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Abstract

The flow of fluids through fractured porous media has been an importa.. .opic 1 the research of subsurface flow.
The several orders of magnitude in size between the fractures and the . ~k ni.u1x causes difficulties for simulating
such flow scenario. The fluid velocities in fractures are also several orde. : of magnitude higher than that in the
rock matrix due to high permeability and porosity. If there exists p. utan’ such as nanoparticles in the fluids, the
pollutant may be transported rapidly and the rock matrix’s prope.. =s near the fractures are hence changed. In this
research, we simulate the transport phenomena of nanoparticlec i» ¢~ quid flow through fractured porous media.
The permeability fields which contain different anisotropy au_'=s are considered in the simulation. Fractures are
represented explicitly by volumetric grid cells and the r='merical «gorithm is parallelized in order to reduce the
simulation time. We investigate the effect of the appearan = o' rractures and rotated anisotropy on the transport of
nanoparticles, particles deposition, entrapment and d~tachm. at. The results show that flow directions are affected
by the direction of anisotropy and the transport of narn “v. *icles in the fractures is significantly faster than that in
rock matrix due to high fluid velocities. The direction o.” anisotropy distorted the pressure field and changed the
fluid flow directions, which determined the time nc dea 1o. the pollutant front to reach the fractures. The parallel
efficiency of the overall algorithm is also discussed ana .:e experimental results show that it is deeply affected by
the performance of the multigrid solver.

Keywords: Multipoint flux approximatior. nanopar .cle transport, algebraic multigrid, parallel computation

1. Introduction

Nanoparticles are particles th- . . = between 1 and 100 nanometers in size. These materials are the basic build-
ing block of nanotechnology ana are inte. ~ively used in electronic, biomedical, cosmetic, automotive products [1]
and others. Recently, nanom- .en. 's have been proposed to be used in petroleum-related industries. There have
been ideas to using nanopar’ ~les n various activities such as reservoir exploration, drilling and completion, pro-
duction and improved oil ~ecove. * as well as refinery [2]. The growing demand on nanomaterials has increased
their production and cor ,equ atly tneir inevitable discharged into the environment. Nanoparticles have several
favourable properties in."'d ag t} :ir effectiveness in surface phenomena because of the extremely larger surface
area they provide. So~~ nanc. ~ cerials provide bactericidal and antimicrobial effect such as silver, and zinc. They
can, therefore, serv as a vc satile bactericide with a wide range of uses such as in fabrics, filtration membranes,
and surgical instrun »nts [3] Due to their high surface to volume ratio, nanoparticles become highly reactive or
catalytic and ma~ “mpo.. . negative impact on the environment. It is noticed that even exposure of living organism
to ZnO nanop rticles . ay be toxic to many species including plants, animals and useful bacteria [4]. All these
situations raise ‘he conc .rn about the fate of these materials in their local environment and motivate the research on
the transport of nau.particle in the environment. Several research works have been conducted to study the transport
of nanopat. <les .. .absurface groundwater reservoirs. Most of the research works conducted on the transport of
nanoparticles * « the subsurface have considered only isotropic and homogeneous reservoirs. Recently, Salama et
al. [2; 5; 6; 7] c. asidered more elaborate scenarios to account for anisotropy in permeability field. As transported
nanoparticles deposit, they deteriorate both the open space for the flow and reduce the permeability. The results of
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numerical simulations showed that the pressure, velocities and porosity fields are distorted ' , *he direction of the
anisotropy. With large anisotropy angle, the deposition of the nanomaterials seemed to be scvere an.’ the minimum
permeability of the domain is reduced at a higher rate. In all the aforementioned work , u > permeability fields
were generally uniform and didn’t consider heterogeneity caused, for example, by the ¢ .iste’ ce of fractures in the
porous media.

Fractured porous media are in fact very common in consolidated rock system: wi.1 the 1.actures forming net-
works of interconnected and/or isolated sets of fractures. Most natural porous ' edi? conw.in fractures at various
scales and they have strong influence on the flow system because most of the flow " s place along them. Numer-
ical simulation of the flow in fractured porous media is a challenge task on ac .ount tn the various length scales and
the fluid velocities within the rock matrix and inside the fractures, which iffer by everal orders of magnitude.
A higher resolution mesh is required in order to resolve the steep variations duc d by the flow field and mass
transfer between rock matrix and the fractures accurately.

In general, there are two major approaches to simulate the flov and trar- port in the fracture-matrix system
based on the fracture intensity. In cases when the fracture intensity is rela. ely small such that it is feasible to con-
sider every single fracture as an individual entity, discrete fractu. ~ models DFM) have been developed. In these
models, the fractures are considered as either part of the domaii. “hat a. - signed much higher permeability or as a
lower dimensionality region in the study domain. When the intensity ~f the fractures, on the other hand, are higher
such that considering individual fractures becomes very e.., ~usive or infeasible, a multi-continuum description
may be considered. In this approach, all the complex features 0. “he network of fractures are homogenised and a
dual- continuum is constructed, one for the matrix and uc .. *“"= fractures. Each of the two continua has their
own porosity and/or permeability. It is, therefore, called « = . porosity/permeability models. In this model, most
of the fluid storage is considered in the matrix with ti. - “~rge-. ~ale flow occurring through the fracture continuum.
The interactions between the flows in the matrix and t. = .. sture continua in dual continua models is described
by a mass transfer function. Such mass transfe: ...~“or." are obtained through analytical expressions or using
empiricism involving some ad-hoc shape factors. W..'= this may be easy to obtain for simple cases, other cases
involving, for example, compositional and compressible flows, may be difficult to establish such shape factors. The
interesting thing about the dual continua mc .els, 1. "wever, is that they require less computational efforts compared
with discrete fracture models. In the discrc = fractur modelling approach, the flow problem is explicitly modelled
in each fracture and in the matrix using Narcys “~w (n the grid meshing, each fracture is represented explicitly and
individually using highly resolved Car zsiar or unstructured grids, hence the expensive computational costs.

