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Abstract 

The steam reforming of pyrolysis bio-oil is one proposed route to low carbon hydrogen production, 

which may be enhanced by combination with advanced steam reforming techniques.  The advanced 

reforming of bio-oil is investigated via a thermodynamic analysis based on the minimisation of Gibbs 

Energy. Conventional steam reforming (C-SR) is assessed alongside Sorption Enhanced Steam 

Reforming (SE-SR), Chemical Looping Steam Reforming (CLSR) and Sorption Enhanced Chemical 

Looping Steam Reforming (SE-CLSR). The selected CO2 sorbent is CaO(s) and oxygen transfer 

material (OTM) is Ni/NiO.  PEFB bio-oil is modelled as a surrogate mixture and two common model 

compounds, acetic acid and furfural, are also considered. A process comparison highlights the 

advantages of sorption-enhancement and chemical looping, including improved purity and yield, and 

reductions in carbon deposition and process net energy balance.  

The operating regime of SE-CLSR is evaluated in order to assess the impact of S/C ratio, NiO/C ratio, 

CaO/C ratio and temperature. Autothermal operation can be achieved for S/C ratios between 1 and 3. 

In autothermal operation at 30 bar, S/C ratio of 2 gives a yield of 11.8wt%, and hydrogen purity of 

96.9mol%. Alternatively, if autothermal operation is not a priority, the yield can be improved by 

reducing the quantity of OTM. The thermodynamic analysis highlights the role of advanced reforming 

techniques in enhancing the potential of bio-oil as a source of hydrogen. 
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1. Introduction 

Hydrogen is an important chemical feedstock for various applications, including the chemicals sector, 

crude oil refining and fertiliser manufacture [1].There is also interest in hydrogen as a clean energy 

vector for a range of applications, including transport, heating and energy storage [2,3]. As the energy 

system is undergoing considerable transition,  the nature of the future energy mix remains unclear, 

but it is evident that hydrogen use can be expected to grow in a number of sectors [4,5].  

Most hydrogen is produced by the steam reforming of fossil fuels [6]. The steam reforming reaction 

releases hydrogen from the fuel, but also releases carbon in the form of CO2. Further CO2 is released 

from fuel combustion, which is required to heat the endothermic reaction. As a result, steam methane 
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reforming releases around 10 to 12 kg CO2 for each kg of H2 produced [7,8]. Annual global emissions 

from hydrogen production are around 500 megatonnes CO2 per year [5], which was equivalent to 

approximately 1.4% of the total CO2 emissions from fossil fuels and industry in 2016 [9]. To continue 

to meet hydrogen demand within a decarbonised economy, it is necessary to establish low carbon 

methods of hydrogen production on a large scale. 

While life cycle assessment has shown that fossil fuel steam reforming has a high carbon footprint 

compared to other hydrogen production methods, the process is capable of producing hydrogen cost-

effectively and efficiently at large scale [10].  If steam reforming could be combined with methods to 

reduce emissions, such as low carbon feedstocks and Carbon Capture Utilisation and Storage 

(CCUS), it may be a promising solution for efficient, large scale production of low carbon hydrogen. 

One means of reducing the carbon emissions, as well as reducing dependence on fossil fuels, is to 

use a feedstock derived from bioenergy. There are multiple methods to convert the hydrogen-

containing compounds within biomass to hydrogen. One method uses pyrolysis to convert solid 

biomass into bio-oil, which is subsequently used in a steam reforming process. Bio-oil is an energy-

dense liquid containing a complex mixture of oxygenated organic compounds. It can be transported 

as a liquid fuel, potentially enabling a network of decentralised pyrolysis plants which serve a central 

steam reforming facility [1]. Bio-oil steam reforming can reduce greenhouse gas emissions by around 

50% compared to natural gas, depending on the source of the biomass [11].   

Experimental studies of bio-oil steam reforming have demonstrated bio-oil conversions of over 90%, 

but highlighted that carbon deposition is a challenge for this chemically complex feedstock [12]. The 

risk of carbon deposition may be partly alleviated by catalyst selection. Low cost nickel-based 

catalysts are capable of breaking the C-C bonds in the bio-oil, and have high activity for steam 

reforming, but they are also very active for coke formation and methanation. Noble metals have 

demonstrated higher reforming activities and reduced carbon deposition, but the cost can be 

prohibitive. Another approach includes modifying Ni-based catalysts with promoters, including metals 

such as Cu, Co and Zn, or metal oxides such as La2O3, MgO and CaO [13,14].  

Steam reforming may also be improved using advanced process techniques, such as sorption 

enhancement and chemical looping. In Sorption-Enhanced Steam Reforming (SE-SR), the reaction is 

enhanced by the addition of a solid CO2 sorbent [15]. The sorbent removes CO2 from the reactor, 

enhancing purity and enabling in situ CO2 capture. At the same time, it shifts the chemical equilibrium, 

thereby improving hydrogen yield. A range of sorbents have been studied, including MgO, 

hydrotalcite, Li2O3 and alkaline ceramics. CaO has been identified as a promising sorbent with high 

capacity and low cost, although long-term stability remains a challenge [16,17]. 

In chemical looping steam reforming (CLSR), an oxygen transfer material (OTM) provides an 

undiluted source of oxygen for partial oxidation of the fuel, thereby enabling an autothermal reforming 

process without costly air separation [18].  It is closely related to other chemical looping processes 

proposed for hydrogen production, such as steam reforming with chemical looping combustion (SR-

CLC), or chemical looping water splitting [19–23].  
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Early studies such as those by Fathi et al. [24] and Rydén et al. [25] demonstrated the feasibility of 

CLSR. Over 700 OTMs have since been developed and tested for combustion and reforming  [19], 

aiming to produce materials with high catalytic activity and stability [26–29]. OTMs are typically 

comprised of a metal oxide such as Cu, Fe2O3, NiO, or Mn3O4 supported on an inert material such as 

Al2O3, MgAl2O4, SiO2, TiO2 or ZrO2 [30]. Nickel-based OTMs are the most extensively analysed in 

literature [19] and have the crucial advantage in packed bed configuration of being the best steam 

reforming catalysts in their reduced, metallic form. Studies with methane and Ni/NiO have 

demonstrated high reactivity and stability at high temperatures, as well as high selectivity towards 

hydrogen production [28,30–32]. The CLSR concept has also been applied to alternative fuels from 

bioenergy sources, including glycerol [33,34], waste lubricating oil [35], and bioethanol [36]. This also 

includes the CLSR of bio-oil and its model compounds on nickel-based OTMs [37–39].   

