterns at a global ͺͳ 
scale, while explicitly linking phylogenetic and trait distributions, would highlight the ͺʹ 
usefulness of the tools and concepts of evolutionary ecology to address questions at its ͺ͵ 
interface with agricultural sciences and archaeology.  ͺͶ 

The phenotypes of current livestock and crops are the result of early domestication ͺͷ 
processes and millennia of unconscious and deliberate selection under farming15. Evolution ͺ͸ 
under farming has caused the traits of domesticated species to change under shifting ͺ͹ 
selective forces13. For example, local breeding preserves mutants that would otherwise be ͺͺ 
eliminated by natural selection and thereby offset the sampling effects of early farming4. In ͺͻ 
fact, diversifying selection has promoted remarkable variance in the size of crop seeds or in ͻͲ 
animal coat colors5,16. Conversely, directional selection for productivity has resulted in the ͻͳ 
convergence of a number of livestock and crop traits, i.e. the domestication ͻʹ 
syndrome5,9,17(but see 18,19). Domestication syndrome traits include increased docility or ͻ͵ 
reductions in brain size in livestock5,6,20 and increased palatability or the loss of seed ͻͶ 
dispersal mechanisms in crop plants4,9. ͻͷ 
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Adaptations to the farming environment might also promote convergent evolution ͻ͸ 
via natural selection13. For instance, evolution in high-resource croplands should select for ͻ͹ 
suites of traits that enable fast resource acquisition and rapid canopy closure, according to ͻͺ 
trait-based ecology21. A few recent studies have partially supported this view, showing that ͻͻ 
several crop plants display traits indicative of high competitive ability14,22�24. Therefore, if ͳͲͲ 
directional and stabilizing selection are strong, the phenotypic diversity of domesticated ͳͲͳ 
species will be low, adding to early domestication bottlenecks. In contrast, diversifying ͳͲʹ 
selection, associated with centuries-long geographic expansion under farming, is expected ͳͲ͵ 
to promote the widening of phenotypic spaces16. The net effects of the early filtering of ͳͲͶ 
wild species, of subsequent domestication processes, and of later crop and livestock ͳͲͷ 
evolution, on the phenotypic spaces explored by domesticated species remain unknown. In ͳͲ͸ 
this paper, we show the results of the first broad-scale phylogenetic analyses addressing ͳͲ͹ 
whether domesticates are a limited phylogenetic and phenotypic sample of wild plants and ͳͲͺ 
animals, and uncovering traits that distinguish domesticated species from wild species. ͳͲͻ 

We used phylogenetic comparative methods to investigate the phylogenetic patterns ͳͳͲ 
of domestication events, and to ask whether domesticates are phenotypically distinct from ͳͳͳ 
their wild relatives. We did this by compiling and analyzing two large datasets. First, we ͳͳʹ 
compiled a database on the distribution of species domesticated for food across mammal ͳͳ͵ 
and angiosperm families and genera. With that dataset we investigated evolutionary ͳͳͶ 
patterns of the relative abundance of domesticated species (proportion of all domesticated ͳͳͷ 
species within a given genus or family), and of domestication frequencies (proportion of all ͳͳ͸ 
species in a genus or family that were domesticated) across mammal and angiosperm ͳͳ͹ 
phylogenies. Second, we put together a large-scale database of three key phenotypic traits ͳͳͺ 
for farm mammals (size-corrected basal metabolic rate, adult body mass and neonate body ͳͳͻ 
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mass) and crop plants (leaf nitrogen content, plant canopy height and seed dry mass) across ͳʹͲ 
a broad sample of domesticated (23 mammals, 181 angiosperms) and wild species (885 ͳʹͳ 
mammals, 2,943 angiosperms). Traits were selected based on their key functional relevance ͳʹʹ 
for resource-use-acquisition, life history and ecological strategies, both for domesticated ͳʹ͵ 
and for wild species21,25�28. Using this second dataset, we compared the phenotypic spaces ͳʹͶ 
of domesticates to those of their wild relatives. We set out to address three questions: 1) ͳʹͷ 
How are food domesticates distributed across the phylogenies of mammals and ͳʹ͸ 
angiosperms? 2) Do livestock and crop species have particular phenotypic profiles, when ͳʹ͹ 
compared to their wild counterparts? And, if so, 3) Do the phenotypic traits of domesticated ͳʹͺ 
species fall within the trait space exhibited by wild species, or do they extend their ͳʹͻ 
phenotypic space beyond the boundaries set by wild plants and animals? ͳ͵Ͳ 
 ͳ͵ͳ 
Results ͳ͵ʹ 
Some families and genera contain more livestock or crop species than others. Livestock ͳ͵͵ 
species were found in only ten families. In particular, Bovidae harbour ~40 % of ͳ͵Ͷ 
domesticated species (Supplementary Table 1), and only 22 genera of mammals contain ͳ͵ͷ 
domesticated species (Supplementary Table 1). In contrast, crop species were distributed ͳ͵͸ 
across 120 families and 453 genera of angiosperms (Supplementary Data 1). Fabaceae, ͳ͵͹ 
Solanum, and Poaceae are examples of taxa yielding high proportions of crops. The ͳ͵ͺ 
abundances of domesticated species were far from randomly distributed across families and ͳ͵ͻ 
growth forms (plants) or dietary types (mammals), both for mammals and angiosperms ͳͶͲ 
(Supplementary Table 2). We next investigated whether the above deviations from a ͳͶͳ 
random distribution were phylogenetically structured.  ͳͶʹ 
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In general, we found that the phylogenetic structure of domestication abundances ͳͶ͵ 
and frequencies was modest for plants, though stronger for mammals. First, Local ͳͶͶ 
Indicators of Phylogenetic Affinity (LIPAs) indicated that ca. 90% of the plant families ͳͶͷ 
hosting domesticated species were randomly distributed with respect to the domestication ͳͶ͸ 
status of their phylogenetic neighbourhood (Supplementary Data 2). Approximately 10% of ͳͶ͹ 
angiosperm families departed from a non-significant LIPA score (Supplementary Data 2). ͳͶͺ 
However, such departure signalled over-dispersion (i.e. focal family surrounded by families ͳͶͻ 
without domesticated species more than the random expectation), rather than clustering ͳͷͲ 
(Supplementary Data 2). Interestingly, that ca. 10% of angiosperm families include ͳͷͳ 
Fabaceae, Poaceae, Rosaceae, Solanaceae or Asteraceae, which host crops of high ͳͷʹ 
agricultural relevance. For mammals, four (Suidae, Cervidae, Caviidae, and Cunilidae) out ͳͷ͵ 
of ten families with domesticated species had at least one LIPA score indicating ͳͷͶ 
phylogenetic clustering, either for abundances or frequencies. Second, we investigated ͳͷͷ 
phylogenetic clustering at the scale of the whole phylogenetic tree. When two contrasting ͳͷ͸ 
evolutionary models were compared (i.e. a Brownian motion model of evolution, ͳͷ͹ 
representing strong phylogenetic structure, vs. a star phylogeny, representing full ͳͷͺ 
phylogenetic independence), phylogenetically independent models showed better fit to the ͳͷͻ 
data than Brownian motion models, both for mammals and angiosperms (Supplementary ͳ͸Ͳ 
Tables 3 and 4). Finally, global phylogenetic clustering was investigated with a gradual ͳ͸ͳ 
approach (phylogenetic signal), which complemented the  binary (non-phylo vs phylo) ͳ͸ʹ 
comparison of phylogenetic models above. The frequency of domestication events ͳ͸͵ 
generally showed a phylogenetic signal (Figure 1 and Supplementary Figure 1, but see ͳ͸Ͷ 
angiosperm families in Figure 1). Domestication abundance, instead, showed low or no ͳ͸ͷ 
phylogenetic signal in angiosperms, low signal in mammals at the family scale, and high ͳ͸͸ 
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signal when mammals were examined separately for each dietary type (Figure 1 and ͳ͸͹ 
Supplementary Figure 1). ͳ͸ͺ 