In this work, we study the pro’ iem ot ."~ ~ and transport of nanoparticles in anisotropic porous medium do-
main containing a set of discrete ca. "wes. Each fracture is represented by volumetric cells. Several scenarios are
considered such as different angles of ani.. tropy and the location of the fractures. In order to handle the anisotropy
which does not align with thr coc dinate axes, the spatial variables are discretized using the multipoint flux ap-
proximation (MPFA) as in [. ' T .e algorithm is implemented in parallel using FORTRAN and the linear system
arising from the pressure ¢ juatio.. *< solved by the aggregation-based algebraic multigrid solver in [8; 9]. The rest
of the paper is organizes as f.llows: In Section 2 we describe the transport models of nanoparticles, where the
governing equations for .. » cansr ort and fluid flow are listed and reviewed. In Section 3 we discuss the numerical
algorithm for solvine " & gov. " .ing equations, including some issues regarding the linear system solver and the
parallel implement: ion anc Jrocessing of the numerical scheme. Section 4 describes the setting of the numerical
examples and the si. ‘ulatiop ‘esults and observations are discussed in the final section.

2. Transport m. el= ,f nanoparticles

Flow an." tr asport in porous media are, usually, described within the framework of the continuum hypothesis
in which varia les pertinent to porous media exist everywhere and behave in a continuous fashion in space and
in time. This framework allowed the description of several phenomena in porous media in the form of partial
differential equations. One of these equations is that which describes the movement of materials with the flow
in porous media. The what is called advection-dispersion equation is a second order partial differential equation



which takes the form:

1) ag;thLV-(uC—(pDVC):qCJrR

where ¢ is the porosity, C is the concentration per unit volume of the fluid, u is Darcy veloc “v. D is the dispersion
tensor, g, is a source/sink term and R is a generation/depletion term. This equation de. “ribes wide spectrum of
phenomena in porous media involving chemical reactions, adsorption and desorp .on, deposition and remobiliza-
tion and several other interesting processes. While the terms in the left-hand sid exis . in axmost all processes, the
terms in the right-hand side are exclusively what differentiate the different physical . 1 chemical processes. In this
work we are mainly interested in the transport of nanomaterials, it is importr .t to urderstand the physics involved
and how they may be incorporated in the above transport equation.

2.1. Filtration theory

When nanoparticles are transported with water in porous media .. the f .1 of colloids dispersed in the water
phase, they interact with each other due to collisions. If such collisions 1. ~ult in the aggregation of the nanopar-
ticles, deposition occur. If, on the other hand, the collisions amo.. nanor uticles result in more dispersion, then
stabilized colloidal system is obtained. According to the DLV theo.,, between every two nanoparticles there
exist attractions due to the Van der Waals forces and repulsions due 1. ~lectrostatic effects. The overall behaviour
of the colloidal system depends on the resultant effect of the = two forces. These forces in general may lead to
deposition of nanoparticles. Other forces may exist between nano, ~rticles and the porous skeleton which derives
adsorption/desorption processes. Hydrodynamic effects may a... exist due to the flow velocity and could lead
to remobilization of deposited nanoparticles. Several modc’ . exist that describe the transport of nanoparticles in
porous media ([10; 11; 12; 13; 14; 15; 16; 17]). As dis. u. "=d €. rlier the modelling of the generation term is impor-
tant so that the transport equation can be solved. Gargiule et a..[14] and Goldberg et al.[15] have recently reviewed
a number of these models. The mass balance of n.. *9va...~ s may be described as

dOC+S |
ot

where C is the concentration of nanopartic.. - in tF - water per unit volume of the water, ¢ is the porosity, g, is
a source/sink term, and S is the concer ration o1 .eposited nanoparticles per unit volume of the porous medium.
Within the framework of the filtratior thec y, th . rate of deposition of nanomaterials may be proposed to depend
on the flux of nanomaterials. That i

2 V. (uC—¢DVC) =g.+R

s
A3) = =7Vl

ot
where 7 is a proportionality coef .cient (1/L) and J is the advection flux of nanoparticles. This equation can,
therefore, be written as

as
“4) E:7d|up|c_%‘up_ur|s
where u,, is Darcy v :locity, '. is the critical velocity to entrain particles ([18]), ¥z and ¥, are coefficients for depo-
sition and remobiliz ‘tion, res yectively. The complete model and the governing equations of flow and transport are
given in the nexf ~~ctio..

2.2. The compleic  _uel

In poro s m .uw. flows, the permeability is a measure of the ability of the medium to conduct fluids through
it. Most carb. iate reservoirs are naturally fractured and the permeability in fractures is generally several orders
of magnitude la. ger than that in the rock matrix. On the other hand, anisotropy can be observed in almost all
subsurface formation due to the several physiochemical and mechanical processes that took place over the longer
geologic time scale. Cullen et al. [19] investigated the transport of carbon nanoparticles in a two-dimensional
heterogeneous anisotropic porous medium rectangular domain. The principle direction of the anisotropy is aligned
with the coordinate axes. In this case, two points flux approximation (TPFA) is sufficient to solve the system.



However, when the anisotropy direction is not aligned with the coordinate axes, TPFA fails ‘. ~~count for the fact
that pressure gradient in one direction can cause flow in the other directions. In the case of the . ~sence of full
permeability tensor, the more involved multipoint flux approximation (MPFA) methods (- » w 'l be explained later)
is needed in order to obtain the correct discretization as has been done by Salama et al. I 1. Ir is work, we extend
this framework to account for the effect of a set of discrete fractures on the transport of nanc articles in anisotropic
medium.