The advantages of sorption enhancement and chemical looping can be combined into SE-CLSR, to 

give high purity hydrogen in an autothermal process [32,40–42]. Recent work has demonstrated the 

performance of acetic acid in SE-CLSR, as a model compound for bio-oil [43]. Over 20 successive 

cycles at 923K, the yield remained above 78% of the equilibrium value.  

These results suggest that there is an opportunity to combine advanced reforming techniques with 

bio-based feedstocks. The advantages of advanced reforming techniques, such as improved yields, 

efficiencies and flexibility of scale, could strengthen the technical and economic case for the uptake of 

alternative feedstocks. At the same time, there are advantages to developing the next generation of 

steam reforming techniques in parallel with an understanding of future fuels. In particular, enabling 

cost-effective carbon capture in bio-oil steam reforming would unlock a new type of bioenergy with 

carbon capture and storage (BECCS), which has been identified as a vitally important source of 

negative emissions [44].  

In this study, a thermodynamic analysis is carried out to evaluate hydrogen production from bio-oil. 

Thermodynamic analysis is an informative tool which can be used to evaluate key process 

parameters such as equilibrium yields, conversions and the energy balance. It is a first step towards 

more realistic, dynamic models, capable of simulating real processes and demonstrating real 

improvements over conventional steam reforming of fossil fuels.  This technique has been used to 

investigate advanced reforming of several feedstocks, including methane [42,45], shale gas [41] and 

glycerol [46]. Thermodynamic analysis has also been carried out on bio-oil model compounds in 

conventional steam reforming, SE-SR and CLSR [47–50]. 

Two opportunities have been identified to improve understanding of the advanced reforming of bio-oil. 

First is the study of SE-CLSR, which has not previously been examined for bio-oil. Second is the 

modelling of bio-oil as a mixture of compounds, rather than a single model compound, to give a closer 

assessment of its potential. This work examines three feedstocks relating to bio-oil: a bio-oil surrogate 

mixture, and two model compounds. The steam reforming techniques studied include conventional 

steam reforming (C-SR), sorption-enhanced steam reforming (SE-SR), chemical looping steam 

reforming (CLSR), and sorption-enhanced chemical looping steam reforming (SE-CLSR). 
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Thermodynamic analysis is applied to evaluate an approximate energy balance of bio-oil reforming 

processes, as well as the hydrogen yield, product purity, and potential for carbon deposition.  The 

autothermal operation of SE-CLSR is assessed, to identify opportunities for optimisation. Given the 

high oxygen content of bio-oils and lower calorific value, important questions addressed in this study 

are whether sufficient heat can be generated by the unmixed oxidation of the bio-oil surrogate mixture 

and the two model compounds to supply the demand of their steam reforming, and whether the 

requirement for sorbent material does not overwhelm the heat balance due to larger CO2 generation, 

both necessary to maintain cyclic operation. 

2. Process description 

In conventional steam reforming (C-SR), a hydrocarbon or other organic fuel reacts with steam to 

produce hydrogen and carbon dioxide (R1 to R3 in Table 1). In industry, the reaction typically occurs 

in two reactor stages: a reforming stage and a water gas shift (WGS) stage. The reforming reactor 

performs the endothermic R1 at high temperature, producing syngas. The WGS reactor reduces the 

carbon monoxide content via the exothermic R2, increasing H2 yield and purity [51]. This study 

focusses on the high temperature reforming stage.  

Three advanced reforming processes are also considered: SE-SR, CLSR and SE-CLSR. In SE-SR, a 

CO2 sorbent is added to the reforming reactor. The sorption of CO2 shifts the chemical equilibrium 

and provides heat, resulting in improved yield and purity, as well as achieving in situ capture of CO2 

[15]. In CLSR, an oxygen transfer material (OTM), typically a metal oxide, provides oxygen for partial 

oxidation of the fuel (R9). In its reduced form, the OTM acts as a catalyst for the reforming reaction, 

so that fuel oxidation in the absence of air occurs simultaneously with reforming. The release of heat 

from fuel oxidation reduces energy demand, so that the reformer may be autothermal, and no longer 

requires indirect heating from a furnace. The OTM provides oxygen in an undiluted form, thereby 

eliminating the need for costly air separation [18].  SE-CLSR combines sorption enhancement with 

the chemical looping principle, bringing about added benefits through combination of equilibrium shift, 

steam reforming and OTM reduction. 

To enable regeneration of sorbent and re-oxidation of the OTM, these advanced reforming processes 

are cyclical. The cycle steps can occur in a series of fluidised beds, or within a packed bed with 

sequenced flows [30,52]. The cycles of SE-SR, CLSR and SE-CLSR in a packed bed have previously 

been illustrated in S G Adiya et al [41].  