The subset of domesticated species used for phenotypic space analyses covered a ͳ͸ͻ 
wide range of phylogenetic and geographic origins (Figure 2).  In spite of this taxonomic ͳ͹Ͳ 
and geographic diversity, domesticated species were distributed across a portion of the ͳ͹ͳ 
phenotypic space generally occupied by wild species, and rarely fell beyond the bounds set ͳ͹ʹ 
by wild mammals and plants (Figures 3 and 5; and Supplementary Tables 5 and 6, but see ͳ͹͵ 
ruminant livestock in Figure 3). Livestock occupied a small subset of the phenotypic spaces ͳ͹Ͷ 
of wild mammals (Figure 3 and Supplementary Table 5). Within the common phenotypic ͳ͹ͷ 
boundary occupied by wild and domesticated mammals, livestock species were, on average, ͳ͹͸ 
larger as adults and gave birth to larger neonates, but had lower basal metabolic rates, ͳ͹͹ 
compared to their wild counterparts (Figure 4 and Supplementary Tables 7 and 9). Those ͳ͹ͺ 
phenotypic biases were upheld when investigated separately for ruminants and non-ͳ͹ͻ 
ruminants, though domestic ruminants lied mostly outside the phenotypic boundaries of ͳͺͲ 
wild ruminants. In contrast, domesticated crops have been selected from a wide range of ͳͺͳ 
botanical diversity in the three focal traits (Figure 5 and Supplementary Table 6). An ͳͺʹ 
exception to that pattern is the small phenotypic space occupied by domesticated ͳͺ͵ 
graminoids (grass-like monocot plants), in comparison with their wild analogues (Figure 5 ͳͺͶ 
and Supplementary Table 6). However, although crops were phenotypically diverse, they ͳͺͷ 
occupied some regions of the phenotypic space more than others, which lead to phenotypic ͳͺ͸ 
differentiation when compared to wild plants. Specifically, herbaceous crops, both ͳͺ͹ 
graminoid and non-graminoid, were generally larger plants with larger seeds, and with ͳͺͺ 
leaves with higher nitrogen content, than their wild counterparts (Figure 6 and ͳͺͻ 
Supplementary Tables 8 and 10). Woody crops were more similar to wild woody plants, ͳͻͲ 
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though they consistently had larger seeds (Figure 6 and Supplementary Tables 8 and 10). ͳͻͳ 
The phenotypic departure of domesticated species from the trait medians of their wild ͳͻʹ 
counterparts was generally unrelated to the differences in geographic origin, climate at ͳͻ͵ 
geographic origin, or antiquity of domestication of crop and livestock species ͳͻͶ 
(Supplementary Table 11). ͳͻͷ 
 ͳͻ͸ 
Discussion ͳͻ͹ 
Our results provide the first quantitative global test of the long-standing hypothesis that ͳͻͺ 
domestication events have a strong phylogenetic structure. We found only weak evidence ͳͻͻ 
for phylogenetic clustering in crops, but stronger evidence of such clustering in livestock ʹͲͲ 
species. Interestingly, the non-random phylogenetic distribution of species that became ʹͲͳ 
domesticated was associated with non-random phenotypic spaces of crops and farm ʹͲʹ 
mammals. Livestock species had moderate to low basal metabolic rates, gave birth to large ʹͲ͵ 
offspring and were large adults. Herbaceous crops had high leaf nitrogen content (an ʹͲͶ 
indicator of photosynthetic rates), were large as adults, and produced large seeds. These ʹͲͷ 
results show that domesticated mammals and plants occupy specific portions of the spectra ʹͲ͸ 
of phenotypic variation21,25�28. Despite such phenotypic differentiation, and in spite of ʹͲ͹ 
substantial trait evolution during domestication16, domesticated species were rarely ʹͲͺ 
positioned outside the bounds of the phenotypic spaces set by the wild species of their kind, ʹͲͻ 
excluding ruminant livestock. These findings have important implications for ʹͳͲ 
understanding the potential of wild species for farming, the patterns of phenotypic ʹͳͳ 
convergence under domestication, and the adaptation of wild species to the environmental ʹͳʹ 
conditions of farming habitats13,18,20,29,30. In addition, we demonstrate that a macro-ʹͳ͵ 
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evolutionary approach, scarcely embraced in the domestication literature, has the strong ʹͳͶ 
potential to advance this field. ʹͳͷ 