The governing equations of fluid flow in porous media are given by the m- ;s cc iservation equation and the
Darcys law. In the absence of source/sink term and in the case of incompressible fi.." !s, the principle of mass con-
servation assumes that the mass inflow and outflow are equal when fluid flor crosses a certain region. Therefore,
we have

) Vou=0

where u is the velocity obeying the Darcy’s law:

__K o
6) uffE(fopL/‘

In equation (6), K is the permeability tensor, p is the fluid viscos.. - 0 is the fluid density and g is the gravity.
Combining Egs. (5) and (6), an equation in the pressure oni, s ootained, therefore

K \
) v (Vp e 0

The transport of nanoparticles is described by Eq. 2 in "v.."~h e dispersion tensor D is calculated as

®) L=t DR
where
) DY P — g T+ (d,ﬁw — dc,w) %
and
kgT
10 DB = .
(10) © = 3nud,,

For simplicity we consider -~ ~¢le size nanoparticles. In this work, we use the model in Gruesbeck and Collin
[20] which describes the pro ess ¢« [ deposition as a consequence of two interacting mechanisms, one at the pore
surface and one at pore throav. < .ch that

(11 Ri = ‘95; + a;f

where

(12) dsy { Yailulci, lu| <uc
ot Yailulci — Yei([u] —uei)sii,  [u] > ue

and

(13) % = Yprilule.

In Eq. (12) 74 and Y,.; are rate coefficients for surface retention and entrainment of nanoparticles in interval i,
respectively. u, is the critical value for the magnitude of the velocity. With equations (12) and (13), the porosity
and permeability are updated:

(14) ¢ =00—) 89 = Po— (s1;+s2)
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(1s) K = Ko (1— /)y, + />
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From equations (12) - (15) s and s, are the concentration of nanoparticles at the surfac ~ of the ~rains and entrapped
in pore throats, respectively. Furthermore, K¢ and ¢ are initial permeability and porosity, .. - is a constant for fluid
seepage allowed by plugged pores. Finally, f; is the fraction of the original cros< -sec: ~nal area open to flow and
is calculated as

16) fr=1=7;8,

where 7y, is a constant.

Note that as the test problems of this work, the above simple mo. <l - _rves our purpose for assessing issues
regarding numerical algorithm for solving flow/transport problem in ~nisotroni- porous media with fractures using
parallel processing. In future work we will assess similar problems oun ‘=t more complicated example, such as
nanoparticle transport in shale reservoirs ([21]), which involves ~vo-phase (aqueous and gaseous) flow. Further-
more, this work can be extend 3D flow/transport problems ([22}

3. Numerical algorithm

3.1. Multipoint flux approximation

As mentioned in the previous subsection, we use 1. w.. noiut flux approximation (MPFA) method to discretize
the spatial variables on staggered grid in order to accurate. ’ describe the flow behaviour in the porous media whose
permeability is anisotropic, in which case the perni. ~biny .ensor is full. For staggered grid in 2-D space, pressure
values are defined at the centre of the cells and velocity « >mponents are located on edges (see Fig. 1).

l_p wp oy P P

r -V ‘47V77~—7v7»:L-7V—7

¥ P ow P 4 P ow p o
| |

Y pouop bbb

———\LA—%‘—V—N——V—»%—»—V——

¥ P4 P kP U P

Figure 1: Staggered grid divided by 4 processes (cores).

Consider t' ¢ four wadrilateral cells C;, [ = 1,...,4 in Fig. 2a with a common vertex at xc. MPFA method
builds the inte action r¢ zion (dashed line in Fig. 2) that is centred on the four adjacent cells and there are four
fluxes that need . bhe alculated in each interaction region. Denote the cell centres by x;, and the edge midpoints
by X, whe .7 — 1,23 4. Lines are drawn between the cell centres and the midpoints of the edges (shown as
dashed lines 1 ae figure). These lines bound an area around each vertex which is called an interaction volume. As
seen from the \ vure, there are four half cell edges (solid lines) in the interaction volume. To discretize the PDEs
(5) - (6) using MPFA, we first compute the flux of potential. The flux of a phase o through half cell edge S in an
interaction volume can be computed by

a7 f“:f/S(KVCD“)ﬁdS
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Figure 3: Six pressure values contribute to flux c.'<ulauons in multipoint point flux approximation.

where ¢ is the phase potential (which is pressure in our case), K is the transmissibility tensor (permeability in our
example), and i is the unit normal vector t° the . vface. For convenience we drop the phase index from now on
and the above formula is reduced to

(18) f:f/(KVCD)oﬁdS
s

The integral on the right hand side f (18) c.* be approximated by

(19) [~ Z 1P,

€Q

where #; and ®; are the transn.. ~»ility coefficient and the potential gradient at the centre of the cell-/, respectively.
The fluxes are conserved "ocally by ssuming the inflow and outflow fluxes are equal. From Fig. 2, the flux fj, is
given by

fiz = —0(pi—p1) =17 (Pa—p1)

(20) 55" (p2— 1) — 15 (P2 — p2).-

Q

The fluxes f>3, 34 and f4; are obtained in a similar fashion. Notice that these fluxes contribute only half of the flux
calculations o: the edg s where they are located since the full flux calculations on an edge involve two adjacent
interaction regic < to F . considered as expressed in equation (19). From each interaction region, we would obtain
four syste’ . ~* eauations that need to be solved locally. Each full flux involves two interaction regions and hence
six pressure ’ar ables in neighbouring cells (see Fig. 3). It is clear that the construction of MPFA stencil is quite
complicated. 1 “e x-component of the flux, for example, may be expressed as

21 Sy =ci1p1+capa+c3ps+caps+csps+cepe

where the coefficients ¢,, ¢ = 1,...,6 in the above equation include both the discretization and the permeability
information. The derivations of these coefficients require significant amount of computations. To resolve this



difficulty Sun et al. ([23; 24]) developed experimenting field method to reduce the cumber . “e calculations. In
experimenting field approach, the matrix coefficients are obtained by solving several local problems hich involves
only neighbouring variables. The linear systems arising from local problems are smaller .au much easier to solve.
The predefined experimenting pressure fields are designed and operated over the lor 1l pr .blems such that the
global matrix coefficients are obtained. The linear system associated with the local proble.. for each node (i, j) of
the Cartesian grid shown in Fig. 2 is therefore