In these processes, steam reforming occurs alongside reactions of the OTM and sorbent. In addition, 

a number of reactions lead to coke formation [53]. Table 1 shows the generalised reaction scheme for 

an organic compound CnHmOk. On the basis of the literature review, the selected OTM is Ni/NiO. The 

selected CO2 sorbent is CaO(s). 
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Table 1 - Main reactions in sorption-enhanced and chemical looping reforming of an organic 
compound CnHmOk 
No. Reaction Description 

R1 ܥ௡ܪ௠ܱ௞ ൅ ሺͳ െ ݇ሻܪଶܱ ՞ ܱܥ ൅ ሺ݉ʹ െ ݇ ൅ ͳሻܪଶ Steam reforming 

R2 ܱܥ ൅ ଶܱܪ ՞ ଶܱܥ ൅  ଶ Water gas shiftܪ

R3 ܥ௡ܪ௠ܱ௞ ൅ ሺʹ݊ െ ݇ሻܪଶܱ ՞ ଶܱܥ݊ ൅ ሺʹ݊ ൅ ݉ʹ െ ݇ሻܪଶ Global steam reforming 

R4 ܱܥ ൅ ଶܪ͵ ՞ ସܪܥ ൅  ଶܱ Methanationܪ
R5 ܱܥଶ ൅ Ͷܪଶ ՞ ସܪܥ ൅  ଶܱ Methanationܪʹ
R6 ܱܽܥሺ௦ሻ ൅ ଶܱܥ ՞  ଷሺ௦ሻ Carbonation of CaO(s)ܱܥܽܥ

R7 ܱܽܥሺ௦ሻ ൅ ଶܱܪ ՞  ሻଶ ሺ௦ሻ Hydration of CaO(s)ܪሺܱܽܥ

R8 ܥ௡ܪ௠ܱ௞ ൅ ሺʹ݊ െ ݇ሻܪଶܱ ൅ ܱܽܥ݊ ՜ ଷܱܥܽܥ݊ ൅ ሺʹ݊ ൅ ݉ʹ െ ݇ሻܪଶ Sorption-enhanced steam 
reforming 

R9 ܥ௡ܪ௠ܱ௞ ൅ ൬͵݊ʹ െ ݇൰ ܱܰ݅ ՜ ൬͵݊ʹ െ ݇൰ ܰ݅ ൅ ݊ʹ ܱܥ ൅ ݊ʹ ଶܱܥ ൅ ݉ʹ  ଶ Reduction of NiO/oxidation ofܪ
fuel 

R10 
௠ܱ௞ܪ௡ܥ ൅ ൬݊ െ ʹ݇͵൰ ܱܰ݅ ൅ ሺ݊ െ ݇͵ሻܪଶܱ՜ ൬݊ െ ʹ݇͵൰ ܰ݅ ൅ ଶܱܥ݊ ൅ ሺ݊ ൅ ݉ʹ െ ݇͵ሻܪଶ 

CLSR (combined NiO reduction 
and global steam reforming). 

R11 ܥ௡ܪ௠ܱ௞ ൅ ൬݊ െ ʹ݇͵൰ ܱܰ݅ ൅ ൬݊ െ ݇͵൰ ଶܱܪ ൅ ՜ܱܽܥ݊ ൬݊ െ ʹ݇͵൰ ܰ݅ ൅ ଷܱܥܽܥ݊ ൅ ሺ݊ ൅ ݉ʹ െ ݇͵ሻܪଶ 

SE-CLSR (combined NiO 
reduction and sorption-
enhanced steam reforming) 

R12 ܰ݅ሺ௦ሻ ൅ ͲǤͷܱଶ ՜ ܱܰ݅ሺ௦ሻ Oxidation of Ni 
R13 ܥ௡ܪ௠ܱ௞ ՞ ௬ܪ௫ܥ ௭ܱ ൅ ଶǡܪሺ ݏ݁ݏܽ݃ ଶܱǡܪ ǡܱܥ ଶǡܱܥ ସܪܥ ǥ ሻ ൅  Thermal pyrolysis reaction ݁݇݋ܿ
R14 ʹܱܥ ՞ ଶܱܥ ൅  Boudouard reaction ܥ
R15 ܱܥ ൅ ଶܪ ՞ ܥ ൅  ଶܱ Coke formation from COܪ
R16 ܪܥସ ՞ ܥ ൅  ଶ Coke formation from CH4ܪʹ

 

3. Methodology 

3.1. Energy balance 

Fig. 1 illustrates the main components in the energy balance for the SE-CLSR process. As well as the 

heat associated with reactions, the balance also includes heating of reactants, and heat recuperation 

from the solids and waste gases. 
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Fig. 1. Schematic description of SE-CLSR, showing key energy terms and temperature assumptions. 
 

The ǻH terms were based on the definitions given in [41]. In this study, they are defined as: 

ǻHfeed is the enthalpy change required to raise liquid reactants from 298K to reforming temperature 

(T1).  

ǻHref is the enthalpy associated with the reactions in the reduction/reforming step, occurring 

isothermally at T1.  

ǻHregen is the enthalpy associated with sorbent regeneration, including the heating of the sorbent from 

T1 to T2, and the enthalpy of reaction. For a 1.013 bar system, the regeneration temperature was set 

at 1170K. For higher pressure systems, the temperature was raised to ensure full regeneration of the 

sorbent. T2 is 1240K, 1300K and 1420K for a 5 bar, 10 bar and 30 bar system respectively. 

ǻHair is the enthalpy change required to heat air from 298K to regeneration/oxidation temperature 

(T2). 

ǻHox is the enthalpy released by oxidation of Ni, at T2. Where there is solid carbon present in the 

equilibrium products, ǻHox also includes the oxidation of this carbon. 

ǻHsolids is the enthalpy change associated with heating or cooling the regenerated solids (NiO and 

CaO) from T2 to reformer temperature (T1), so that they are returned to the starting point of the next 

cycle. 

ǻHgases is the heat recuperated from cooling the waste gases from step 2. This includes unreacted N2 

from the air, and the CO2 released by sorbent regeneration. Gases are cooled from T2 to 383K. 