Our analyses showed that domesticated mammals represent a small sub-sample of ʹͳ͸ 
the total phenotypic variation displayed by wild animals. This was expected, since livestock ʹͳ͹ 
species are a very small fraction of all contemporary mammals. More unexpectedly, farmed ʹͳͺ 
mammals had mid-to-low basal metabolic rates and were mid-to-large adults and neonates. ʹͳͻ 
These results portray domesticated mammals as moderate to slow life history strategists, ʹʹͲ 
i.e. species with intermediate body temperatures, with moderately long juvenile periods, ʹʹͳ 
giving birth to few but relatively large offspring, and living for reasonably long time spans, ʹʹʹ 
accordingly to the fast-slow life-history framework26,27. Low basal metabolic rates, which ʹʹ͵ 
might entail slow relative growth rates31, are adaptive in unproductive and unpredictable ʹʹͶ 
environments in ruminants32, rodents33 and mammals in general27,28. In addition, a ʹʹͷ 
moderate-slow lifestyle might genetically associate with behavioural traits that are critical ʹʹ͸ 
to animal domestication, such as boldness, tameness, or sociality33�35, which remains to be ʹʹ͹ 
investigated. Interestingly, many domesticated mammals evolved body size reduction after ʹʹͺ 
domestication29,36. This suggests that the moderate-slow lifestyle of livestock identified in ʹʹͻ 
our current work is largely the result of early selection of wild animals, rather than of ʹ͵Ͳ 
further evolution under farming. In livestock species that show such body size reductions ʹ͵ͳ 
during domestication, decreases in sexual dimorphism were also reported, which, following ʹ͵ʹ 
Rensch´s rule37, might account for their overall smaller adult size 5,29,38. Further studies ʹ͵͵ 
advancing this line of enquiry should consider the wild progenitors of  livestock species, ʹ͵Ͷ 
account for sexual dimorphism, and address species domesticated for purposes beyond food ʹ͵ͷ 
provision, which clearly display body size reduction after domestication (e.g. dogs or cats).  ʹ͵͸ 
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For crops, our results for non-woody plants are compatible with hypotheses positing ʹ͵͹ 
that early human selection favoured traits advantageous in the fertile, disturbed habitats ʹ͵ͺ 
surrounding human settlements and early agricultural fields5,9,30. Herbaceous crops ʹ͵ͻ 
occupied only a portion of the phenotypic space of their wild counterparts, suggesting ʹͶͲ 
habitat filtering39. This is in line with previous case studies reporting that crops are a ʹͶͳ 
subsample of the phenotypic variation found in nature, and have not surpassed the ʹͶʹ 
biological limits observed for wild plants13,23,40,41, which suggests limitations of artificial ʹͶ͵ 
selection to move phenotypes beyond what is observed in the wild. Additionally, the ʹͶͶ 
phenotypic profiles described here indicate that herbaceous crops are fast growing species ʹͶͷ 
(high leaf nitrogen content) and proficient competitors in resource abundant environments ʹͶ͸ 
(tall plants and large seeds)21,25, which would suit the ecological requirements of early ʹͶ͹ 
agricultural habitats42. Such phenotypic differentiation passed unnoticed in the previous ʹͶͺ 
literature addressing smaller sets of crops, where crop-specific contrasting results were ʹͶͻ 
commonly reported14,22�24,41. This highlights the relevance of a global approach and the ʹͷͲ 
usage of the comparative method in this field. Woody crops yielded large seeds but, in ʹͷͳ 
contrast to herbs, were neither tall species nor species with high nitrogen content in their ʹͷʹ 
leaves. Multiple explanations might account for such discrepancy between growth forms, ʹͷ͵ 
including trade-offs in resource allocation to fruit tissue, to vegetative growth, and to the ʹͷͶ 
maintenance of woody tissues, the clonal mode of propagation common to woody crops, or ʹͷͷ 
crop uses4,9,18,43.  ʹͷ͸ 

A direct comparison of the phenotypic spaces of plants and mammals yielded an ʹͷ͹ 
additional relevant insight. In plants, metabolism and size are largely decoupled25. In ʹͷͺ 
contrast, the evolution of metabolic rates and body size are coordinated in mammals44. Our ʹͷͻ 
trait analyses were consistent with these patterns, both for wild and domesticated species ʹ͸Ͳ 
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(Figures 3 and 5). The phenotypes of domesticates therefore evolve under different ʹ͸ͳ 
constraints in plants and mammals. As a consequence, we found wider combinations of ʹ͸ʹ 
traits and larger phenotypic spaces for crops than for livestock. Endothermy, design of the ʹ͸͵ 
vascular system, and size-metabolism constraints might impede the simultaneous ʹ͸Ͷ 
maximization of mass-specific growth rates and body size in mammals45, both of which are ʹ͸ͷ 
desirable traits for productive husbandry. Within these constraints, human selection for ʹ͸͸ 
farming favoured animals with intermediate-high sizes, although at the cost of low ʹ͸͹ 
metabolic rates, and thus probably modest relative growth rates. Breeding livestock that ʹ͸ͺ 
overcome size-metabolism constraints are therefore expected to be challenging. On the ʹ͸ͻ 
other hand, crop plants occupied a wider part of the tradeoff-free spectrum of metabolism ʹ͹Ͳ 
(leaf nitrogen) vs. size (plant and seed sizes), in line with their wild counterparts. Plant ʹ͹ͳ 
modularity and nitrogen transfer among modules, which underpin such uncoupling between ʹ͹ʹ 
metabolism and size46, might thus promote the greater phenotypic diversity of crops than ʹ͹͵ 
livestock mammals, even when considered within plant growth-forms. Breeding to ʹ͹Ͷ 
simultaneously optimize variation in plant and organ sizes, and variation in metabolic rates, ʹ͹ͷ 
might be tradeoff-free in plants.  ʹ͹͸ 