(22) A= vt ot v]T=Blpr p2 ps pal’
R P I & e
det(Cy) det(C,) det(C2) i det(Cy)
_ k,%? AC ﬁ G ki AG3 — Y k€3 __AG 0
(23) A= 1 det(Cz) det(CZ) det(C3) deqC3)
Mg 0 _ kfy} AEs kyce S Ky C _ k-*c,e ACs ’
. det(G3)" det(C3) 'C 1et(Cy) . det(C3) C
_ kx}] AC1 0 7k.\“47AC4 )c,\l C L\il Cy
L det(Cy) wenCy) det(Cy) det(Cy)
and
Ayc, —Ay- 0 0
1 0 Axc EAVYS 0
24 B . —— 2 2
24 ) 0 0 —Ayc3 Ayc3
AXC4 il 0 7A)CC4

Here A%, Axc; and Ayc,, i = 1,...,4, are the area, *nc ...~ -ontal and vertical length of cell C;, respectively, and
det(C;) is the determinant of the hydraulic conductivity ~nsor of each cell. From (23) - (24) we obtain a system of
algebraic equations for solving the pressure variables

(25) Cp=hb

where C is the matrix of coefficients, s is *e vector of the unknown pressure field and b is the right hand side
vector which includes the source teri. ans the "oundary condition. For simulations with high resolution, matrix
C is sparse symmetric positive defi- ite an. “b dimension is large. To solve a large sparse linear system, iterative
methods are better options than d° « ** methods (generally using Gauss eliminations). Furthermore, iterative meth-
ods are generally easier to paralielize. . ™ong iterative methods, multigrid methods have been proved to be one
of the most efficient algorithir , 1, ~olve the elliptic type partial differential equations numerically. For solving the
linear system in (25), we emr -loye . the aggregation-based algebraic multigrid (AGMG) method in [8; 9].

It is worth noting thz mu’ ipoint flux mixed finite element (MFMFE) method is closely related to the MPFA
method. In fact, one cai. "ie’, the J-version of the MPFA method (the one considered and presented in this work)
as a special case of the mulu, ~ it flux mixed finite element (MFMFE) method with a certain quadrature rule. In
this paper, we restr’ :t our & ‘ention to MPFA for two reasons. Firstly, MPFA is more widely used than MFMFE
in engineering appl ~ations, .nd secondly, aggregation-based algebraic multigrid is more natural when applying
to MPFA as corm=are.  ".a MFMFE. A separate work (still in progress) will be devoted to aggregation-based
algebraic mult zrid for MFMFE in near future and it will appear in another paper.

3.2. Aggreauo [ sed algebraic multigrid

Consider . ¢ linear system Ax = b on a fine grid, where A represents the matrix and b the right-hand side vector,
and x is the solu..on vector that one seeks. In iterative algorithms we let x\) denote the approximate solution to the
linear system at the ith iteration and decompose the corresponding error ') = x¥) — x into its Fourier components.
Classical relaxation schemes, such as weighted Jacobi or Gauss-Seidel methods, can quickly damp the high fre-
quency components of the error. For this reason these methods are called smoothers (see step 1 in Fig. 4 where x’o,
7! and S’1 are the input vector, residual and pre-smoothing operator, respectively). Notice that the superscript / in



Fig. 4 represents the multigird level. As the high frequency components are damped, the fu- .. ~r smoothing itera-
tions on this level hardly attenuate the low-frequency components. To solve this, the multigiid mew. ~1s use coarse
grid correction, that is, the low-frequency components of residual (step 2, Fig. 4) are r .su “ted to a sufficiently
small grid (step 3, Fig. 4, where R is the restriction operator). On the coarser level fe v (or : or two) relaxations
(step 1 at the next level, Fig. 4) can effectively reduce the error because the smoother con,, ~nents projected from
the fine level appear more oscillatory. The smoothing-restriction procedure can be cai. ~d ouc until the coarsest
grid is reached where the corresponding residual equation is inexpensive to solve d".ec.'y by Gaussian eliminations
(step 4 at the coarsest level, Fig. 4). The coarsest grid solution ()E’2 at the coarsest «evel 1s u.cn interpolated back to
the finer levels (step 5, Fig. 4, where P! is the interpolation operator) where furthe: . ‘laxation sweeps (step 6, Fig.
4, where Sl2 is the post-smoothing operator) may be applied. Recursive appli- ution of the above procedure leads to
a multigrid V-cycle implementation, as shown in Fig. 4. Note that in Fig 4 the appr ximation in step 4 becomes
exact on the coarsest level where the system is directly solved.

. Pre-smooth  x} = S/ (x0,7!) 1
. Residual rl1 =7l —Alxl1
. Restriction Fll =R rl1

. Next level Alg ~ fﬁ

. Prolongation xl2 = Plilz

. Correction xé = xll —|—x12

N N L AW

I ql(yl
. Post-smooth  x, = S5 (x3,7)

Figure 4: Multigrid algorithm (left) and illustration of V-cycle  ‘~ht). », , Slz, P! and R' are pre-smoothing, post-smoothing restricting and
prolongation operators at level /, respectively.

For coarse grid construction in AGMC algorith 1 the (say N) unknowns are subdivided into (say N,) disjoint
small groups (aggregates) Iy, k = 1,...,N. w.."~h rer resent unknowns on next coarser level. In each aggregate, the
prolongation values are assumed to be .nifcrm, u.at is, functions are piecewise constant. Therefore the prolonga-
tion operator P is of the form

u. el

1
<i< <k<N,
2 otherwise (1<i<N,1<k<N).

(26) Py - f

{
Pis an N x N, matrix with ex ctly jne nonzero entry per row [9]. Consequently, the restriction operator is R = PT
and the coarse grid matrix A, "< ¢',tained by Galerkin formula

27 A.=PTAP

where the entry (A.);; is cai. "1a’zd by

(28) A=Y Y au.

kE[,'lE[j

Piecewise con tant prc ongation may attenuate the convergence property of the algorithm and a remedy is pro-
posed in [8], in vhich } -cycle instead of V-cycle is used in cycle strategy. In K-cycle the approximate solution X,
in Fig. 4 is obtaineu vy one or two multigrid preconditioned Krylov subspace iterations (preconditioned conjugate
gradient or M’ .., where the multigrid preconditioner is the K-cycle implementation on the next coarser level.
The K-cycle s ategy of the AGMG is described in detail in [8] and [9], respectively.