ǻHtotal is the overall energy balance, calculated as the sum of all the energy terms. 
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For C-SR: οܪ௧௢௧௔௟ ൌ οܪ௙௘௘ௗ ൅ οܪ௥௘௙  

For SE-SR: οܪ௧௢௧௔௟ ൌ οܪ௙௘௘ௗ ൅ οܪ௥௘௙ ൅ οܪ௥௘௚௘௡൅ οܪ௦௢௟௜ௗ௦൅ οܪ௚௔௦௘௦  

For CLSR: οܪ௧௢௧௔௟ ൌ οܪ௙௘௘ௗ ൅ οܪ௥௘௙ ൅ οܪ௔௜௥ ൅ οܪ௢௫൅ οܪ௦௢௟௜ௗ௦൅ οܪ௚௔௦௘௦  

For SE-CLSR: οܪ௧௢௧௔௟ ൌ οܪ௙௘௘ௗ ൅ οܪ௥௘௙ ൅ οܪ௔௜௥ ൅ οܪ௢௫ ൅ οܪ௥௘௚௘௡൅ οܪ௦௢௟௜ௗ௦൅ οܪ௚௔௦௘௦  

Where a unit was exothermic, this was signified by a negative energy term.  Where ǻHtotal was equal 

to or less than zero, the process as a whole is autothermal.  

An Aspen Plus simulation was used to calculate the terms in the energy balance. Reactors were 

modelled using RGibbs reactor blocks, which calculate thermodynamic equilibrium by the 

minimisation of Gibbs free energy. The selected property method was Peng-Robinson [54]. A series 

of two reactors, with the solids flowing from one reactor to another, was used to represent the two 

main cycle stages. In C-SR, SE-SR and CLSR, the absence of OTM or sorbent was modelled by 

setting the flow of the corresponding stream to zero. 

To assess the potential for carbon deposition, solid carbon (graphite) was included as a component 

within Aspen Plus. Fluid inputs (fuel, water, air) enter the system at 298K, and at operating pressure. 

The energy balance did not include the energy required to raise the fluids to this pressure, or any 

other electrical or auxiliary energy. The flow of air was set by a calculator block, which calculated the 

stoichiometric quantity of air required to completely oxidise the nickel. The composition of air was 

assumed as 79% N2 and 21% O2. 

Key process parameters are the steam-to-carbon (S/C) ratio, NiO to carbon (NiO/C) ratio and sorbent 

to carbon (CaO/C) ratio. The flow of steam, Ni and CaO were set using a calculator block, which 

multiplied the molar carbon flow by the relevant ratio. For S/C ratio, the calculation took account for 

the water content in the bio-oil: 

݊௦௧௘௔௠ ൌ ቀ෍ ௜݊஼ǡ௕௜௢ି௢௜௟ߙ ൈ ܵቁ െ  ுమை݊ ௕௜௢ି௢௜௟ݕ
Where ݊௦௧௘௔௠ and ݊ ௕௜௢ି௢௜௟ are the molar flow rates of steam and bio-oil respectively. S is the S/C 

ratio, ݕுమை is the molar fraction of water in bio-oil,  ݊஼ǡ௕௜௢ି௢௜௟ represents the number of moles of carbon 

species in the bio-oil, and Įi is the number of carbon atoms in the carbon species.   

The yield was expressed as wt% of the feedstock. As the bio-oil has a high moisture content (Table 

2), the yield was expressed on a wet basis and moisture-free (m.f.) basis:  

Ψǡݐݓሺ ݈݀݁݅ݕ ଶܪ wetሻ ൌ ݊ுమ ൈ ܯ ுܹమ݊௙௨௘௟ǡ௪௘௧ ൈ ܯ ௪ܹ௘௧ ൈ ͳͲͲ 

Ψǡݐݓሺ ݈݀݁݅ݕ ଶܪ mǤ fǤ ሻ ൌ ݊ுమ ൈ ܯ ுܹమ݊௙௨௘௟ǡ௠Ǥ௙Ǥ ൈ ܯ ௠ܹǤ௙Ǥ ൈ ͳͲͲ 
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Where ݊ுమ is the number of moles of hydrogen produced, and ܯ ுܹమ is the molecular weight of 

hydrogen. ݊௙௨௘௟ǡ௪௘௧ represents the number of moles of fuel including moisture content, and ܯ ௪ܹ௘௧  is 

its molecular mass.  ݊௙௨௘௟ǡ௠Ǥ௙Ǥ is the number of moles of the organic fraction of the fuel, and ܯ ௠ܹǤ௙Ǥ is 

its molecular mass.  

The yield was also expressed as a percentage of the theoretical potential from the SE-CLSR global 

reaction (R11): 

Ǥ݄ܿ݅݋ݐݏ ݂݋ ሺΨ ݈݀݁݅ݕ ଶܪ ሻ݈ܽ݅ݐ݊݁ݐ݋݌ ൌ Ǧܧܵ ݉݋ݎ݂ ଶܪ ݈݋݉݀݁ܿݑ݀݋ݎ݌ ଶܪ ݈݋݉  ൈ ݕݎݐ݁݉݋݄݅ܿ݅݋ݐݏ ܴܵܮܥ ͳͲͲ 

Purity was calculated as the molar percentage of hydrogen in the product gas, on a dry basis: 

Ψሻ ݈݋ሺ݉ ݕݐ݅ݎݑ݌ ଶܪ ൌ ݊ுమǡ௣௥௢ௗ௨௖௧݊௧௢௧௔௟ǡ௣௥௢ௗ௨௖௧ െ ݊ுమைǡ௣௥௢ௗ௨௖௧ ൈ ͳͲͲ 

Where ݊௜ǡ௣௥௢ௗ௨௖௧ is the number of moles of component i in the product gas. 

 

3.2. Feedstocks 

Three different feedstocks were considered: acetic acid, furfural, and bio-oil surrogate mixture. Bio-oil 

has a complex chemical composition, which varies between different feedstocks and processes [55], 

so that  studies commonly used a single model compound as an approximation. Acetic acid is often 

used, as it is one of the most abundant compounds found in compositional analysis [12,56–58]. In this 

study, furfural was also selected because its molecular formula (C5H4O2) closely matches that of the 

moisture-free bio-oil model mixture shown in Table 3. Furfural has been used as a model compound 

by several authors [38,59]. Remón et al [60] used a statistical analysis to identify that acetic acid and 

furfural were the compounds which had the most significant effect on bio-oil reforming performance.  

Bio-oil may also be simulated by a mixture of components, using a variety of approaches. Plou et al. 