Finally, we highlight two limitations of the current work. First, trait data come from ʹ͹͹ 
plants and animals sampled in their typical habitats, which are different among species, and ʹ͹ͺ 
are undoubltley so among organisms living in farm vs wild habitats. Thus, the phenotypic ʹ͹ͻ 
patterns encountered here came from a mixture of genotypic and environmental drivers, ʹͺͲ 
whose relative importance is plainly indistinguisible for large scale macroecological ʹͺͳ 
studies. However, the few experiments that grew sets of crops and of their wild progenitors ʹͺʹ 
in common gardens, and phenotyped the types of traits that we measured here, tended to ʹͺ͵ 
concur with our results, which suggests a strong genetic component at play 22,40,47. ʹͺͶ 
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Therefore, it will be necessary to take these experimental approaches one step further in ʹͺͷ 
terms of number of species and phylogenetic breadth, both for wild and domesticated ʹͺ͸ 
organisms. Second, we note that, for both domesticated and wild species, intraspecific ʹͺ͹ 
variation was not considered here. Such variation, even if unmanageable to explore ʹͺͺ 
systematically at the macroevolutionary scale of the current study, might expand trait ʹͺͻ 
spaces greatly48. Leaf trait intraspecific variation in sunflower, wheat, maize and coffee was ʹͻͲ 
recently reported, and occupies a fair portion of wild phenospaces, though very rarely ʹͻͳ 
spreading outside wild boundaries 40,49,50. We supplemented those leaf trait patterns ʹͻʹ 
available in the literature with ad hoc analyses for seed and plant sizes (Supplementary ʹͻ͵ 
Figure 2). Similarly to leaf traits, intraspecific variation in size traits is constrained within ʹͻͶ 
wild envelopes in sunflower, soybean, and barley (Supplementary Figure 2). However, ʹͻͷ 
maize, as a crop species in which the seed-plant size centroid is outside the phenosphace of ʹͻ͸ 
its corresponding wild analogs (Figure 5), expands most of its intraspecific variation ʹͻ͹ 
outside wild boundaries (Supplementary Figure 2). In our view, these analyses, and the ʹͻͺ 
available literature, are still too scant to reach solid solid conclusions on the role of ʹͻͻ 
intraspecific variation in trait differences between wild and domesticated organisms. Thus, ͵ͲͲ 
investigating how and to what extent diversifying breeding of domesticates expands ͵Ͳͳ 
phenospaces is needed to bridge the macro- and the micro-evolutionary scales. ͵Ͳʹ 

This study placed domesticates within their broader botanical and zoological ͵Ͳ͵ 
context, which facilitates appreciation of the qualities and potentials of the species that ͵ͲͶ 
support our food system, and could help in the search for suitable future domesticates. ͵Ͳͷ 
Suitable phenotypes among mammals include moderate-slow life histories, while fast ͵Ͳ͸ 
growth traits and large size dominate among herbaceous crops. Further, the usage of a ͵Ͳ͹ 
phylogenetic comparative approach, which was seldom embraced in the domestication ͵Ͳͺ 
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literature (but see12,14,51), provided unique insights, that are unattainable at smaller scales.  ͵Ͳͻ 
Overall, our work indicates that certain phylogenetic clades and phenotypic profiles have ͵ͳͲ 
been more exploited than others for provisioning human food, and that such filtering was ͵ͳͳ 
based on strong, conscious or unconscious, early selection at human settlements. Future ͵ͳʹ 
work should investigate biogeographic and historical determinants, disentangle genotypic ͵ͳ͵ 
from environmental drivers, and address the microevolutionary scale, of the broad ͵ͳͶ 
phylogenetic and phenotypic patterns of differences between domesticated and wild kins ͵ͳͷ 
revealed here. ͵ͳ͸ 
 ͵ͳ͹ 
Methods ͵ͳͺ 
 ͵ͳͻ 
Study system ͵ʹͲ 
We explored macroevolutionary patterns of the distributions of species domesticated for ͵ʹͳ 
human food, and compared their phenotypic trait space occupancy with that of wild ͵ʹʹ 
species. We included the broadest possible diversity of mammals and angiosperms farmed ͵ʹ͵ 
for human food provision, with distinct domestication histories and intensities, ͵ʹͶ 
phylogenetic affinities, and phenotypic profiles (see Supplementary Table 1, ͵ʹͷ 
Supplementary Data 1, and Figures 1-6). ͵ʹ͸ 
 ͵ʹ͹ 
Collection of data on the distribution and abundance of angiosperms and mammals ͵ʹͺ 
farmed for food ͵ʹͻ 
In order to assess patterns of distribution and abundance of food domesticates across ͵͵Ͳ 
phylogenies, we compiled the abundances and identities of domesticated species within ͵͵ͳ 
mammals and angiosperms, at the family and genus levels. We aimed to build a ͵͵ʹ 
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comprehensive working list of all putative species domesticated for food. Therefore we ͵͵͵ 
included all species for which farming could be substantiated, as an indicator of some ͵͵Ͷ 
degree, even if incipient, of domestication.  ͵͵ͷ 