As one of the multigrid methods, aggregation-based algebraic multigrid can be very efficient because of its rel-
atively low setup time. However, even with K-cycle strategy it may still suffer slow convergence in some complex
cases. Specifically, the PDEs whose dispersion tensor is rotated anisotropic, appear to be a challenging problem
for aggregation-based algebraic multigrid methods. This is due to that for some rotation angle (e.g., /6, /3) the



original aggregation algorithm generates parallelogram aggregates (4 nodes form an aggreg .. in 2D) rather than
preferred line aggregates. For this type of problems, Chen et. al. [25] proposed an improved aggic_~tion strategy
to improve the convergence. In [25] a new automatic aggregation algorithm determinr , a, Jropriate aggregates
based on eigenvectors associated with small eigenvalues of a block splitting matrix. T’ = ger crated aggregates by
this approach mostly are lines and aligned with the direction of the rotated anisotropv. In . ‘s work the improved
aggregation algorithm is used in the simulation code.

3.3. Parallel implementation of the Solution Algorithm

In our simulation the space domain is divided into m X m = m? blocks un is ¢ vositive integer), each block
contains a fixed number of grid cells, as shown in Fig. 1 (where the domain s dividec into 4 subdomains). In each
subdomain variables (velocities, pressure and porosity) are computed or nindaiwc * »- une process. For convenience,
we divide the domain along the horizontal and vertical edges. In this fr rmat _ h process needs to share variables
at the internal boundary with its neighbouring processes. For example, ~ 7.g. 1 jrocesses Py and P, share u while
P, share v with P3 at the internal boundary (solid lines). In each tin. step . variables at cell centres (pressure,
permeability , hydraulic conductivity and concentration) next to the interna. houndaries are communicated between
processes using MPI in order to compute the solution correctly. . “rtherm re, the construction of transmissiblity
matrix in experimenting field approach ([23]) also needs to cown. “unic..c the residual values (at cell centres) be-
tween processes.

In the above computations only local communications with ne._hbours rather than global communications are
needed for computing the variables at the internal bounda v. 1 .., . 2duces the impact of communication cost to the
parallel efficiency. After computing the transmissibilitv mat " ., the resulted linear system in equation (25) is solved
by parallel aggregation-based algebraic multigrid to <. ‘n th pressure field. The porosity and the permeability
are then updated.

However, there are several issues affect the paran.' efficiency of multigird methods. These issues are par-
allel coarsening in setup phase, parallel smorthing and coarsest grid solving ([26; 27]). In parallel AGMG the
aggregation algorithm aggregates unknowr , localn_- without information from neighbouring processes, therefore
the resulting prolongation operator, the as. ~ciated .oarse grid matrix and the smoother are different from their
counterpart in sequential AGMG. Furth' rmore, .” < parallel pre- and post-smoothing, which may involve inversion
of matrices, ignore the connection inf .rma .on with the variables which are not in current process. These factors
may affect the convergence of AGMG. ™. ass ss the impact of the above issues on linear system solving arising
from our numerical examples (de‘ cribed in _.1e next section) we carried out some preliminary parallel run with
different number of processes (cr ces, ~ observe the convergence of AGMG multigrid solver in the first 1000 time
steps. We record the average m»'tigrid cyc.es needed for solving the pressure field at each time step. The results of
the runs are shown in Table ! Frc n the table we see that the convergence of AGMG is not affected significantly
by the aforementioned first tv. ~ ic sues for the numerical examples we studied in this work.

“hie (: Eff ct of parallelization on the convergence of AGMG. 1600? unknowns.

No ~f processes #level AGMG iterations

(core ) 0=0° 0=30° 6=45" 0=060°
1 7 14 14 14 14
“ 7 14 14 14 14
16 7 14 15 14 15
64 7 14 15 15 15
256 7 15 15 15 15
1024 7 15 15 15 15

The coarse. " grid solving is a critical step affecting the parallel efficiency [26] when the number of processes
(cores) is large (1024 in this research). The size of the portions of the operator stored in each processes at this
level is generally small, and the time required for communication may be higher than the time required to perform
the calculations on a single process. Furthermore, the coarsest grid operator may couple all pieces of the global
problem (i.e., it is dense, or nearly dense), and thus global communication of the right-hand side or other data may



be necessary. To avoid excessive communication at the coarsest level, we use Jacobi prer . ditioned conjugate
gradient (PCG) to solve the coarsest grid system instead of Gauss eliminations (direct soiving). < ~mpared with
Gauss eliminations, the CG algorithms can be parallelized easily and the implementat’ ,u . 1ly need few global
communications.

In all the coarsest grid solving of AGMG cycles, the PCG iterations stop when the 2-. ~rm of the relative resid-
ual is less than a threshold. The computation of the threshold is as follow: For ea a v’sit of we coarsest grid, one
may expect that a defect reduction of p!/* will be sufficient, where p denotes th . exp .ctew multigrid convergence
factor and « is the number of coarsest grid visits [27]. If the expected multigrid coi. *rgence factor is 0.15 and the
number of coarse grid visits is 192, the the threshold can be computed as '3/ .15 ~ 0.95. Generally this threshold
can be reached easily by one or two preconditioned CG iterations, while th overall \GMG convergence was not
affected. Therefore in the actual implementation we let the threshold be 0.99.

In summary, the solution steps of the numerical algorithm (expe. ‘m- .ting pressure field approach, parallel
implementation) described in this section are shown in Fig. 5.
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Figu e 5: Flow hart of the solution using the experimenting pressure field approach to calculate the velocity field.