[61] used mixtures of acetic acid, methanol and acetol to represent three major groups in bio-oil 

(acids, alcohols and ketones). Other authors have matched their mixture composition to a detailed 

compositional analysis, using around 10 different compounds [62,63]. An alternative approach 

involves using a selection of model compounds, in combinations that give an elemental composition 

(CnHmOk) matching that of a real bio-oil [64,65].   

In this study, the composition of the bio-oil surrogate mixture was based on the work of Dupont et al. 

[66]. The bio-oil is represented as a mixture of the 6 macro-families identified by Garcia-Perez et al. 

[67]. The mass fraction of each compound was selected using curve fitting procedures, in order that 

the elemental composition and differential thermogravimetric (DTG) curve closely matches that of a 

real Palm Empty Fruit Bunch (PEFB) bio-oil [68]. A sensitivity analysis on PEFB bio-oil model 

mixtures has previously shown that the equilibrium results are not sensitive to the exact mixture 

composition, provided that the elemental composition is known [69]. The composition used in this 

study is shown in Table 2. 
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Table 2 – PEFB bio-oil model mixture composition[66,70] 
 C H O 
Ultimate analysis, mol fraction a 0.286 0.491 0.223 
Model mixture, mol fraction 0.268 0.519 0.213 
Percentage of error, % 6.2 5.8 4.8 

Water, wt.% a 24.3 
Model water, wt.% 24.0 
Familyb Family wt.% Model compounds Mass fraction 

1 F1=10% Formaldehyde, CH2O 0.08 
0.01 
0.01 

  Acetaldehyde, C2H4O 
  1-hydroxy-2-butanone, C4H8O2 

2 F2=30% Acetic acid, C2H4O2 0.07 
0.23   Water, H2O 

3 F3=15% Furfural, C5H4O2 0.13 
0.01 
0.01 

  Phenol, C6H6O 
  Water, H2O 

4 F4=15% Creosol, C8H10O2 0.14 
0.01   Guaiacol, C7H8O2 

5 F5+F6=30% Catechol, C6H6O2 0.24 
0.01 
0.05 

6  Palmitic acid, C16H32O2 
  Levoglucosan, C6H10O5 

a Composition of real PEFB bio-oil is from Pimenidou and Dupont [68] 
b Macro-families are based on Garcia-Perez[67] 

 

Table 3 shows the key stoichiometric information for each feedstock in SE-CLSR (R11). Methane is 

also included for comparison, as it is a common steam reforming feedstock. The stoichiometry 

illustrates some key constraints, such as the potential hydrogen yield, required S/C ratio and 

appropriate quantities of OTM and sorbent.  

Table 3 - Summary of stoichiometry for SE-CLSR of methane, bio-oil model compounds, and PEFB 
bio-oil surrogate mixture (Reaction 11)  
 Methane Acetic acid Furfural PEFB bio-oil 

(moisture-free) 
Composition (CnHmOk) n 1 2 5 4.057 

m 4 4 4 4.977 
k 0 2 2 1.776 

Molar mass (kg/kmol) 16.05 60.06 96.09 82.17 
Reactants (moli molfeedstock

-1) NiO 1.000 0.667 3.667 2.873 
H2O 1.000 1.333 4.333 3.465 
CaO 1.000 2.000 5.000 4.057 

Products (moli molfeedstock
-1) Ni 1.000 0.667 3.667 2.873 

CaCO3 1.000 2.000 5.000 4.057 
H2 3.000 3.333 6.333 5.954 

S/C ratio  1.000 0.667 0.867 0.854 
NiO/C ratio   1.000 0.333 0.733 0.708 
CaO/C ratio  1.000 1.000 1.000 1.000 
molH2 molcarbon

-1  3.000 1.667 1.267 1.468 

 

4. Results and discussion 

4.1. Process comparison and effect of temperature 

Fig. 2 shows the performance of each process over a range of temperatures and at atmospheric 

pressure. Fig. 2a and Fig. 2b indicate that the sorbent enhances the yield and purity of C-SR and 

CLSR, until the sorbent becomes ineffective at around 1050K. At certain temperatures, the sorption 
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enhanced processes achieve purity over 99mol%, while C-SR and CLSR only reach 60mol% purity, 

and would require extensive downstream processing.  

In SE-CLSR with S/C ratio of 2, maximum H2 yield (11.7 wt%) is achieved at 823K, at which point the 

purity is 99.6mol% H2, with 0.2 mol% CO2, 0.1 mol% CH4 and 0.05 mol% CO. However, maximum 

purity (99.7 mol%) is achieved at 723K, where yield is slightly lower than the maximum (11.6 wt%). 

The remaining 0.3% is methane, and other impurities are negligible (<1ppm). To reduce the 

requirement for downstream processing, the optimal operating point is likely to be the point of 

maximal purity, where yield will be slightly lower than the maximum.  

As result of the enhanced yield, SE-SR has a lower net energy balance than C-SR, despite the 

requirement for heat to regenerate the sorbent (Fig. 2c). At atmospheric pressure, SE-CLSR has a 

lower net energy balance than CLSR only between the range of around 800 – 1050 K. This can be 

explained by the individual energy terms, shown in Fig. 3. Below 800K, the CLSR energy balance is 

dominated by the oxidation term. Both CLSR and SE-CLSR release the same quantity of heat in 

oxidation but CLSR has a very low yield in this region, so that the energy released per mole of H2 is 

higher. While CLSR appears to have a thermodynamic advantage over SE-CLSR at this point, it is 

unlikely that the process would be operated in this region as the yield is low. Above 1050K, the 

calcium sorbent becomes ineffective and so both CLSR and SE-CLSR have the same net energy 

balance. The design of advanced reforming processes should consider these interactions between 

yield and heating burden in order to find an optimal balance. 