We used the literature to build a preliminary list of mammals farmed for food5,6,52,53. ͵͵͸ 
We excluded most anectodal evidence of deer and antelopes farming, but for the sake of ͵͵͹ 
inclusivity we considered species like reindeer, sika deer, moose, bison, muskox or ͵͵ͺ 
common eland, which are regularly farmed regionally, and thus should include incipiently ͵͵ͻ 
domesticated populations. We also included recent incipient domesticated species for food ͵ͶͲ 
like the African giant rat, or the South American paca. The set of mammals comprised 27 ͵Ͷͳ 
domesticated species, distributed across 22 genera and 10 families. Taxonomy was checked ͵Ͷʹ 
using the taxize R package54.  ͵Ͷ͵ 

For plants, we compiled a list of all putative domesticated species from the ͵ͶͶ 
literature2,4,18,55. From that list, we extracted taxa for which cultivation could be ͵Ͷͷ 
demonstrated, and filtered that extract by species used for human food or forage. We ͵Ͷ͸ 
include forage species because human food supply depends on livestock feeding, and a ͵Ͷ͹ 
substantial part of the agricultural land is devoted to that usage. To assign usage for food or ͵Ͷͺ 
forage we primarily used two studies2,56, supplemented with http://www.pfaf.org and with ͵Ͷͻ 
other sources when needed. Plant taxonomy was standardized using the Taxonstand R ͵ͷͲ 
package57, synonymous names were cleaned, and binomials were attributed to families ͵ͷͳ 
using The Plant List (http://www.theplantlist.org/). Thirty-five species were taxonomically ͵ͷʹ 
unresolved, and their provisional binomials were used. Our final 944 species list should ͵ͷ͵ 
include the vast majority of angiosperms known to have been cultivated for human food. ͵ͷͶ 
The species of our list belonged to 453 genera and 120 angiosperm families.  ͵ͷͷ 
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Domesticated mammals were grouped into two dietary types, i.e. ruminants and ͵ͷ͸ 
non-ruminants, based on the MammalDIET database58, and on information at ͵ͷ͹ 
http://www.ultimateungulate.com/ungulates.html - Ruminantia. The ruminant category also ͵ͷͺ 
included pseudo-ruminants, i.e. Camelidae and Hippopotamidae. Domesticated plants were ͵ͷͻ 
grouped by growth form into herbaceous, graminoids (Poaceae, Cyperaceae and ͵͸Ͳ 
Juncaceae), and woody plants (shrubs, trees, woody vines and tree-like species). Growth ͵͸ͳ 
forms were assigned using the TRY database59, the Global Woodiness Database60, and were ͵͸ʹ 
supplemented species-wise with primary literature when not available in those sources.  ͵͸͵ 
 ͵͸Ͷ 
Selection and compilation of phenotypic traits ͵͸ͷ 
We selected a set of three traits for mammals and three traits for angiosperms that are ͵͸͸ 
functionally analogous. Selection of traits used the following criteria: 1) previous evidence ͵͸͹ 
of domestication effects on those traits14,22,29,30,36; 2) functional relevance for basic ͵͸ͺ 
metabolism, resource-use, competition and reproductive strategies; and 3) availability of ͵͸ͻ 
data, both for domesticated and for wild species. By functional analogy, the selected traits ͵͹Ͳ 
can be grouped into: 1) plant canopy height (m) and mammal adult body mass (g) as ͵͹ͳ 
proxies for adult size and competitive ability for resources61,62; 2) leaf nitrogen content (mg ͵͹ʹ 
N mg-1), and size-corrected mammalian basal metabolic rate (ml O2 h

-1 g-1) as proxies of ͵͹͵ 
photosynthetic and metabolic rate, respectively26,63; and 3) seed dry mass (mg) and neonate ͵͹Ͷ 
body mass (g) as proxies for offspring size and likelihood of survival 64,65. ͵͹ͷ 

The two trait datasets were assembled separately for mammals and angiosperms. ͵͹͸ 
The dataset on mammal traits was compiled from the PanTHERIA database for adult and ͵͹͹ 
neonate body mass66, and from 67 for basal metabolic rate (supplemented with PanTHERIA ͵͹ͺ 
if basal metabolic rate was unavailable at 67). The dataset on mammal traits comprised 480 ͵͹ͻ 
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species, including 23 domesticated species (see Supplementary Table 1 for the identity of ͵ͺͲ 
domesticated species). For domesticated plants, trait data were not available for all 944 ͵ͺͳ 
crops species. Thus, we started by retrieving data from the 203 species list of domesticated ͵ͺʹ 
plants published in Meyer et al.18, which was built to maximize crop diversity. This helped ͵ͺ͵ 
to avoid biases in growth form, taxonomy, or agricultural relevance. That list of crop taxa ͵ͺͶ 
was further supplemented, again using criteria to maximize diversity and filtering by the ͵ͺͷ 
availability of trait data. Then, data for wild angiosperms were added. Overall, the sources ͵ͺ͸ 
for angiosperm trait data were: 1) the TRY database59 (https://www.try-db.org, accessed ͵ͺ͹ 
2016-11-13; 2) literature searches for wild species incompletely recorded or not present in ͵ͺͺ 
the TRY database; 3) literature searches for trait data of crop species, which are mostly ͵ͺͻ 
absent from TRY68; 4) our own data already collected on crops and other wild species (see ͵ͻͲ 
Data availability section). The final angiosperm trait dataset comprised 3,124 species, ͵ͻͳ 
including 181 domesticated species (see Supplementary Data 1 for the identity of ͵ͻʹ 
domesticated species).  ͵ͻ͵ 