4. Numerica. *xample

In this work, we consider a set of 2D numerical experiments to investigate the transport of nanoparticles in
heterogeneous media which contains fractures. The physical domain is a square with side length of 3.2 meters and
consists of three zones, where the permeability in the middle zone is rotated anisotropic (lightly hatched region in
Fig.6). The whole domain is resolved by a mesh with size n, x n, = 6400 x 6400. The size of each cell is 0.0005 m
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x 0.0005 m. In an attempt to investigate the parallel efficiency, the unknowns are divided in' . ~arious of numbers
of groups, with each number is an even power of 2. The largest number of processes used i this rc. ~arch is 1024.

The anisotropy is defined by two parameters. The first parameter is the angle the the * rinciple direction of
anisotropy is making with the x-axis. The other is the anisotropy ratio, which is the ratio bev. ~en the components in
the principle directions. The angles of anisotropy considered in this work are 0°, 30°, 4, ~nd 60°. The anisotropy
ratio is set to be € = 0.1. Consequently the components of the initial permeability “ons r in rock matrix is given by
the formula

(29) {KM ny] _ [Ko(cosz(9)+esin2(9)) Ko(1—¢€)er (9)sin )

Ky Ky Ko(1—€)cos(0)sin(8)  Ko(sin®(6 +¢ecos 0))]’

where Kj is a constant given by 9.869 x 10~'4. The domain contains th~_ frac....cs whose positions and lengths
are shown in Fig.6. The width of each fracture is resolved by 2 volumr :tric cu , which makes the fracture width
to be 0.001 m.

At the centre of the domain, a 0.46 m x 0.46 m square region (cross hat 1ed region in Fig. 6) serves as a source
of nanoparticle pollutant. The nanoparticles are emitted at an infens.. - 2 x ' )= L/s. The fluid flow transports these
particles and certain amount of them deposit in the media. In the - ~gion where nanoparticles are injected, the de-
position of nanoparticles changes the homogeneity of the me-i~ ~~ - the porosity reduces with respect to time.
All the simulations stop when the minimum porosity of the u. main has reached 0.10 and the numerical data are
saved/recorded. Note that the value 0.10 is enough for < to obsc.ve the significant differences in fields (pres-
sure, porosity and velocity) for various cases, however v ere (s nothing particularly significant about this value
and we are able to proceed further in time. For the b ~indai_ conditions, we impose velocity boundary condition
of 2 x 10~° m/s on the left edge of the domain. Morc w. - at the same place the pressure is set to 1 atmosphere
(1.01325 bar). Initially, the pressure field is 0 excent on t. = left side of the domain. No flow boundary condition is
assumed on the top and bottom of the domain.

The parameters for the transport model d~ _ “hed in the previous section are listed in Table 2. For convenience
we made few assumptions. Firstly the na .opartic: s are assumed not affecting the flow field. This assumption
allows the decoupling of flow and transpo1. ~uatir as and simplifies the calculations. Secondly, we assume that
the permeability and the porosity are J .cger in u.  fractures. The permeability in the fracture is considered, ap-
proximately, 3 orders of magnitude t' an it «s in he rock matrix. The initial porosity in fractures is assumed 0.9,
while in the matrix the porosity is cr asia. ~d (* 3. The larger permeability in fractures makes the entrapment of the
nanoparticles more difficult. We - <o assume that surface retention and entrainment of nanoparticles in fractures
to be smaller than that in the roc’. mau. - All the simulations use a fixed time step size of Ar = 3.25 x 10~ s.

3 fractures
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Figure 6: Schematic of the computational domain with the fracture system.
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H Parameters v Tues
Parameters Values H Lo xL, 32 m x 32 1.
Initial permeability Ky ny X1y 6 J0 . 6400
in rock matrix %o -
[9.869 0 ] ¢o (in fracture) 0.9
Isotropic layer .O 9.869| X 10714 m? DB 25 09 m2s—!
Anisotropic layer i u 1953 1Pa s
o [9.869 0 14 2 Ya 5m-
0 0 0.987 x 10 m Ya (in fractore)  1.025 m~!
_ Y Im™!
- - . 71
o 7.649 3.846 14 o Ype(in fircture)  0.005 m
30 3.846 3.208) <107 M Ye 10m™!
) i Yo (dnfr cove)  0.05m™!
. 5428 44411 4 v 0.001 m™"!
45 4441 5428|107 m ¥, i fracture) 5% 107 m~!
] ’ ; 0.6
; 3208 3.846] . | 0 0
60 3846 7640 10 et 0
Initial permeability €52 0
in fracture 750 % 9.896 x 104 m? | Ge 106!
I A, 0.02's

Table 2: Parameters for single “no-sizc narticle transport simulations.

5. Simulation results

In this section we first investigate the physics delivered from the simulation results for the nanoparticle trans-
port in fractured media. The parallel simulr 1ons v. >re carried out using 1024 cores. Secondly we assess the issue
for parallel efficiency by measuring the ruz. “ing time “or the simulations with 1000 time steps using various number
(power of 2: 1, 4, 16, 64, 256 and 1024, of co. < All simulations were carried out on Shaheen II, a Cray XC40
delivering over 7.2 Pflop/s of theoreti .al p ak performance. The system has 6,174 dual sockets compute nodes
based on 16 core Intel Haswell process. < ;unn’.ag at 2.3GHz. Each node has 128GB of DDR4 memory running at
2300MHz. Overall the system has . total o1 * /7,568 processor cores and 790TB of aggregate memory. At the end
of 24 hours maximum execution .. the restart mechanism implemented in the code saves the current numerical
data which is used for the next restarting . mulation.

“niso’.opy angles

L of tir .e steps

OO
1940000

30°
1810000

45°
1850000

60°
1820000

Tab! 3: Total . umber of time steps for the simulations to reach the minimum porosity threshold 0.10.