   

 

Fig. 2 - The effect of reduction/reforming temperature (T1) for PEFB bio-oil surrogate mixture in C-SR, CLSR, SE-
SR and SE-CLSR with S/C ratio of 2 at 1.013 bar. For SE-SR and SE-CLSR, CaO/C = 1 and NiO/C = 1. (a) mass 
yield, moisture-free basis, (b) H2 purity, (c) net process energy balance.  
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Fig. 3 - The effect of reduction/reforming temperature (T1) on the main energy terms in advanced reforming of 
PEFB bio-oil surrogate mixture with S/C = 2 at 1.013 bar (a) CLSR, with NiO/C = 1 and CaO/C = 0, (b) SE-CLSR, 
with NiO/C = 1 and CaO/C = 1. 
 

The equilibrium yields for the PEFB bio-oil mixture are similar to yields observed in experimental 

studies. Remón et al. [60] measured steam reforming yields in the range of 10 to 18 wt% from various 

bio-oils at S/C = 7.6 and 923K. At the same conditions, the C-SR equilibrium model gives 11.6 wt% 

m.f. For a real PEFB bio-oil, Zin et al. [71] measured a yield of 9.5 wt% m.f. with S/C = 2.75 at 873K. 

Sorption enhancement increased the yield to 10.4 wt%, with H2 purity of 97%. At the same conditions, 

the model gives 16.2 wt% m.f and 21.1 wt% m.f. in SR and SE-SR respectively.  A direct comparison 

is not applicable as the molecular composition was different in each case.  Nonetheless, these figures 

indicate that the surrogate mixture gives predictions within a reasonable range.  

Experimental demonstration of advanced reforming of bio-oil is more limited, but there is some 

evidence of model compounds achieving close to equilibrium yield in CLSR. In CLSR at 923K, acetic 

acid achieved 7.13 wt%, or 61.27% of equilibrium yield, while furfural achieved 12.6 wt%, or 71.86% 

of equilibrium yield  [47].  

One limitation of thermodynamic analysis is that it does not represent the deactivation of OTM and 

sorbent over multiple cycles. Acetic acid has displayed stable performance over at least 10 

successive cycles in CLSR and SE-CLSR, with carbon deposits being removed during the oxidation 

stage [39,43]. However, a whole bio-oil may display different deactivation behaviour. Catalyst stability 

is not within the scope of this study, but it is an important consideration for future work on process 

feasibility.  

 

4.2. Feedstock comparison in the SE-CLSR process 

The previous section focussed on bio-oil surrogate mixture, but it is also useful to understand how 

common model compounds perform in the same analysis. Fig. 4 shows the yield and net energy 

balance for each feedstock in SE-CLSR. 
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Fig. 4 - The effect of reduction/reforming temperature (T1) in SE-CLSR of acetic acid, bio-oil and furfural at 1.013 
bar with S/C = 2, NiO/C = 1, CaO/C = 1 (a) mass yield, moisture-free basis, (b) yield in % of stoichiometric 
potential from the SE-CLSR global reaction, (c) yield in mol H2 product per mol of H2 in feedstock, (d) net process 
energy balance 
 

Fig. 4a shows the mass yield, as this parameter is commonly used for reporting experimental results 

in bio-oil reforming.  The mass yield from bio-oil peaks at 11.7 wt% m.f., while acetic acid achieves 

only 6.7 wt% m.f. This is explained by the stoichiometry in Table 3.  Although bio-oil has a higher 

molar mass (i.e. a higher denominator), this is balanced by a high molar yield. When the 

stoichiometric yield is used (Fig. 4b), bio-oil and furfural are closely matched due to the similarity in 

their chemical formula shown in Table 3 (CnHmOk). The behaviour of furfural more closely models that 

of the bio-oil, suggesting that it is a more suitable model compound for representing the performance 

of bio-oil. 

Figure 4c shows the wide variation in net energy balance between the different feedstocks. At the 

range of conditions considered, the furfural energy balance is lower than that of bio-oil, by 32 to 37 kJ 

molH2-1. The net energy balance for acetic acid is higher than that of bio-oil, by 30 to 72 kJ molH2-1. In 

the optimal region, both model compounds are a similar distance from the bio-oil mixture. This 

highlights that variations in bio-oil composition could have a large impact on the energy balance, so 

that feedstock variation would be an important factor in process design and control.    

These results were generated using the same NiO/C ratio (NiO/C = 1). In practice, each feedstock will 

have a different optimal NiO/C ratio, according to the reaction stoichiometry (Table 3). For example, 

acetic acid appears to be performing well beneath its stoichiometric potential in Figure 4b, but this is 

because NiO/C of 1 represents a large excess of NiO above the required level (0.333). Thus, it is not 

appropriate to make a direct comparison of feedstocks at a single set of conditions. Instead, the 

process should be optimised, and the different optimal solutions compared. Section 4.4 examines this 

optimisation.   

 

4.3. Carbon deposition 

At S/C ratio of 2 and above, the results showed no carbon deposition in bio-oil steam reforming. A 

high excess of steam inhibits carbon deposition, and enables steam gasification of any existing 
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carbon deposits [41]. However, operating with a lower S/C may be preferable as it reduces the 

process energy balance. Section 4.4 contains further detail on the influence of S/C ratio on yield and 

energy balance. To understand the risk of carbon deposition at low S/C ratios, Fig. 5 shows solid 

carbon yields with S/C = 1. 

 

Fig. 5 - Equilibrium carbon product in the advanced reforming of PEFB bio-oil surrogate mixture with S/C =1 at 
1.013 bar (a) SE-SR, with NiO/C = 0, (b) CLSR, with CaO/C = 0, (c) SE-CLSR, with CaO/C = 1. 
 

In SE-SR, the presence of sorbent changes the limit for carbon deposition (Fig. 5a). The upper 

temperature limit is increased, but a minimum temperature is also introduced, to give an envelope in 

which equilibrium carbon product occurs.  As more sorbent is introduced, the lower limit increases so 

that the envelope for carbon deposition is narrowed. In SE-SR with a stoichiometric quantity of 

sorbent (CaO/C = 1), carbon deposition occurs between 823K and 973K. Previous thermodynamic 

studies have similarly found that carbon deposition is suppressed by CO2 sorption. These studies 

suggest that the enhanced WGS reaction reduces CO content, and thus shifts the equilibrium for the 

Boudouard reaction (R14) backwards [72,73].  