Plant species names were standardized using the Taxonstand R package57, and were ͵ͻͶ 
attributed to families according to The Plant List (http://www.theplantlist.org/). A majority ͵ͻͷ 
of crop binomials are synonymous to the wild genotypes of their wild progenitors. ͵ͻ͸ 
Therefore, to decide whether a given observation of a crop related binomial was attributable ͵ͻ͹ 
to a crop or a synonymous wild species we used the following criteria. First, we looked for ͵ͻͺ 
explicit statements in the original publication or database on whether the studied taxa were ͵ͻͻ 
crop or wild. If uncertain, an observation was assigned to �wild� if the study was ͶͲͲ 
observational and was conducted under natural field conditions, or if the seeds for an ͶͲͳ 
experiment were collected from wild stocks. In contrast, an observation was assigned to ͶͲʹ 
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�crop� if the seeds came from commercial companies, cultivars or varieties or if studies had ͶͲ͵ 
been conducted in an agricultural setting, and no explicit mention to wild status was found. ͶͲͶ 
 ͶͲͷ 
Data handling prior to analyses ͶͲ͸ 
Our angiosperm dataset had 1.51 % missing data (leaf nitrogen 1.70 %, plant height 1.27%, ͶͲ͹ 
and seed mass 1.58 %). Since several plots and analyses involved the joint use of two or ͶͲͺ 
more traits, we adopted a multiple imputation approach to deal with missing data, following ͶͲͻ 
recommended procedures69,70. We generated ten complete datasets using the Predictive ͶͳͲ 
Mean Matching method (PMM) of the MICE package71. Phylogenetic relatedness (built as Ͷͳͳ 
described below) was incorporated into the imputation procedure as phylogenetic Ͷͳʹ 
orthogonal eigenvectors72. Results reported in the main body of the paper are from Ͷͳ͵ 
averaged imputed data of those ten complete datasets. A dataset without imputed data, and ͶͳͶ 
thus with a slightly reduced sample size, was used to test for robustness and sensitivity to Ͷͳͷ 
our data handling procedures. The results of sensitivity analyses were consistent with those Ͷͳ͸ 
shown in the main text (Supplementary Note, and Supplementary Tables 12-14). The Ͷͳ͹ 
mammalian traits dataset lacked basal metabolic rate data for six species, which were Ͷͳͺ 
estimated using the phylogenetically-corrected allometric scaling of adult body mass to Ͷͳͻ 
basal metabolic rate available at  67 (BMR = 2.382m0.729). All continuous variables were ͶʹͲ 
log-transformed prior to analyses. An exception was seed mass, which was log-generalized Ͷʹͳ 
transformed because a few crops do not yield seeds (Musa acuminata, Vaccinium Ͷʹʹ 
corymbosum and Allium sativum). This latter procedure is recommended when data contain Ͷʹ͵ 
zeros, and the smallest positive value is not close to one. ͶʹͶ 
 Ͷʹͷ 
Macroevolutionary patterns in the abundance and frequency of food domesticates Ͷʹ͸ 
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We performed separate analyses on the relative abundance of domesticated species, and Ͷʹ͹ 
domestication frequency, at the family and genus levels. Relative abundance, at family and Ͷʹͺ 
genus level, was calculated as the number of domesticated species in a particular family or Ͷʹͻ 
genus divided by the total number of domesticated species. Because this metric does not Ͷ͵Ͳ 
account for species richness within clades, we also calculated a domestication frequency Ͷ͵ͳ 
metric as the number of domesticated species in a focal family or genus per total number of Ͷ͵ʹ 
species in that same family or genus. These two metrics inform about different features of Ͷ͵͵ 
the distribution of domesticated species. Species richness at family and genus level, needed Ͷ͵Ͷ 
to compute domestication frequencies, was retrieved from lists of accepted names from Ͷ͵ͷ 
Wilson and Reeder (2005) for mammals, and from The Plant List v1.1 Ͷ͵͸ 
(http://www.theplantlist.org/), making use of the taxonlookup R package Ͷ͵͹ 
(https://github.com/traitecoevo/taxonlookup), for plants. Ͷ͵ͺ 

Phylogenetic hypotheses were built at the family and genus levels for mammals and Ͷ͵ͻ 
for angiosperms separately. Mammal phylogenies were based on Bininda-Emonds et al�s73 ͶͶͲ 
megaphylogeny as a backbone. The mammalian family-level tree included 142 families ͶͶͳ 
(91% of total mammalian families), while the genus-level tree included 498 genera (39.6 % ͶͶʹ 
of total mammalian genera). Seventy-two genera were ruminants and 337 were non-ͶͶ͵ 
ruminant herbivores (http://tolweb.org). Angiosperm phylogenies were based on the ͶͶͶ 
PhytoPhylo megaphylogeny60,74. The angiosperm family-level tree included 404 families ͶͶͷ 
(97% of total angiosperm families), while the genus-level tree included 7,233 genera (ca. ͶͶ͸ 
56 % of total angiosperm genera) (http://www.theplantlist.org/). All families, and all but ͶͶ͹ 
seven genera with domesticated species, were present in the megaphylogeny. Those seven ͶͶͺ 
genera (Gigantochloa, Nopalea, Parmentiera, Polianthes, Sphenostylis, Stizolobium, and ͶͶͻ 
Vitellaria) were bound to the PhytoPhylo megaphylogeny based on published phylogenies ͶͷͲ 
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of their respective families. The genus level tree included 2,745 genera of herbs, 421 of Ͷͷͳ 
graminoids, 3,500 of woody plants and 567 genera hosting both herbs and woody plants. Ͷͷʹ 
Genera containing herbs and woody plants were included in both of their respective growth Ͷͷ͵ 
form analyses. Angiosperm phylogenies were fully resolved, but mammalian phylogenies ͶͷͶ 
contained some internal polytomies (12 % of nodes in the family-level tree, 24 % in Ͷͷͷ 
ruminants and 38 % in non-ruminant herbivores). Therefore, analyses were run across 100 Ͷͷ͸ 
randomly resolved family and genus-level mammalian trees. Ͷͷ͹ 