5.1. The evolr ion of n. mimum porosity

The change € the ainimum porosity versus time for different scenarios are shown in Fig. 7. The number of
time steps . ~~~h the minimum porosity threshold for each anisotropy angle are listed in Table 3. In all scenarios
the minimuw, ° f srosity decreases with time as a consequence of the increase of deposition of nanoparticles. The
decreasing of . ‘inimum porosity becomes significantly after the time 1000 second. In the case for 6 = 0° the
minimum porosity decreases slower than the others do. The decreasing rate is the largest for the cases 8 = 30° and
0 = 60°, where their time evolution profiles are pretty close. As we shall see later, the porosity profiles (Figs. 16)
exhibit that the minimum porosity happened inside the (square) nanoparticle emission region. The anisotropy an-
gles 30° and 60° exhibit a geometric symmetry to the square. The accumulation of the nanoparticles acts similarly
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in these two cases.

Time evolution of the minimum values for each component of the permeability tens' . | "Kyy; Ky Kyy] shows
almost the same as the porosity plot in Fig. 7 for various anisotropy angle. In parti alar e minimum of the
permeability components decrease with time as a consequence of the increase of depesitio.. ~f nanoparticles. Like
the minimum porosity, the decrease of the minimum permeability components become. ~igninicant after the time
1000 second. The decrease of the permeability tensor component K, at the end of .ie . ‘mulau.on is shown at Fig. 8
(the figures of other permeability tensor components and their time evolution ar* not - aow.. here due to limitation
of space). In the case for 8 = 0° the minimum permeability components K,,, K,, «. 1 K, decrease more than the
others do. This may attribute to longer simulation time than the other cases.

5.2. Speed

The speed profiles sampled along the middle lines of the entire dor ain p- _ 'lel to the coordinate axis for vari-
ous cases are shown in Figs. 9 - 12. Because the speeds at the fractures “~ 10~ are several orders of magnitudes
larger than that (= 10~°) in rock matrix, the y-axis is presented in tc. s of *- sarithmic scale. This should not be
surprising as the permeability in fractures is three orders of magnitude lai °r than that in the rock matrix.
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Figure 9: Speed pre e alc ig the middle vertical and middle horizontal lines of the entire domain for 6 = 0°.

As seen from the figr ces, “or ali the anisotropy angles the speed profiles along the vertical middle line of the
entire domain exhibit t. ~ si nific .nt large values at two horizontal fractures, roughly 1000 times larger than that
at the rock matrix. On the o ~r and, along the middle horizontal line the fluid speed at the vertical fracture is 10
times larger than th ¢ in roc'- matrix. The speeds profiles also show that in the nanoparticle emission region (see
Fig. 6) the fluid flow slows dc wn, correspond to the relatively significant decreasing of the permeability of that area.

5.3. Pressure, Porosity ind concentration fields

In this work tue primary concern is on how the fractures and the anisotropy of the middle region affect the
different v. iab’ .s -uch as pressure, porosity, flow velocities and concentration distribution of nanoparticles. In
this study, we onsider the scenarios in which the deposition of nanoparticles changes the properties of porous
media. In partic ilar, the deposition decreases the volume of the void space available for the flow and therefore,
the permeability also decreases. Since the velocity is set to be constant at the left boundary, the average pressure
changes as a consequence of the decrease of both the porosity and the permeability with time. In this section we
highlight these effects as per the different scenarios.
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Figure 10: Speed profile along the middle vertical and middle hariz~=¢~ " ‘neg of the entire domain for 8 = 30°.

Figs 15 - 17 show the update of the various variable. anic .. minimum porosity reached 0.10. First, we in-
vestigate the pressure field for each anisotropy scenario. F. -~ n Fig. 15 one notices that the pressure field distorts
with the direction of anisotropy. As the anisotropy ai.*.. inci. ses, the gradient of the pressure profiles along the
x-direction increases (Fig. 13). At the middle y-line o. the Jomain, the pressure in the two horizontal fractures
is smaller than that in the rock matrix (Fig. 14,. ... i~ mderstandable since it is easier for the fluids to pass
through the fractures than they do in the rock matrix. . ~rthermore, Figs 13 and 14 show that the magnitude of the
maximum pressure at the left hand side of the domain increases as the anisotropy angle increases, which indicates
that large anisotropy angle hinders the fluid dow 1. “re significantly than small anisotropy angle does. Also notice
that the pressure is larger in the upper half '~main t! an that in lower half domain when the anisotropy angle is not
zero, which again indicate the influence Jf the «. ‘< stropy angle on the pressure distribution.

The profiles of media’s porosity av . end Lf the simulation in all cases are shown in Figs 16. From the area
where the porosity is reduced, we ,ee that .. . anisotropy affects the spread of the nanoparticles significantly. In
the area surrounding the injectio’ re. ~n of the nanoparticles, the porosity fields are different in these four cases.
For the case 6 = 0° the area with minimium porosity is rectangular (Fig. 16a) otherwise it rotates according to
the direction of anisotropy (F'z. 11 b - 16d). Notice that the porosity in the fractures does not change significantly
during the simulation in all « “<e<. This may be because the velocity in the fracture is large compared with that
in the rock matrix and th refore ." = rate of detachment is increased. One may also observe that nanoparticles
spread towards the two ! oriz- atal fractures for the cases 8 = 30°, 8 = 45° and 0 = 60°. In these three cases the
spread of nanoparticles a. - g thr horizontal fractures reaches the fracture intersections. It is not surprising that
the horizontal fractu’ ., ransp. ¢ nanoparticles more rapidly than the rock matrix does. In the case 6 = 30°, the
spread of nanoparti les just « wrely reach the horizontal fractures when the simulation ends, so the transportation of
nanoparticles in frac res di .n’t proceed long enough to see the similar effect appeared in the cases 8 = 45° and
6 =60°.

Fig. 17 exh. its the concentration contours for different cases. Comparing with Fig. 16 the profiles of the con-
centration “~14s in aul four cases match well with their corresponding porosity fields. From Fig. 17 the nanoparti-
cles spread ut ‘. broader range for the case 6 = 60° than the other scenarios do. It can be seen that nanoparticles
are transporte. all the way to the fractures. After the pollutant is transported into the fractures, the concentration
near the area aroand the fractures increases gradually as the time evolves.
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Figure 11: Speed profile along the middle vertical and middle hariz~=t~ ‘neg of the entire domain for 8 = 45°.