Figure 5b shows the effect of OTM content in CLSR. Increasing the amount of NiO moves the 

temperature boundary for carbon, so that carbon is eliminated at lower temperatures. By increasing 

NiO/C to 1, carbon product is eliminated at any temperature over 725K. This is the result of 

introducing oxygen into the reactor, which enables the oxidation of carbon.  

The combined effects of both OTM and sorbent in SE-CLSR are shown in Figure 5c. With CaO/C =1, 

and S/C = 1, carbon product is eliminated with NiO/C of 0.3 or above. These results highlight a 

potential advantage of SE-CLSR: by combining the effects of the sorbent and OTM, carbon can be 

supressed to very low levels across a wide operating range. 
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4.4. Optimisation and autothermal operation in SE-CLSR of bio-oil  

The analysis has highlighted that the process is affected by several interacting parameters which 

should be considered together. As well as temperature and pressure, other key parameters for 

consideration are the ratios S/C, NiO/C and CaO/C. These parameters can be manipulated to 

enhance yield and purity, reduce energy demand and eliminate carbon deposition.  

In this optimisation study of H2 production from bio-oil, three parameters are initially fixed: pressure, 

temperature, and CaO/C ratio. According to Le Chatelier’s principle, the reaction is favoured by low 

pressures, so the pressure is fixed at 1.013 bar. Temperature is fixed at 723K. The earlier analysis 

identified that this temperature maximises purity and gives close to maximum yield at this pressure.  

Fig. 6 shows the effect of CaO/C ratio in SE-CLSR. According to the stoichiometry (Table 3), CaO/C = 

1 provides enough sorbent to capture all of the CO2. Increasing CaO beyond this point does not 

increase the yield (Fig. 6a), but simply increases the net energy balance and expense associated with 

excess sorbent. For this reason, the amount of sorbent is fixed at CaO/C = 1.   

 

Fig. 6 - Effect of sorbent in SE-CLSR of bio-oil at 1.013 bar and 723K, with NiO/C = 1 (a) mass yield, moisture-
free basis (b) net process energy balance.  
 

The effects of NiO/C ratio and S/C ratio are illustrated in Fig. 7. Fig. 7b shows that the net energy 

balance can be reduced by increasing NiO/C ratio, as more heat is released from the oxidation of fuel 

and Ni.  Above a certain NiO/C ratio, autothermal operation (ȴH≤0) is theoretically possible. However, 

the reduced energy balance comes at the cost of lower H2 yield (Fig. 7a). Similarly, lower S/C ratio 

reduces heat demand, but also decreases H2 yield and purity. For S/C = 1, the purity is considerably 

reduced due to methanation. The selection of NiO/C ratio and S/C ratio should balance the conflicting 

objectives. 
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Fig. 7 - Effect of OTM in SE-CLSR of bio-oil at 1.013 bar and 723K, with CaO/C = 1 (a) mass yield, moisture-free 
basis, (b) net energy balance, (c) hydrogen purity. 
 

Table 4 shows the autothermal point for the bio-oil surrogate mixture, as well as the model 

compounds acetic acid and furfural at 723K. In autothermal SE-CLSR of bio-oil, CO2 and CO are 

reduced to a negligible level, so that downstream purification requirements are minimised.  

A low quantity of steam (S/C = 1) allows a small NiO inventory in autothermal operation, but also 

supports methanation, so that H2 purity is low and over 12 mol% of the product gas is CH4. By 

increasing the S/C ratio to 2, autothermal operation can be achieved alongside a high yield (13.6 

wt%) and minimal methanation.   

When comparing feedstocks, it is notable that the optimal solution for a bio-oil mixture is different to 

that of the model compounds. As seen in earlier results, furfural is a closer match to bio-oil and thus is 

a more suitable model compound for understanding thermodynamic potential. However, process 

development should aim to consider realistic bio-oil mixtures wherever possible. 

 
Table 4 - Parameters for autothermal operation in SE-CLSR of bio-oil, acetic acid and furfural at 1.013 
bar, 723K, with CaO/C = 1. In all cases, solid carbon and CO are negligible (<1ppm) 
Feedstock S/C Minimum 

NiO/C  
Yield 
(wt%, m.f.) 

Yield 
(wt%, wet) 

H2 purity 
(mol%) 

CO2  
(mol%) 

CH4 
(mol%) 

Bio-oil 3 1.050 11.2 8.51 99.95 0 0.0536 
 2 0.785 13.6 10.3 99.52 0 0.482 
 1 0.419 11.3 8.59 87.91 0 12.1 
Acetic acid 3 1.210 5.31 - 99.94 0.0633 0 
 2 0.949 7.04 - 99.99 0 0 
 1 0.679 8.49 - 98.86 0 1.14 
Furfural 3 0.940 11.1 - 99.91 0.0189 0.0756 
 2 0.675 13.6 - 99.43 0.0153 0.552 
 1 0.267 9.22 - 80.36 0 19.6 

While it may be possible to design an autothermal process, this comes at the expense of a reduced 

yield (Fig. 7). Hence the preferred operating regime will depend on whether autothermal operation is a 

priority, which will depend on plant-specific constraints such as required capacity, and the availability 

and cost of heat. Further techno-economic analysis would be required to find the optimal solution for a 

given plant, but the above method of thermodynamic analysis could be a valuable starting point for 

such an evaluation.  
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4.5. Heat recuperation 

The analysis above assumes that usable heat is recovered from both solids and gases after the 

oxidation/regeneration stage. Fig. 8 shows the impact on the energy balance if the heat recuperation 

terms are not included. Recuperation of heat from the gas has the largest impact. The impact of heat 

recuperation from solids decreases when the temperature of reduction/reforming approaches the 

same temperature as regeneration/oxidation (1170K). When combined, both types of recuperation 

reduce the net energy balance by 60 to 115 kJ molH2-1.  