To assess whether the abundance and frequency of domestication are randomly Ͷͷͺ 
distributed across mammal and angiosperm families and genera, we performed four Ͷͷͻ 
complementary analyses. First, we conducted randomisation analyses to test whether the Ͷ͸Ͳ 
distribution of the abundances of domesticated species per family, and of the frequencies of Ͷ͸ͳ 
domestication events, differed from random expectations. Observed kurtosis and skewness Ͷ͸ʹ 
of the distribution of abundances were compared to that of 1,000 randomised distributions Ͷ͸͵ 
at each respective level. Second, we computed Local Indicators of Phylogenetic Ͷ͸Ͷ 
Association (LIPA) based on Local Moran�s I 

75, to detect families surrounded by Ͷ͸ͷ 
phylogenetic neighbourhoods with similar or distinctive (positive or negative Ͷ͸͸ 
autocorrelation, respectively) relative abundances of domesticated species or domestication Ͷ͸͹ 
frequencies. For each LIPA score, statistical significance was assigned by performing non-Ͷ͸ͺ 
parametric two-sided tests with 999 randomisations. For mammals, LIPAs were averaged Ͷ͸ͻ 
across the 100 randomly resolved trees. Third, we calculated the phylogenetic signal of the Ͷ͹Ͳ 
relative abundances of domesticated species, and of the frequencies of domestication, at the Ͷ͹ͳ 
genus and family levels, and separately for mammals and angiosperms. Provided that our Ͷ͹ʹ 
data followed either zero-inflated log-normal (abundances), or binomial (frequencies), Ͷ͹͵ 
distributions, we did not calculate standard Pagel�s Ȝ or Blomberg�s K metrics, which are Ͷ͹Ͷ 
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meant for continuous data with normal or log-normal distributions. Instead, we computed Ͷ͹ͷ 
phylogenetic signal as the phylogenetic heritability parameter (Ȝ) of phylogenetic mixed Ͷ͹͸ 
models (PMMs), where our metrics of domestication were the response, an intercept was Ͷ͹͹ 
set as the sole fixed-effects predictor, and inverse matrices of the phylogenetic distances Ͷ͹ͺ 
matrices were the covariance structure terms76,77. PMMs allow the specification of family Ͷ͹ͻ 
distributions of data deviating from Gaussian. The lambda parameter of such models, ͶͺͲ 
specified without meaningful fixed-effect predictors, and without additional covariance Ͷͺͳ 
structures in the random term, is the phylogenetic signal of the response variable, Ͷͺʹ 
analogously to a null Phylogenetic Generalized Least Square (PGLS) model76. Fourth, we Ͷͺ͵ 
fitted and compared two evolutionary models to test whether relative abundances and ͶͺͶ 
domestication frequencies were phylogenetically structured or phylogenetically Ͷͺͷ 
independent. We used a Brownian motion (BM) model to approximate neutral drift Ͷͺ͸ 
evolution or randomly fluctuating selection78. Under BM, relative abundances and Ͷͺ͹ 
frequencies evolve as a random walk through trait space along the branches of the Ͷͺͺ 
phylogeny, and thus represents strong phylogenetic structuring. BM was compared to a Ͷͺͻ 
non-phylogenetic model (a star phylogeny), which was used to approximate a phylogenetic ͶͻͲ 
independent distribution. To compare both models we used the bias-corrected Akaike Ͷͻͳ 
Information Criterion (AICc), and calculated the difference between the AICc of the best Ͷͻʹ 
(smallest AICc) and the alternative model79. In addition, for each model we calculated the Ͷͻ͵ 
AICc weights (AICc-w), with a high AICc-w indicating a low relative AICc for that model ͶͻͶ 
and hence higher support79. For mammals, all parameters were averaged across 100 Ͷͻͷ 
randomly resolved trees and the percentage of preferred models was calculated. Ͷͻ͸ 
Phylogenetic signals were computed using the MCMCglmm function of the R package Ͷͻ͹ 
MCMCglmm

80, setting family distribution as zero inflated poisson for domestication Ͷͻͺ 
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abundances, and as binomial for frequencies of domestication. Evolutionary model fitting Ͷͻͻ 
was performed with the FitContinuous function of the R package geiger

81. Local Moran�s I ͷͲͲ 
was calculated using the lipaMoran function of the R package phylosignal

75. ͷͲͳ 
 ͷͲʹ 

Comparative analyses of phenotypic trait space occupancy of wild and domesticated ͷͲ͵ 
species ͷͲͶ 
New sets of phylogenetic trees were built at the species level for those mammals and ͷͲͷ 
angiosperms included in our traits datasets. The mammal phylogeny for the 480 species ͷͲ͸ 
with trait data was built from Bininda-Emonds et al�s73 megaphylogeny using Phylomatic ͷͲ͹ 
v.382 (http://phylodiversity.net/phylomatic/pmws). The angiosperm phylogeny for the 3,124 ͷͲͺ 
species with trait data was based on the PhytoPhylo megaphylogeny60,74, and was built ͷͲͻ 
using scenario three of the R package S.PhyloMaker

74. To account for phylogenetic ͷͳͲ 
uncertainty (20.3 % of unresolved nodes for mammals and 15.3 % for angiosperms), all ͷͳͳ 
analyses were performed on 100 randomly resolved trees by using the multi2di function of ͷͳʹ 
the ape R package83. ͷͳ͵ 

To visualize the phenotypic spaces explored by wild and domesticated species we ͷͳͶ 
used bivariate phenospaces. Additionally, we used convex hulls to draw the minimum ͷͳͷ 
convex envelope for each pair of traits, domestication status and growth form or dietary ͷͳ͸ 
type84. In addition, for each growth form or dietary type, we calculated the area and volume ͷͳ͹ 
of each three-traits convex hull. To test for significant differentiation in trait space between ͷͳͺ 
domesticated and wild species, we performed phylogenetic-corrected MANOVAs and ͷͳͻ 
ANOVAs, separately for each growth form or dietary type. Convex hull calculations were ͷʹͲ 
performed using function convhulln of the R package geometry