5.4. Parallel efficiency

In this section we assess the performance and pe-allel ¢ dciency issues for the simulations. In each case the
execution times for linear system solving and the over. 't . "nu.tion are recorded. The core numbers used in simu-
lation for assessing parallel efficiency issue are 1, 4, 16, L1, 256 and 1024. The problem size is fixed (6400 x 6400
unknowns) and all the anisotropy angles (0°,30°,4." 6u , ...e considered. The simulation times for executing 1000
time steps from the restart file at a fixed time are meas.. 2d. As mentioned in Section 3, the numerical algorithm
of simulation involves three parts: the consf~~*ion of the matrix arising from MPFA discretization, solving the
resulted linear system for pressure field and .he upa. ‘e of the variables such as velocity, porosity and concentration.
In attempt to assess the issue for the impac. ~f the .GMG’s performance on the parallel efficiency of the overall
algorithm, the running times for both tb . overal . ".nulation and linear system solving are compared.

The timing results are listed in Tabi. ¢ (fc the whole simulation) - 5 (for linear system solving). The corre-
sponding parallel efficiency plots - ‘e shown .1 Figs. 18 - 19. The results in the tables show that the linear system
solving step takes from ~ 5% (1 core, ~ ~ 30% (1024 cores) of the overall simulation time for all the anisotropy
angles. The execution time for ‘*= linear system solving in the case 0° is the smallest among all scenarios. This
can be verified by the numbr . of 1 aknowns on each multigrid levels, which indicates that for the case 0° the re-
duction ratio from fine level «. *' ¢ next coarser level is the largest and therefore has the least computational cost
for smoothing and interpc .ation/pro’ d>ngation among these cases.

As seen from Fig 18 u. nar (el efficiencies, either for the entire simulation or for linear system solving, do
not differ significant’y 1n all amsotropy angles. For large number of cores (> 256) the parallel efficiency decreases
to below 50% for ( e overa: simulation (see Fig. 18). This may attribute to the performance of linear system
solver. As seen from Tie. 1, the parallel efficiency for the linear system solving step reduces significantly in all
anisotropy ang’_s tor large number of cores (> 256).

6. Conclu. ‘on

In this worn we have simulated the flow and transport of nanoparticles in porous media. The domain is com-
posed of three vertical layers. The middle layer is assumed anisotropic with respect to permeability. A simple
system of fractures is also considered. Several scenarios of anisotropy of the permeability of the middle layer
are considered. Spatial variables were discretized using the multipoint flux approximation (MPFA) method. The
resulting linear system for pressure field is solved by aggregation-based algebraic multigrid (AGMG). We assume
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Figu : 13: Pressu. . profile along the middle x-line of the domain.

that the transportation of nanr par -les is less hindered in fractures hence the rate of particle retention and depo-
sition is small. The widths . € the fractures are 1 mm. In order to represent the fractures by volumetric cells we
use high resolution mesh (5400 ~ <400). The solution algorithm is parallelized so that the results can be obtained
in reasonable length of .me The fields for pressure, porosity, concentration and velocity are distorted by the
anisotropy. The directio.. ~f distc tion follows the anisotropy angles. The fluid speed in fractures is several order
of magnitude larger * 1 thav .- rock matrix. The fractures act as conduits which convey the nanoparticles much
faster than the rock matrix ¢ »es. In this model the deposition of pollutant is not severe in the fractures due to the
high fluid velocity a. 4 hence increased rate of detachment.

The issues for para ‘el efficiency of the simulations are assessed. The efficiency is not affected significantly
by the anisotro, v angle ,, which is expectable since the intensity of anisotropy in our study is relatively mild. The
performan~e and speed up of linear system solving (for pressure field) affect the overall parallel efficiency of the
simulation . ign’ wautly. For large number of cores the linear system solving step becomes the bottleneck of the
performance . «d efficiency, as seen from the test results for AGMG’s parallel efficiency. This may attribute to
the communicat.on cost for solving the coarsest grid problem (visiting 192 times in each multigrid cycle) and the
overhead arising from the setup phase in parallel AGMG.

To the best of our knowledge, this is the first attempt using parallel MPFA discretization and AGMG to simulate
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0° 30° 45° ' 60°
No.of processes (cores) time | speedup time | speedup time ‘ speedup \7 L= | speedup
1 468524 479235 481930 478444
4 123520 3.79 | 124610 3.85 | 125542 "84 | 124320 3.85
16 31120 14.10 | 32164 14.90 | 32333 14.. ' 31873 15.01
64 8433 55.55 8603 55.71 8572 5520 | 8671 55.52
256 3058 153.21 3125 153.36 3128 1.4.07 3074 155.64
1024 952 | 495,15 1068 | 448.72 1047 . 470.5. ‘ 1101 434.55

Table 4: The overall simulation time (in seconds) and speedup for runr’._ 1000 tu.. steps.

0° 30° 45° 60°
No.of processes (cores) time | speedup time | speedup ume | speedup time | speedup
1 20497 22872 212 1 | 23020
4 6160 333 | 6590 347 | 0371 342 | 6523 3.53
16 1846 11.11 2090 10.94 195y 11.18 | 2108 10.92
64 580 35.34 678 3273 t12 35.64 686 33.55
256 334 61.37 365 A2.6u 462 60.25 371 62.05
1024 263 77.93 309 74.° | 298 73.19 304 75.72

Table 5: Execution time (in seconds) and speedup for linear sys. ™ solving (for pressure field) in 1000 time steps.

and investigate the nanoparticle transport in porous media \ “.h fractures. The current work shed light on the new
approaches to tackle the complicated systems of nano, . *cle . ansport with fractures and full-tensor permeability.
This work can be extended to multiphase flow in a rock « sma.ining fractures of various scales, which is a topic we
plan to work on in near future.
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