This highlights the importance of heat integration in SE-CLSR. As the process is cyclical, parts of the 

process are repeatedly heated and cooled, and there is the potential to waste a large amount of heat 

if process design does not consider heat integration. Previous work has highlighted that the catalyst 

support can introduce a large additional heating burden[41], which would further increase the impact 

of heat recuperation from the solids. 

 

Fig. 8 - Effect of heat recuperation in SE-CLSR of bio-oil at 1.01325 bar, with S/C = 1, CaO/C = 1, NiO/C = 1.  

 

4.6. The effect of pressure on SE-CLSR 

Low pressure favours the production of hydrogen in the steam reforming reaction. However, industrial 

reforming processes are typically operated at high pressures, in the region of 20 bar or higher, to 

enable efficient processing of large gas flows in reduced reactor and pipe volumes [74]. Fig. 9 

illustrates how the various reforming processes are affected by elevated pressures. 

As pressure is increased, the maximum H2 yield is slightly decreased, and occurs at a higher 

temperature. At atmospheric pressure, the maximum yield is 11.6 wt% at 723K. At 30 bar, maximum 

yield is 10.9 wt% at 1023K (Fig. 9a). Fig. 9b shows that purity over 90 mol% is achievable at all the 

studied pressures, due to the CO2 sorbent. However, as pressure increases the maximum purity is 

lowered, and the region of maximum purity is narrowed. In a 30 bar system, H2 purity peaks at 96.7 

mol%. The main impurity is CH4 (1.8 mol%), as the high pressure system is favourable for 

methanation (R4 and R5). The level of methanation is illustrated in Fig. 9c. 
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To achieve a given H2 yield, the high pressure system requires a higher reformer temperature. 

However, Fig. 9d shows that the net process energy balance remains similar. In the low temperature 

region, higher pressure leads to more methanation (Fig. 9c), which releases heat into the reformer. In 

the high temperature region, the energy balance is affected by the sorption reaction – as the sorbent 

becomes ineffective, it no longer provides heat for sorption. This effect is observed at lower 

temperatures in low pressure systems.  

  

Fig. 9 - Effect of pressure in SE-CLSR of bio-oil, with S/C = 2, NiO/C = 1, CaO/C = 1 (a) mass yield, moisture-
free basis, (b) hydrogen purity, (c) methane production, (d) net process energy balance. 
 

Table 5 gives parameters for autothermal operation at elevated pressures. Autothermal operation 

remains a possibility at industrial reforming pressures, but the higher pressure leads to a higher NiO 

inventory, reduced yield, and more impurities. 

Table 5 - Parameters for autothermal operation in SE-CLSR of bio-oil, at various pressures with CaO/C = 1. 
In all cases, solid carbon yield is negligible. 
Pressure  
(bar) 

S/C 
(-) 

T 
(K) 

Minimum 
NiO/C  

Yield 
(wt%, m.f.) 

Yield 
(wt%, wet) 

H2 purity  
(mol%) 

CO 
(mol%) 

CO2 
(mol%) 

CH4 
(mol%) 

30 3 973 1.189 9.68 7.36 98.7 0.183 0.795 0.367 
 2 973 0.867 11.8 8.95 96.9 0.197 0.346 2.57 
 1 973 0.424 8.19 6.23 77.6 0.341 0.227 21.9 
10 3 873 1.134 10.3 7.82 99.5 0.0580 0.232 0.232 

2 873 0.835 12.6 9.55 98.3 0.0469 0.0939 1.60 
1 873 0.418 9.20 6.99 81.5 0.0531 0.0531 18.4 

5 3 848 1.122 10.5 7.96 99.7 0 0.171 0.114 
2 848 0.834 13.0 9.85 99.1 0.0456 0.0917 0.779 
1 848 0.427 9.94 7.55 84.1 0.0507 0.0507 15.8 

5. Conclusion 

A thermodynamic evaluation has demonstrated the potential of bio-oil steam reforming and 

highlighted the role of advanced reforming techniques in enhancing its performance. Sorption 
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enhancement can increase hydrogen yield and purity, while also decreasing the net process energy 

balance. Chemical looping reduces energy balance, although hydrogen yield is reduced due to the 

partial oxidation of the feedstock. When both techniques are combined in SE-CLSR, bio-oil can be 

converted to hydrogen in a process with purity over 99% and a low net energy balance.   

A PEFB bio-oil surrogate mixture has been compared to model compounds acetic acid and furfural. 

Due to the similarity in molecular formula, furfural is a more representative model compound for whole 

PEFB bio-oil. The comparison also highlighted that the feedstock has a considerable impact on 

process energy balance, and as such process design should consider the variability of bio-oil 

compositions.  

The SE-CLSR of bio-oil can achieve autothermal operation with yields over 13wt% and purity over 

99.5 mol%, so that it may be possible to develop small bio-oil reforming plants which are energy self-

sufficient and require minimal product purification. Autothermal operation is also achievable at 

industrial reforming pressures, although the product yield and purity are reduced. The recuperation of 

heat from solid materials and waste gases is a major contributor to the energy balance. Heat 

integration is therefore a key consideration for process development.   

Carbon deposition is present when S/C ratio is low (S/C = 1), but the risk of carbon product can be 

reduced by increasing the quantity of OTM or sorbent. The autothermal operating regimes for SE-

CLSR showed no solid carbon in the equilibrium products. 

Thermodynamic analysis demonstrates how advanced reforming techniques can improve the 

potential of bio-oil as a low-carbon feedstock for hydrogen, in theory improving cost-effectiveness and 

flexibility of scale in low carbon hydrogen production. This study used a high-level overview of reactor 

thermodynamics, but further work is required to assess the feasibility of a real process, taking into 

account practical aspects such as auxiliary units, heat transfer, and the approach to heat integration. 

Economic constraints are another important consideration. Further process development is required, 

including the use of techno-economic analysis to evaluate economic feasibility and optimisation. 
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