85. Phylogenetic ͷʹͳ 
MANOVAs/ANOVAs were run with the function aov.phylo in the R package geiger81.  See ͷʹʹ 
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Supplementary Methods for tests on whether the phenotypic departure of domesticated ͷʹ͵ 
species from the trait medians of their wild counterparts was related to differences between ͷʹͶ 
domesticates in geographic origin, climate at geographic origin, or antiquity of ͷʹͷ 
domestication. All analyses of the paper were conducted in R v3.4.386. ͷʹ͸ 

 ͷʹ͹ 
Data availability ͷʹͺ 
All phenotypic traits of mammalian species included in this study are available from the ͷʹͻ 
literature (see Methods section). For plants, most data are available from the database ͷ͵Ͳ 
TRY59 (https://www.try-db.org), and all original sources of TRY data are listed in ͷ͵ͳ 
Supplementary References 1. All references for data not included in TRY are available in ͷ͵ʹ 
the Supplementary References 2. Unpublished data owned by R.M. and J.M.B. are ͷ͵͵ 
available from Supplementary Data 3. Unpublished data from the University of Sheffield ͷ͵Ͷ 
database of weed functional attributes can be requested from G.J. Lists of livestock and ͷ͵ͷ 
crop taxa are available at Supplementary Table 1 and Supplementary Data 1, respectively. ͷ͵͸ 
Phylogenetic trees used in this study are available from Supplementary Data 4. Data on ͷ͵͹ 
geography and climate at domestication sites are available as Supplementary Data 5. ͷ͵ͺ 
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FIGURE LEGENDS ͹ͷ͹ 
Figure 1. Distribution of the abundance of food domesticates and frequency of ͹ͷͺ 
domestication events across mammalian and angiosperm families. Length of blue bars ͹ͷͻ 
are relative abundance of domesticated species (proportion of all domesticated species that ͹͸Ͳ 
are found within a given family), and of domestication frequencies (proportion of all ͹͸ͳ 
species in a family that were domesticated). Raw data can be found in Supplementary Table ͹͸ʹ 
1 and Supplementary Data 1, and family identities in the phylogeny can be browsed online ͹͸͵ 
in the high resolution version of the Figure. Colors of tree edges correspond to ͹͸Ͷ 
domestication abundances or frequencies, according to a gradient of increasing rates from ͹͸ͷ 
zero (red) to one (blue). Within each phylogeny, the inset indicates the posterior mode of ͹͸͸ 
the phylogenetic signal (Ȝ), together with its 95% credible interval.  ͹͸͹ 
 ͹͸ͺ 
Figure 2: Phylogeographic distribution of the putative place of origin of food ͹͸ͻ 
domesticates included in phenotypic space analyses. Locations in the map are medians ͹͹Ͳ 
of GBIF coordinate records for the putative wild progenitor of each domesticate. Data were ͹͹ͳ 
retrievable for 168 wild progenitors of crops, out of 181 crop species, and for all of the 23 ͹͹ʹ 
wild progenitors of mammal domesticates. Insets: Mantel test statistics for the correlation ͹͹͵ 
between phylogenetic and geographic distance matrices. See Supplementary Methods for ͹͹Ͷ 
further details. ͹͹ͷ 
 ͹͹͸ 
Figure 3. Phenosphospace occupancy of livestock and wild mammals. Separate plots ͹͹͹ 
are shown for all mammals, ruminants, and non-ruminant herbivores. Grey dots and red ͹͹ͺ 
dots are wild and domesticated mammals, respectively. Black and red polygons are convex ͹͹ͻ 
hulls for wild and domesticated mammals, respectively. Numbers in the insets are % of ͹ͺͲ 



  Milla et al.  

 ͵ͳ

convex hull area of domesticates outside the wild boundary (light red), of domesticates ͹ͺͳ 
inside the wild boundary (strong red-grey), and of wild space occupied by domesticates ͹ͺʹ 
(grey). ͹ͺ͵ 
 ͹ͺͶ 
Figure 4. Phenotypic differentiation between livestock and wild mammals. Separate ͹ͺͷ 
panels are shown for all mammals, non-ruminants, and ruminants. Asterisks indicate ͹ͺ͸ 
statistically significant differences at phy-P ≤ 0.05 between domestication statuses ͹ͺ͹ 
according to phylogenetic Anovas (Supplementary Table 7). Center line, median; box ͹ͺͺ 
limits, upper and lower quartiles; whiskers, lowest/highest datum still within 1.5*IQR; ͹ͺͻ 
points, data exceeding whisker bounds. ͹ͻͲ 
 ͹ͻͳ 
Figure 5. Phenospace occupancy of crops and wild angiosperms. Separate plots are ͹ͻʹ 
shown for all angiosperms and for each growth form (i.e. herbaceous, graminoids and ͹ͻ͵ 
woody). Grey dots and red dots are wild and domesticated angiosperms, respectively. Black ͹ͻͶ 
and red polygons are convex hulls for wild and domesticated angiosperms, respectively. ͹ͻͷ 
Numbers in the insets are % of convex hull area of domesticates outside the wild boundary ͹ͻ͸ 
(light red), of domesticates inside the wild boundary (strong red-grey), and of wild space ͹ͻ͹ 
occupied by domesticates (grey). ͹ͻͺ 
 ͹ͻͻ 
Figure 6. Phenotypic differentiation between crops and wild angiosperms. Separate ͺͲͲ 
plots are shown for all angiosperms and each growth form (i.e. herbaceous, graminoids and ͺͲͳ 
woody). Asterisks indicate statistically significant differences at phy-P ≤ 0.05 between ͺͲʹ 
domestication statuses according to phylogenetic Anovas (Table 2). Center line, median; ͺͲ͵ 
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box limits, upper and lower quartiles; whiskers, lowest/highest datum still within 1.5*IQR; ͺͲͶ 
points, data exceeding whisker bounds. ͺͲͷ 
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